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Abstract

We study the radiative leptonic decays P → ℓνℓ ℓ
′ +ℓ′ −, where P is a pseudoscalar meson and

ℓ and ℓ′ are charged leptons. In such decays the emitted photon is off-shell and, in addition to
the “point-like" contribution in which the virtual photon is emitted either from the lepton or the
meson treated as a point-like particle, four structure-dependent (SD) form factors contribute to the
amplitude. We present a strategy for the extraction of the SD form factors and implement it in an
exploratory lattice computation of the decay rates for the four channels of kaon decays (ℓ, ℓ′ = e, µ).
It is the SD form factors which describe the interaction between the virtual photon and the internal
hadronic structure of the decaying meson, and in our procedure we separate the SD and point-like
contributions to the amplitudes. We demonstrate that the form factors can be extracted with good
precision and, in spite of the unphysical quark masses used in our simulation (mπ ≃ 320 MeV and
mK ≃ 530 MeV), the results for the decay rates are in reasonable semiquantitative agreement with
experimental data.
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Introduction

The Standard Model (SM) is the most complete physical theory, which describes the fundamental
constituents of our universe and three of the four fundamental forces, which are the electromagnetic,
the weak and the strong interactions. Nevertheless, one of the main goal of the high energy physics is
the search of new physics, beyond the Standard Model, since there are several arguments suggesting
the necessity of some kind of extension. Phenomenological observations like the dark matter and the
smallness of neutrino masses can not be explained in the actual theory, so as the strong asymmetry
between baryons and antibaryons. Moreover, the Standard Model does not include gravity, which has
not been successfully quantized in a renormalizable theory, and it does not provide any justification
for the very precise equivalence between the electron and proton electric charges. Another mysterious
fact is the observed value of 125 GeV for the Higgs mass. To justify that value within the Standard
Model one has to invoke an incredible ad hoc fine-tuning of the parameters. All these problems
suggest considering the SM as an effective theory, valid at low energies, of a more complete one.
We could hope to reach the energy scale of the new physics in the experiments, so to view direct
evidences (e.g. discovering a new particle), but we don’t know where exactly that scale of energy
is, and reaching it could require an indeterminate amount of time. In the meantime, another way
of searching for new physics is to look for indirect evidence of it, that is, finding some kind of
inconsistencies between prediction of SM and experimental data.

To do so, an excellent ground is precision flavor physics, which studies processes where different
species of quark mix among each other. The reason for the interest in studying flavor physics in
the quark sector is the observed strong hierarchy in the quark mass spectrum and the fact that
the mixing phenomenon is severely restricted in the Standard Model, as we now explain. In the
SM, mixing among quarks is carried by the charged weak current, and it is parametrized by the
Cabibbo-Kobayashi-Maskawa (CKM) matrix, that is a 3 × 3 matrix where each element represents
the complex coupling relating the mixing between an up-type and a down-type of quark. It reads

V =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 . (1)

So the first prediction of the SM is the absence of flavor changing neutral current at tree level, tran-
sition between different species of quarks with the same electric charge can occur only through loop
corrections in the weak interaction. Moreover, the GIM mechanism provides a partial cancellation
of the loop contributions coming from the different quarks. The resulting extreme suppression in
the SM makes these processes very useful to test small hypothetical effects of new physics. Besides
forbidding flavor changing neutral currents at tree level, SM also provides several constraints on the
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nine complex entries of the CKM matrix. Indeed, the SM requires the matrix V to be unitary, that
is it must obey the relation

V V † = V † V = 1 (2)

Eq. (2), together with the arbitrariness of the quark field phases, reduces the number of independent
real parameters appearing in V from eighteen to only four. In other words, the CKM matrix
provides several tests for the validity of the Standard Model. This is the reason why there is a great
effort to measure CKM matrix elements with extreme precision.

However, the extraction of the CKM elements from experimental data requires an accurate
knowledge of a number of hadronic quantities, that constitute the main source of theoretical
uncertainty. Indeed, the non-perturbative nature of strong interaction at low energy makes any
computations extremely hard, or even impossible, to be performed analytically. In this context,
Lattice Quantum Chromodynamics (LQCD) has proved to be the most successful tool for evaluating
non-perturbative hadronic effects. By formulating the theory on a finite four-dimensional hypercube,
and in Euclidean space-time, LQCD allows a numerical evaluation of the path integrals, without
introducing any other assumptions besides the validity of the theory itself. This is achieved due
to the finite number, although very large, of degrees of freedom of the discretized theory and to
the fact that in Euclidean space-time the generating functional assumes the form of a partition
function. These two facts allow a numerical evaluation of the path integrals which non-perturbatively
define correlation functions, by employing Monte Carlo methods through the importance sampling
technique, that is by weighting the contributions of field configurations to the integral using the
Boltzmann factor. Also, the finite lattice provides a natural regularization of both infrared and
ultraviolet divergences. Finally, all the systematic effects due to the discretization, the finite volume,
and in some cases also due to unphysical quark masses that are simulated can be precisely evaluated
and taken into account. Many other details on LQCD and its fundamental techniques are collected
in the thesis in Appendix B.

For all its features, LQCD is today the most powerful technique for the evaluation of non-
perturbative hadronic effects from first principles only, and it constitutes the main tool that has
been used in this thesis. Our work focused on the decay

P+ → ℓ+ νℓ ℓ
′+ ℓ′− , (3)

where P+ is a charged pseudoscalar meson, that decays in three charged leptons ℓ+ , ℓ′+ , ℓ′− and
a neutrino νℓ. ℓ and ℓ′ are two lepton flavors, that can be equal or different, that is ℓ, ℓ′ = e , µ , τ .
The results obtained in this study have been in published in [1]. These are very rare processes,
since at leading order the decay, besides being induced by the weak interactions, is also mediated
by a virtual photon, so that the matrix element is proportional to the electromagnetic coupling
constant αem = 1

137 and the squared amplitude entering the branching ratios is suppressed by a
factor α2

em with respect to the other, more common, decays. For each decay P+ → ℓ+ νℓ ℓ
′+ ℓ′ −, the

computation of the decay rate requires the knowledge of four Structure Dependent (SD) hadronic
form factors, that depend on the invariant masses of the two leptonic pairs ℓ νℓ and ℓ′ +ℓ′ − as well
as of the leptonic decay constant fP . The "point-like" (or inner-bremsstrahlung) contribution to the
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decay rate, in which the virtual photon is emitted either from the lepton ℓ+ or from the meson P+

treated as a point-like particle, is readily calculable in perturbation theory, requiring only the known
value of fP as the non-perturbative input. The SD form factors describe instead the interaction
between the virtual photon and the internal hadronic structure of the decaying meson, and their
computation in Lattice QCD is the main subject of this thesis. The procedure developed in this work
is a natural extension of the detailed studies and computations of isospin breaking corrections to
leptonic decays [2, 3, 4, 5] and to the calculation of leptonic radiative decays of the type P → ℓνℓγ

where γ is a real photon [6, 7].
Given the strong suppression of these processes, only a few experimental measurements exist.

For the pion, the only measured decay rate is for the process π+ → e+ νe e
+ e−, for which the

Particle Data Group (PDG) reports a branching ratio of (3.2 ± 0.5) × 10−9 [8]. For kaon decays,
the measurement of the (partial) branching ratios has been performed by the E865 experiment at
the Brookhaven National Laboratory AGS for the decays K+ → e+ νe e

+ e−, K+ → µ+ νµ e
+ e−

and K+ → e+ νe µ
+ µ− [9, 10]. The branching ratios are found to be of O(10−8). For decays with a

e+e− pair in the final state, a lower limit of about 150 MeV is imposed on the invariant mass of
the lepton pair. Without such a cut, the branching ratio would be dominated by the point-like
contribution in the low e+e− invariant mass region which is of O(10−5), so that the relevant SD
contribution would not be detectable. For D mesons no experimental data are available yet, while
for B mesons there is an upper bound on BR(B+ → µ+ νµ µ

+ µ−) of 1.6 × 10−8 [11].
Despite the theoretical and experimental difficulties, achieving numerical predictions and ex-

perimental measurements for the processes P+ → ℓ+ νℓ ℓ
′+ ℓ′− would result in a precious source

of information. Indeed, in order to place constraints on new physics, a theoretical prediction
for the emission of an off-shell photon provides several possibilities. One example are the recent
experimental results suggesting the violation of Lepton Flavor Universality, which is an important
feature of the SM (see e.g. Refs.[12, 13] and references therein). A simple extension of the SM has
been considered by adding a new UµR(1) gauge interaction, in order to explain the discrepancy
between some different measurements of the proton charge radius [14]. In [15] the non-observation
of missing mass events in the leptonic kaon decays has been used to place strong constraints on a
parity-violating gauge interaction of µR. But it is also pointed out in [15] that if we allow the new
gauge boson to decay in a leptonic pair ℓ+ ℓ−, like in [14], then in order to place a constraint it is
necessary to have a SM prediction for the P+ → ℓ+ νℓ ℓ

′+ ℓ′− process, in which the virtual photon
emission enters. Also, a non-perturbative evaluation of the form factors relevant for the emission
of a virtual photon in the B decays can be used to investigate new particles with flavor-violating
couplings to b-quark. This is the case of the axion [16, 17], which would provide an explanation
for the absence of CP-violating effects in strong interactions [18] and at the same time it is also
a candidate for dark matter [19]. In [20] it is compared the decay rate for B → µ+ µ− a to the
SM background B → µ+ µ− γ, for which a non-perturbative estimate of the B → γ(∗) form factors
with on- or off-shell photon is necessary. In [21] is explained how to extract the B → µ+ µ− γ

spectrum as a contamination in the tail of the LHC collected data for the process B → µ+ µ−. In
[20] the off shell radiative form factors are computed with QCD sum rules. It is precisely the strong
suppression of processes like the one in Eq. (3) that makes them excellent places where to look for
these hypothetical new physics effects. The reason is that effects of new physics, if present, are
supposed to be very small, otherwise we would have already detected them somewhere. Thus, if the
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leading Standard Model contribution to some process is also small, due to any mechanism, we can
expect hypothetical new physics contributions to be comparable in size, and so detectable without
the need of extraordinary precision.

For all the motivations shown before, we believe that a non-perturbative, model-independent
lattice computation of the radiative structure dependent form factors describing virtual photon
emission is today extremely useful to make progress in the theoretical predictions of SM hadronic
quantities (like the Cabibbo-Kobayashi-Maskawa matrix elements) and also for the search of new
physics.

In this thesis, we present for the first time a general strategy for the computation of the SD
form factors and implement the procedure in an exploratory lattice simulation for kaon decays, i.e.
for P = K. The computation is performed using a single gauge ensemble of Nf = 2 + 1 + 1 flavors
of twisted mass fermions generated by the European Twisted Mass Collaboration (ETMC) on a
323 × 64 lattice with lattice spacing a = 0.0885 fm and with unphysical light-quark masses such that
the pion and kaon masses are mπ ≃ 320 MeV and mK ≃ 530 MeV [2]. Our method enables us to
determine each of the four SD form factors contributing to the amplitude with good precision, and
to study their dependence on the kinematic variables. Using these form factors one can reconstruct
separately all the contributions to the branching ratios; the point-like contribution, the SD one and
that coming from the interference between the two. There has been one previous lattice study of
these decays, in which a method was presented and implemented to compute the branching ratio
for the decays K+ → ℓ+ νℓ ℓ

′+ ℓ′ − without separating the point-like contribution and determining
the SD form factors themselves [22]. In addition to the lattice results for the kaon form factors from
the computation reported here, theoretical information about kaon and pion form factors comes
from Chiral Perturbation Theory (ChPT), which has been used at next-to-leading order (NLO) to
estimate their value and their contribution to the branching ratios [23]. It is worth noting that at
NLO order in ChPT the form factors are constants, i.e. independent from the kinematical variables.
In spite of the unphysical quark masses used in our simulation, it has been interesting and instructive
to compare our results with those from experiments (where available) and from NLO ChPT, as
well as with those from Ref. [22]. Perhaps surprisingly, due to the still approximate estimates of
systematic effects, as can be seen from Tabs. 3.1 - 3.4 below, the results are generally in reasonable
semi-quantitative agreement but with some differences. In particular, we speculate that the form
factor H1, defined in Eq. (1.21) may have to increase by O(20%) in order to get precise agreement
with the experimental data (although there are also discrepancies in the experimental determination
of H1 from different decay channels). It will be important therefore, after this successful exploratory
computation, to focus our future work on controlling and reducing the systematic uncertainties in
order to obtain robust results at physical quark masses and in the continuum and infinite-volume
limits. It will then be interesting to see whether the form factor H1 will indeed change or whether
there will be a different explanation for the differences between the experimentally observed rates
and our current results. For heavy mesons, ChPT does not apply, instead theoretical predictions for
B decays into two lepton pairs have been performed by using QCD factorization [24, 25, 26, 27, 28]
or Vector Meson Dominance [29, 30]. The prediction presented in [30] for the B+ → µ+ νµ µ

+ µ−

branching ratio, however, is almost four times larger than the experimental upper limit obtained
in Ref. [11], while the value from [25] is only marginally compatible with the upper limit. It is
therefore clear that a non-perturbative, model independent lattice evaluation of the SD form factors
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is required.
The main numerical results of this work are the following1

• We computed on the lattice the coefficients for a polynomial and a pole-like parametrization
of the structure dependent form factors entering K+ → ℓ+ νℓ ℓ

′+ ℓ′ − decays. They read

Fpoly(xk, xq) = a0 + akx
2
k + aqx

2
q , (4)

and

Fpole(xk, xq) = A(
1 −Rkx

2
k

) (
1 −Rqx2

q

) (5)

where xk and xq are the normalized invariant masses of the two leptonic pairs ℓ+, νℓ and
ℓ′+, ℓ′−. The numerical lattice results for all the parameters appearing in Eqs. (4) - (5) are
collected in the following table.

a0 ak aq A Rk Rq

H1 0.1755(88) 0.113(30) 0.086(24) 0.1792(78) 0.453(88) 0.40(10)
H2 0.199(21) 0.341(84) -0.03(3) 0.217(17) 0.87(12) -0.2(2)
FA 0.0300(43) 0.04(4) 0.00(1) 0.0320(30) 0.74(50) 0.0(3)
FV 0.0912(39) 0.044(18) 0.0246(59) 0.0921(38) 0.38(13) 0.233(49)

Table 1: Values of the fit parameters for all the form factors, as obtained from the polynomial
and pole-like fits of Eqs. (2.4) and (2.5).

We considered two different parametrizations in order to check that the result of the interpola-
tion would not depend significantly on the choice of the functional form, and indeed the two
fits give almost the same results in the whole phase space of the processes, as it is shown in
Figs. 2.5 and 2.6 in Chapter 2.

• By employing our numerical predictions for the form factors, the branching ratios for all
the different channels of K+ → ℓ+ νℓ ℓ

′+ ℓ′− have been evaluated. The lattice predictions we
obtained are

BR
[
K+ → e+ νe µ

+ µ−
]

= 0.762(49) × 10−8 , (6)

BR
[
K+ → µ+ νµ e

+ e−
]

= 8.26(13) × 10−8 with mee > 140 MeV (7)

BR
[
K+ → µ+ νµ µ

+ µ−
]

= 1.178(35) × 10−8 , (8)

BR
[
K+ → e+ νe e

+ e−
]

= 1.95(11) × 10−8 with mee > 140 MeV . (9)

1We remark that the lattice analysis is affected by systematic uncertainties due to the missing chiral, continuum
and infinite-volume extrapolations that will be studied in future works. As a consequence, all the present numerical
results should be taken as qualitative ones and as an indication of the feasibility of the method, and not as definitive
physical results.
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Much more details can be found in Chapter 3, Tabs. 3.1 - 3.4, where the values are compared
to other predictions, experimental data, and the trivial point-like contribution to each channel
is separated.

This thesis is structured as follows,

• In Chapter 1 we show in detail the method we developed for the lattice evaluation of the SD
form factors. We start defining the different contributions to the amplitude of the process. The
SD form factors are then defined from the Lorentz decomposition of the hadronic tensor, which
encodes the strong dynamics involved in the interaction between the decaying meson and
the virtual photon. Then we proceed by defining the Euclidean three-point lattice correlator
employed in the simulation, and we study its relation to the physical hadronic tensor. In
the final section of this chapter, we build the lattice estimators from which the value for SD
form factors can be extract. Two delicate issues that are discussed in detail in the chapter
are the Wick rotation to Euclidean time and the subtraction of the point-like term from the
hadronic tensor computed on the lattice. Wick rotation is a necessary step of any lattice
computation, and dependably on the analytic structure of the correlator at hand it can give
rise to unphysically contributions exponentially enhanced by the size of the lattice. This
issue is intimately related to the presence of internal states propagating in the correlator
with less energy of the external ones [31]. To keep under control these potentially dangerous
effects we studied in detail the kinematical limitation of the lattice computation finding that
contributions of the form K → ππ ℓνℓ → ℓνℓγ, with an on-shell ππ ℓνℓ intermediate state, arise
in the region of phase space in which k2 > 4m2

π, where k is the four-momentum of the virtual
photon. Besides the exponentially enhanced contributions, this also leads to finite-volume
effects, which decrease only as inverse powers of the volume and not exponentially [32, 33,
34]. In our computation and also that in Ref. [22], the kaon mass is smaller than twice the
pion mass, mK < 2mπ, and so the problem does not occur. This issue, together with a
complete study of all the systematic effects (due to discretization, finite volume and unphysical
quark masses) will be the object of our future studies. The second issue, instead, arises if a
naive subtraction of the point-like term from the hadronic tensor is performed on the lattice.
As shown in [6], residual discretization errors in the subtraction appear in the form factor
estimators enhanced by inverse powers of the photon momentum, and are divergent in the
infrared limit. We generalize the method proposed in [6] in order to reduce this dangerous
discretization effect in our lattice computation.

• In Chapter 2 we apply the formalism developed in the previous chapter in the first lattice
determination of the structure dependent form factors entering K+ → ℓ+ νℓ ℓ

′+ ℓ′− decays.
We first perform the lattice simulation at fifteen different kinematics (generic spatial momenta
can be assigned in our simulation, since we employ twisted boundary conditions to the valence
quark fields [35]). These fifteen points have been chosen equally spaced in the relevant phase
space region, and they are interpolated in order to fit a continuum function of the kinematical
variables for each of the form factors. The results of the fits are then compared with the Chiral
Perturbation Theory predictions at next-to-leading order and with the values extracted from
the experiments assuming the Vector Meson Dominance model to describe the kinematical
dependence of the form factors. At the end of the chapter, we check the consistency of our
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lattice determination with the one obtained in [6] concerning the real photon emission.

• Finally, in Chapter 3 we use the numerical lattice predictions obtained in Chapter 2 for the
SD form factors in order to compute the differential decay rates and the branching ratios
for the K+ → ℓ+ νℓ ℓ

′+ ℓ′− processes. The decay rate formulae and the integration over the
phase space are sensibly different, dependably in the final state there are identical leptons
ℓ = ℓ′ or not. If not, the differential decay rate can be integrated analytically in the phase
space variables, except for the two from which the form factors depend. Instead, when ℓ = ℓ′,
the contribution coming from the exchange of the two identical leptons must be added to
the amplitude. As a consequence, in the full amplitude the form factors appear evaluated
at different values of their variables, and the full four-body phase space must be integrated
numerically via Monte Carlo methods. For each of the four possible channels, our lattice
prediction for the K+ → ℓ+ νℓ ℓ

′+ ℓ′− decays is compared with experimental data, ChPT
predictions and the only other lattice computation [22].

• In order to help the reader and simplify the text, we transferred the supplementary material
which is not central to explain the original results of this thesis and most of the technical details
in the three appendices. In Appendix A we present the basic notation and the conventions
used in this thesis concerning the SU(3) generators, the Dirac matrices and the Grassmann
algebra. Appendix B is devoted to an introduction to Lattice QCD. We start from the
path-integral formulation of quantum field theory, then we show a possible way to discretize
the continuum QCD action, namely the Wilson twisted mass action. Discretization is the
regularization of the theory, and to obtain physical predictions it is necessary to perform a
renormalization procedure. We present a nonperturbative renormalization scheme known as
RI-MOM scheme, to be implemented when performing the continuum limit and to compute
the renormalization constants relating bare lattice operators to the physical continuum ones.
We also present some statistical methods to be used in actual simulations and we show how
two- and three-point Green functions computed on the lattice can be used to extract the
hadronic quantities. Finally, The explicit, partially integrated, decay rate formulae for the
processes with different leptons in the final state are given in Appendix C.



Chapter 1

Lattice evaluation of the structure

dependent form factors

In this chapter we present our method for computing on the lattice the structure-dependent form
factors contributing to the processes P+ → ℓ+ νℓ ℓ

′+ ℓ′−, where P+ is a generic charged pseudoscalar
meson, ℓ+ and νl are respectively a generic charged lepton and its corresponding neutrino, while ℓ′+

and ℓ′− constitute an additional charged leptonic pair, that can be either the same flavor of ℓ or
different. Most of the content presented in this Chapter have been published in our article:

• G. Gagliardi, F. Sanfilippo, S. Simula, V. Lubicz, F. Mazzetti, G. Martinelli, C. T. Sachrajda,
and N. Tantalo Virtual photon emission in leptonic decays of charged pseudoscalar mesons
Phys. Rev. D, 105 (2022) 114507 [arXiv:2202.03833 [hep-lat]] [1]

1.1 The matrix element, the hadronic tensor, and the structure

dependent form factors

At lowest order in the electroweak interaction, P+ → ℓ+ νℓ ℓ
′+ ℓ′− decays are obtained from the

diagrams depicted in Fig. 1.1, where u and d represent an up-type of quark and a down-type of
anti-quark respectively, that are the valence quark content which constitutes a generic charged
pseudoscalar meson P+. The virtual photon γ can be emitted from the final charged lepton
(Fig. 1.1a), or from one of the two valence quarks (Figs. 1.1b and 1.1c), or finally it can be emitted
from one sea-quark (Figs. 1.1d), whose generic flavour is indicated with f . If ℓ = ℓ′, we also need
to consider the diagrams obtained by interchanging the two identical charged leptons, which are
depicted in Fig. 1.2. Indeed, when ℓ = ℓ′, the final state in the diagrams of Fig. 1.1 is indistinguishable
from the one of the diagrams in Fig. 1.2.

The two close dots represent the action of the weak interaction, that at low energy can be
described by a contact interaction of four fields, that is the effective Fermi Hamiltonian, given by

HF = 4GF√
2
Jµ

weak J
†
weak, µ , (1.1)

8
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(a) Photon emission from charged lepton. (b) Photon emission from up-type valence quark.

(c) Photon emission from down-type valence
anti-quark.

(d) Photon emission from sea quark with generic
flavour f .

Figure 1.1: Diagrams contributing to the process P+ → ℓ+ νℓ ℓ
′+ ℓ′−.

(a) Photon emission from charged lepton (b) Photon emission from up-type valence quark.

(c) Photon emission from down-type valence
anti-quark.

(d) Photon emission from sea quark with generic
flavour f .

Figure 1.2: Exchange diagrams, contributing to the P+ → ℓ+ νℓ ℓ
′+ ℓ′− process, when ℓ = ℓ′.
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where Jµ
weak represents the charged weak current of the Standard Model. In terms of the quark and

lepton fields, it reads

Jµ
weak =

3∑
i=1

Vuidi
ψui

γµ(1 − γ5)ψdi
+ ψνi

γµ(1 − γ5)ψℓi
, (1.2)

where the index i refers to the flavour generation of both the quark and lepton isospin doublet and
Vuidi

is the CKM matrix element relating the up-type and the down-type quarks.
GF is the Fermi coupling constant whose value is conventionally defined from the measured

value of the muon life-time using the expression [36]

1
τµ

=
G2

Fm
5
µ

192π3

[
1 − 8m2

e

m2
µ

] [
1 + α

2π

(25
4 − π2

)]
. (1.3)

The Review of Particle Physics from the Particle Data Group [8] reports the value

GF = 1.1663787(6) × 10−5 GeV−2 . (1.4)

The error made by using the Fermi Hamiltonian instead of the SM is of order O(q2/M2
W ), where q

is the transferred momentum of the process (i.e. the momentum of the exchanged W boson). For
the decays that we consider in this thesis, we have q2 < m2

P << M2
W .

1.1.1 Diagram amplitudes

We now consider the case ℓ ̸= ℓ′, and we write down the amplitudes corresponding to the direct
diagrams (Fig. 1.1). The contributions from the corresponding exchange diagrams (Fig. 1.2) can be
obtained from the original one by simply interchanging the external momenta assigned to the two
identical leptons in the amplitudes.

The diagram in which the photon is emitted from the final lepton, Fig. 1.1a, can readily
be computed in perturbation theory, with the meson decay constant as the only required non-
perturbative input. By using the standard Feynman rules for QED, the amplitude associated to
Fig. 1.1a reads

iMa = GF V
∗

ud√
2

e2

k2 ⟨0|ψu γ
α (1 − γ5)ψd|P (p)⟩

×
[
uνℓ

(pνℓ
) γα(1 − γ5) −(pℓ+ + k) +mℓ

m2
ℓ − (pℓ+ + k)2 γµ vℓ(pℓ+)

]
uℓ′(pℓ′−) γµ vℓ′(pℓ′+) , (1.5)

where k = (Eγ ,k) is the four-momentum of the virtual photon and p = (E,p) is that of the incoming
pseudoscalar meson P . The meson and photon energies satisfy E =

√
m2

P + p2 and Eγ =
√
k2 + k2.

ψu and ψd indicate the fields of an up-type or a down-type quark. uνℓ
, uℓ′ , vℓ and vℓ′ are the Dirac

spinors for the various leptons and anti-leptons, denoted by the subscript, while e is the value of
the positron electric charge. pℓ, pνℓ

, pℓ′+ and pℓ′− are the external four-momenta of the four final
leptons and mℓ is the mass of the charged lepton ℓ.
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Now we can substitute

⟨0|ψ̄d γ
α(1 − γ5)ψu|P (p)⟩ = −i fP p

α, (1.6)

and after some algebraic manipulation we arrive to the expression

iMa = −iGF V
∗

ud√
2

e2

k2 fP

[
uνℓ

(pνℓ
) γµ (1 − γ5) vℓ(pℓ+)

+ mℓ uνℓ
(pνℓ

) (1 + γ5)
2 pµ

ℓ+ + /k γµ

m2
ℓ − (pℓ+ + k)2 vℓ(pℓ+)

]
uℓ′(pℓ′−)γµ vℓ′(pℓ′+) . (1.7)

We notice that in Eq. (1.7) there are no hadronic parameters except for the meson decay constant
fP , whose value is precisely known from Lattice QCD. Thus, as we said before, this contribution to
the matrix element is straightforward to evaluate and to take into account.

Instead, the theoretical challenge consists in evaluating the contribution to the total matrix
element coming from the other diagrams, Figs. 1.1b - 1.1d, where the photon is emitted from the
meson and interacts nonperturbatively with its internal hadronic structure.

The diagrams in Figs. 1.1b - 1.1d correspond to the following contribution to the matrix element:

iMb−d = i
GF V

∗
ud√

2
e2

k2 uℓ′(pℓ′−) γµ vℓ′(pℓ′+)
∫
d4x eik·x ⟨0|T [Jµ

em(x)Jν
W (0)]|P (p)⟩

× uνℓ
(pνℓ

) γν (1 − γ5) vℓ(pℓ) , (1.8)

The operators

Jµ
em(x) =

∑
f

qf ψ̄f (x)γµψf (x) Jν
W (x) = Jν

V (x) − Jν
A(x) = ψ̄d(x) (γν − γνγ5)ψu(x) , (1.9)

are respectively the electromagnetic hadronic current and the hadronic weak current expressed in
terms of the quark fields ψf having electric charge qf in units of the charge of the positron.

We notice that, in Eq. (1.8), the matrix element is factorized in an hadronic tensor which is
contracted with the leptonic currents. That is, the non-perturbative contribution to the matrix
element is entirely encoded in the following hadronic tensor:

Hµν(k, p) =
∫
d4x eik·x ⟨0|T [Jµ

em(x)Jν
W (0)]|P (p)⟩ . (1.10)

When working with such matrix elements, it is useful to separate the kinematics from the dynamics,
performing the decomposition into form factors. Form factors are scalar, Lorentz-invariant functions
of the kinematical invariants of the process, encoding all the non-perturbative strong dynamics. In
this way we will be able to write down the whole matrix element, as an expression of the unknown
form factors. Evaluating on the lattice the form factors will then allow us to compute the squared
amplitude, so to reconstruct the differential decay rates and the branching ratios for the different
channels.
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1.1.2 Form factor decomposition of the hadronic tensor

We now perform in detail the form factor decomposition of the hadronic tensor of Eq. (1.32),
following Bijnens et al. [23].

In order to isolate the structure dependent contribution, as a first step we separate in the
hadronic tensor the contribution given by one-particle internal states from the one coming from
multi-particle internal states, that is

Hµν = Hµν
1P +Hµν

MP . (1.11)

The first term in Eq. (1.11) is obtained by considering the electromagnetic scattering of the initial
meson P , which propagates as a virtual state before being annihilated into the vacuum due to the
action of the weak current. This contribution reads

Hµν
1P ≡ ⟨0|Jν

W |P (p− k)⟩ i

(p− k)2 −m2
P

〈
P+(p− k)

∣∣∣Jµ
em(k)

∣∣∣P (p)
〉

= −fP F
P
em(k2) (2p− k)µ(p− k)ν

(p− k)2 −m2
P

= −fP

(
1 + F (k2)

) (2p− k)µ(p− k)ν

(p− k)2 −m2
P

. (1.12)

FP
em(k2) = 1 + F (k2) is the electromagnetic form factor of the decaying meson, where we separated

the term which depends on its internal hadronic structure, F (k2), from the contribution coming
from the point-like approximation of the meson, which is equal to one.

The contribution coming from multi-particle internal states, can be decomposed in the most
general structure as

Hµν
MP = −i FV

mP
ϵµναβ kα pβ + FA

mP
(p− k)µ kν + H1

mP
kµ kν +A1 k

2 (p− k)µ (p− k)ν

+A2 g
µν +A3 k

µ(p− k)ν , (1.13)

where all the form factors are functions of k2 e (p − k)2, and ϵµναβ is the totally antisymmetric
tensor with ϵ01234 = 1.

However, not all these form factors are independent, because the tensor Hµν must satisfy the
Ward identities, derived in [23],

kµH
µν = fP p

ν (1.14)

which imply

[k · (p− k)] FA

mP
+ k2 H1

mP
+A2 = fP ,

k2 [k · (p− k)] A1 + k2A3 = fP F (k2) , (1.15)
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and so we have

A2 = fP − k2 H1
mP

− [k · (p− k)] FA

mP
,

A3 = fP
F (k2)
k2 − [k · (p− k)]A1 . (1.16)

Now we can replace these expressions in the general decomposition of Hµν and we obtain

Hµν = fP

{
gµν − (2p− k)µ(p− k)ν

(p− k)2 −m2
P

}
+ FA

mP

{
(k · p− k2)gµν − (p− k)µkν)

}
+ H1
mP

{
k2gµν − kµkν}− i

FV

mP
ϵµναβkαpβ

+
{

2fP
F (k2)

[m2
P − (p− k)2]k2 −A1

}[
(k · p− k2)kµ − k2(p− k)µ](p− k)ν . (1.17)

Now we can rename

H2

mP

[
(p− k)2 −m2

P

] ≡
{

2fP
F (k2)

[m2
P − (p− k)2]k2 −A1

}
(1.18)

and so we have obtained our final expression:

Hµν = Hµν
pt +Hµν

SD , (1.19)

Hµν
pt = fP

[
gµν − (2p− k)µ(p− k)ν

(p− k)2 −m2
P

]
, (1.20)

Hµν
SD = H1

mP

(
k2gµν − kµkν

)
+ H2
mP

[
(k · p− k2)kµ − k2 (p− k)µ]

(p− k)2 −m2
P

(p− k)ν

+ FA

mP

[
(k · p− k2)gµν − (p− k)µkν

]
− i

FV

mP
ϵµναβkαpβ . (1.21)

With this decomposition we have separated the point-like contribution to the hadronic tensor,
that is Hµν

pt , from the structure-dependent (SD) one, which is Hµν
SD. The former depends only on

the meson decay constant fP and it can be obtained directly by assuming a point-like meson, that
is by employing the Feynman rules of scalar QED, as it has been done in [37]. The point-like
approximation is valid in the infrared region of photon momenta, where the soft photon cannot
resolve the internal structure of the hadron, and so it interacts with it as if the decaying meson
were an elementary particle.

Instead, the structure-dependent contribution Hµν
SD describes the interaction between the virtual

photon and the hadronic structure of the pseudoscalar meson, and it vanishes in the infrared limit
of vanishing photon momentum. The SD form factors, H1, H2, FA and FV , are scalar functions
of k2 and (p − k)2. Note that, compared to similar decompositions, see for example Eq. (B4) of
Ref. [37], we have modified the definitions of H1,2 by a factor of mP and introduced the denominator
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(p− k)2 −m2
P in the factor multiplying H2. With the definitions in Eq. (1.21) all four form factors

are now dimensionless, and it can be shown that they are finite in the infrared limit.
The main goal of this thesis is to compute the SD form factors, using lattice QCD simulation,

and with them to reconstruct the full matrix element and subsequently the branching ratio for the
decay. We will explicitly separate the point-like contribution from the one which depends on the
hadronic structure. This separation is instructive, because the point-like contribution is trivial to
compute and well known. The structure dependent term of the decay rate encodes instead the
genuine non-perturbative interaction of the virtual photon with the internal structure of the meson,
and represents therefore an interesting quantity to predict and to compare with the experiments.

Now that we have decomposed the hadronic tensor Hµν into form factors, we can write down
our final expression for the total amplitude of the process.

1.1.3 Matrix element for P + → ℓ+ νℓ ℓ′+ ℓ′− decays

The first contribution we consider is the one coming from the point-like term of the hadronic tensor,
that is

iMHpt = i
GF V

∗
ud√

2
e2

k2 H
µν
pt

[
uνℓ

(pνℓ
) γν (1 − γ5) vℓ(pℓ)

][
uℓ′(pℓ′−) γµ vℓ′(pℓ′+)

]

= i
GF V

∗
ud√

2
e2

k2 fP

[
gµν − (2p− k)µ(p− k)ν

(p− k)2 −m2
P

]

×
[
uνℓ

(pνℓ
) γν (1 − γ5) vℓ(pℓ)

][
uℓ′(pℓ′−) γµ vℓ′(pℓ′+)

]
. (1.22)

After contracting the Lorentz indices and doing some algebraic manipulation, we arrive to the
expression

iMHpt = −i GF V
∗

ud√
2

e2

k2 fP

[
− uνℓ

(pνℓ
) γµ (1 − γ5) vℓ(pℓ+)

+ mℓ
(2p− k)µ

2p · k − k2uνℓ
(pνℓ

) (1 + γ5) vℓ(pℓ)
][
uℓ′(pℓ′−) γµ vℓ′(pℓ′+)

]
. (1.23)

This contribution, coming from the point-like term in the hadronic tensor Hpt, must be combined
with the contribution corresponding to the diagram of Fig. 1.1a, in which the photon is emitted
from the final lepton, in order to get the total point-like contribution to the amplitude. This is the
contribution to the process that is simply proportional to fP and that we would have for the decay
of a point-like, elementary meson.

By putting together iMHpt from Eq. (1.23) with iMa from Eq. (1.7), we get the total point-like
contribution to the matrix element

iMpt ≡ iMa + iMHpt = −iGF√
2
V ∗

ud

e2

k2 ū(pℓ′−)γµv(pℓ′+) fP L
µ(pℓ′+ , pℓ′− , pℓ+ , pνℓ

) , (1.24)
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with

Lµ(pℓ′+ , pℓ′− , pℓ+ , pνℓ
) = mℓ ū(pνℓ

)(1 + γ5)
{

2pµ − kµ

2p · k − k2 −
2pµ

ℓ+ + /kγµ

2pℓ+ · k + k2

}
v(pℓ+) . (1.25)

What remains to consider in the amplitude is the contribution coming from the structure
dependent form factors, i.e. the contribution that actually contains information about the internal
structure of the meson and its interaction with the virtual photon. This is given by

iMSD = i
GF√

2
V ∗

ud

e2

k2 ū(pℓ′−)γµv(pℓ′+)Hµν
SD( p, k) lν(pℓ+ , pνℓ

) , (1.26)

with

lµ(pℓ+ , pνℓ
) = ū (pνℓ

) γµ (1 − γ5) v(pℓ+) . (1.27)

We now have all the ingredients to write down the final expression for the total matrix element
contributing to the P+ → ℓ+ νℓ ℓ

′+ ℓ′− decays. It reads

iM = −iGF√
2
V ∗

ud

e2

k2 ū(pℓ′−)γµv(pℓ′+)
[
fPL

µ(pℓ′+ , pℓ′− , pℓ+ , pνℓ
) −Hµν

SD(p, k) lν(pℓ+ , pνℓ
)
]
. (1.28)

In Eq. (1.28), we remark once again that the first term in the square parentheses gives the decay rate
in the approximation in which the decaying meson is treated as a point-like particle and includes
the radiation from both the meson and charged lepton 1. Except for the meson decay constant fP ,
the non-perturbative contribution to the rate is entirely contained in the second term of Eq. (1.28),
which contains the structure dependent form factors that describe the interaction between the
virtual photon and the internal hadronic structure of the decaying meson.

When ℓ = ℓ′, since the final-state positively-charged leptons are indistinguishable, the exchange
contribution, in which the momenta pℓ′+ and pℓ+ are interchanged, must be added to the amplitude
M, resulting in the replacement

M(pℓ′+ , pℓ′− , pℓ+ , pνℓ
) → M(pℓ′+ , pℓ′− , pℓ+ , pνℓ

) − M(pℓ+ , pℓ′− , pℓ′+ , pνℓ
) . (1.29)

Eqs. (1.28) and (3.4), together with Eqs. (1.21), (1.25) and (1.27), are the final formulae for the
matrix element of the process, that we will use in Chap. 3 to compute the squared amplitude, the
differential decay rate and the branching ratio.

1.1.4 The real photon emission P + → ℓ+ νℓ γ

The hadronic tensor Hµν of Eqs. (1.19) - (1.21), also enters the computation of the real radiative
correction to leptonic decays, that is of the process P+ → ℓ+ νℓ γ. In that case, however, not all the
form factors contribute to the decay rate. Indeed, for real photon we have k2 = 0 and for physical
gauges the polarization vector satisfies ϵ(k) · k = 0. In the decay rate for the process P+ → ℓ+ νℓ γ,

1This term is frequently referred to as the inner-brehmstrahlung contribution.
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it then appears the quantity

Hν = ϵ∗µH
µν , (1.30)

for which we have

Hν
SD = −ϵ∗µ

{
i
FV

mP
ϵµναβkαpβ − FA

mP
( k · p gµν − pµkν )

}
(1.31)

showing that the structure dependent contribution can be parametrized in terms of only two form
factors FV and FA, also they depend just on the only independent Lorentz invariant kinematical
variables of the process (p− k)2. The lattice computation of FA and FV in real photon emission and
of the corresponding contributions to the decay rates has been performed for the first time in [6].
The work of this thesis is a generalization of the method presented there, in order to compute for
the first time all the form factors that contribute to the virtual photon emission and to obtain an ab
initio theoretical prediction for the branching ratios, with non-perturbative accuracy in the strong
interactions. There are several difficulties in this generalization, some of them are the following

• The correlators computed on the lattice is a linear combination of four structure dependent
form factors, instead than just two of them.

• All the form factors depend on two independent kinematical variables, instead than just one.

• The virtuality of the photon may give rise to internal hadronic states with less energy than
the external ones, an issue that prevents from performing a naive Wick rotation and relating
the Euclidean lattice correlators to the Minkowskian physical one.

• The method presented in [6] for performing the subtraction of the point-like term to the lattice
correlators including lattice artifacts to all orders in the lattice spacing is not usable for some
of the lattice correlators needed for the study of virtual photon emission.

• The squared amplitude of the process, in particular when there are two identical charged
leptons in the final state, consists in thousands of terms, which need to be integrated in the
phase space of four final particles, making the computation of the decay rates very lengthy
and complex.

The first four issues will be addressed in the rest of this chapter, devoted to the lattice computation
of the structure dependent form factors. Instead, the determination of the branching ratios and the
comparison with the experiments will be the object of Chapter 3.

1.2 The hadronic tensor in Euclidean space

In order to show how the hadronic tensor can be extracted from Euclidean correlation functions, it is
useful to express Hµν(k, p) in terms of the contributions coming from the two different time–orderings.
This is done starting from the definition of the hadronic tensor

Hµν(k, p) =
∫
d4x eik·x ⟨0|T [Jµ

em(x)Jν
W (0)]|P (p)⟩ , (1.32)
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separating the two time-orderings tx < 0 and tx > 0, where x = (tx,x), and inserting a complete
set of intermediate states. Defining

Jµ
em(k) =

∫
d3x e−ik·xJµ

em(0,x) , (1.33)

we have

Hµν(k, p) = Hµν
1 (k, p) +Hµν

2 (k, p) , (1.34)

Hµν
1 (k, p) =

∫ 0

−∞
dtx e

itxEγ ⟨0|Jν
W (0) eitxHJµ

em(k) e−itxH |P (p)⟩

=
∑

nf :pnf
=p−k

⟨0|Jν
W (0)|nf ⟩ ⟨nf |Jµ

em(0)|P (p)⟩
2Enf

∫ 0

−∞
dtx e

itx(Eγ+Enf
−E)

= −i
∑

nf :pnf
=p−k

⟨0|Jν
W (0)|nf ⟩ ⟨nf |Jµ

em(0)|P (p)⟩
2Enf

(Eγ + Enf
− E + iϵ) , (1.35)

Hµν
2 (k, p) =

∫ +∞

0
dtx e

itxEγ ⟨0|eitxHJµ
em(k) e−itxHJν

W (0)|P (p)⟩

=
∑

n:pn=k

⟨0|Jµ
em(0)|n⟩ ⟨n|Jν

W (0)|P (p)⟩
2En

∫ +∞

0
dtx e

−itx(En−Eγ)

= −i
∑

n:pn=k

⟨0|Jµ
em(0)|n⟩ ⟨n|Jν

W (0)|P (p)⟩
2En(En − Eγ + iϵ) . (1.36)

We have used the relation

O(t) = eitHO(0)e−itH , (1.37)

where O(t) is a generic operator in Heisenberg representation at time t and H is the Hamiltonian
operator. We have also used the completeness relation

I =
∑

n

|n⟩⟨n|
(2π)32En

, (1.38)

where |n⟩ is a complete basis of four-momentum eigenstates with covariant normalization.
In Eqs. (1.35) - (1.36) the spatial Fourier transform has fixed the spatial momentum pn as

indicated. The states |nf ⟩ have the same flavour quantum numbers as the initial meson P , while
the states |n⟩ have zero additive flavour quantum numbers. For example, if we consider the decay
of a K+ and Jν

W = s̄γν(1 − γ5)u, then the |nf ⟩ states have strangeness S = −1 and the |n⟩ states
have S = 0.

On the lattice, correlators can be computed only in Euclidean space-time, and we have to
translate our Minkowskian Green function to an equivalent Euclidean Green function. We then
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perform the Wick rotation (see Section B.2.1 of Appendix D) through the transformation

x0
M → −ix4

E , (1.39)

and we obtain from Eq. (1.32) the Euclidean expression

Hµν
E (k, p) = −i

∫
d4x etEγ−ik·x ⟨0|T [ Jµ

em(x)Jν
W (0) ]|P (p)⟩ . (1.40)

As done before, we use the completeness relation to insert a complete basis of four-momentum
eigenstates with covariant normalization and obtain

Hµν
E (k, p) = Hµν

E,1(k, p) +Hµν
E,2(k, p) , (1.41)

Hµν
E,1(k, p) = −i

∫ 0

−∞
dtx e

txEγ ⟨0|Jν
W (0) etxHJµ

em(k) e−txH |P (p)⟩

= −i
∑

nf :pnf
=p−k

⟨0|Jν
W (0)|nf ⟩ ⟨nf |Jµ

em(0)|P (p)⟩
2Enf

∫ 0

−∞
dtx e

tx(Eγ+Enf
−E) , (1.42)

Hµν
E,2(k, p) = −i

∫ +∞

0
dtx e

txEγ ⟨0| etxHJµ
em(k) e−txHJν

W (0)|P (p)⟩

= −i
∑

n:pn=k

⟨0|Jµ
em(0)|n⟩ ⟨n|Jν

W (0)|P (p)⟩
2En

∫ +∞

0
dtx e

−tx(En−Eγ) . (1.43)

If the conditions (to be further discussed later)

Eγ + Enf
− E > 0 , (1.44)

En − Eγ > 0 , (1.45)

are satisfied, then the time integrals converge, and we have

Hµν
E,1(k, p) = −i

∑
nf :pnf

=p−k

⟨0|Jν
W |nf ⟩ ⟨nf |Jµ

em|P (p)⟩
2Enf

(Eγ + Enf
− E) , (1.46)

Hµν
E,2(k, p) = −i

∑
n:pn=k

⟨0|Jµ
em|n⟩ ⟨n|Jν

W |P (p)⟩
2En(En − Eγ) . (1.47)

Therefore, provided that the conditions (1.44) - (1.45) are satisfied, the Wick rotation leaves the
hadronic tensor Hµν unchanged, and the lattice calculation with Euclidean time can be done without
particular difficulties. In such situations, the iϵ in the second line of Eqs. (1.35) and (1.36) is also
unnecessary.

If the conditions (1.44) - (1.45) are not verified, however, the time integrals in the Euclidean
space-time are divergent and the Euclidean correlator (1.40) is not defined. This is a crucial feature,
and often a limitation, of lattice simulations. In the next section we explain in detail the physical
meaning of the conditions (1.44) - (1.45) and we check their validity.



1.2. The hadronic tensor in Euclidean space 19

1.2.1 Internal lighter states

The conditions (1.44) - (1.45) are a consequence of the analytic structure of the correlation function,
which determines whether it is possible to perform the Wick rotation. The presence of a singularity
(poles or cuts) in the Minkowsky case can prevent the possibility of making the naive Wick rotation
(B.24). The pathology manifests as divergent time integrals of growing exponentials [31].

The presence of these poles is directly related to the presence of intermediate states with less
energy than the external ones. Indeed, we now show that the conditions (1.44) - (1.45) correspond to
require that the internal states |n⟩ contributing to the correlation function must have more energy
than the external states. We also study the conditions (1.44) - (1.45) in order to find the kinematical
regions under which they are satisfied.

For that purpose, we employ the reference system in which the decaying meson is at rest.
Clearly, the time-component of a four-vector is not a Lorentz invariant quantity, so that the value
of the difference of the energies of two four-momenta depends on the choice of the reference frame.
Nevertheless, what really matters in the conditions (1.44) - (1.45) is only in the sign of that difference,
and the sign of the time component of a time-like four-vector (which is the case for the difference of
the four-momenta of two physical states) is a Lorentz invariant quantity. Therefore, in the following
analysis, we are allowed to check the conditions in any reference frame.

In the P meson rest frame, we have

E = mP , k0 = Eγ =
√
k2 + k2 , q0 =

√
q2 + q2 , (1.48)

where mP is the mass of the decaying meson, q2 is the invariant mass of the off-shell W and k2 is the
invariant mass of the off-shell photon. In other words, q2 is the invariant mass of the lepton-neutrino
pair ℓ+ νℓ generated by the W decay and k2 is the invariant mass of the lepton pair ℓ′+ ℓ′− generated
by the photon decay. Since four-momentum is conserved,

mP = Eγ + q0,

| q | = | k | = | pn |, (1.49)

and so, for now on, we indicate k2 equivalently for q2, k2 and p2
n.

Since the internal states contributing to the correlator are different depending on the time-
ordering of the two currents, we now examine separately the two cases. Obviously, the internal state
energy can be compared indistinctly to the initial or the final state, since the external states must
have the same energy.

Time-ordering tx < 0
In this time-ordering, the electromagnetic current acts before than the weak current and the

process is represented by the diagram of Fig. 1.3a. As we can see from the figure, the internal
energy is the sum of the photon energy Eγ and the energy Enf

of the hadronic state resulting from
the application of the electromagnetic current on the initial state |P (p)⟩. The initial state has the
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Figure 1.3: Diagrams, which represent the correlator in the two time-orderings (a) tem < t and (b) tem > t.

energy mP of the pseudoscalar meson and so the condition is

Eγ + Enf
> mP ⇒ Eγ + Enf

−mP > 0 . (1.50)

With Eq. (1.50), we explicitly derived the condition (1.44) by requiring that the internal states must
have more energy than the initial one.

The electromagnetic current conserve the flavour and the electric charge. Thus, the lightest
state |nf ⟩, resulting from the application of Jµ

em(k) to the initial state, is still the pseudoscalar
meson P , but now with a spatial momentum k (see Eq. (1.49)) and energy Enf

=
√
m2

P + k2. Of
course, there are many other states |nf ⟩ that contribute to the correlation function, but this is the
one with the lowest energy.

Because the initial state meson P is at rest, we have necessarily Enf
> mP . Thus, being Eγ > 0,

we can be sure that Eγ + Enf
−mP > 0, and so the condition of (1.50) is always verified.

Time-ordering tx > 0
In this time-ordering, the process is represented by the diagram of Fig. 1.3b. In this case, it is

convenient to compare the energy of the internal state with the energy of the final one. The energy
of the internal state is the sum of the energy Eℓ ν of the leptonic pair and the energy En of the
hadronic state resulting from the application of the weak current on the initial state |P (p)⟩. The
final state has a total energy of Eℓ ν and Eγ , so the condition is

Eℓ ν + En > Eℓ ν + Eγ ⇒ En − Eγ > 0 . (1.51)

With Eq. (1.51), we explicitly derived the condition (1.45) by requiring that the internal states must
have more energy than the initial one.

In this time-ordering, the internal hadronic state |n⟩ is obtained applying the weak current Jν
W

to the charged pseudoscalar meson P , and it must be capable of decaying into a photon through
the application of the electromagnetic current Jµ

em. The lightest state |n⟩ is thus a state of two
pions with total spatial momentum k. Indeed, a one-particle state, in order to decay into a photon,
should be a vector meson like the ρ.

The kinematic configuration which minimizes En is the one in which the pions are collinear and
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with the same momentum k
2 , and so En = 2

√
m2

π +
(

k
2

)2
.

If we compare the internal state with the final one, we obtain the condition

En > Eγ ⇒ 2

√
m2

π +
(

k

2

)2
>

√
k2 + k2 ⇒ 4m2

π > k2. (1.52)

In this time-ordering, the condition is not always satisfied, but it imposes an upper limit of 2mπ on
the invariant mass of the lepton pair created by the photon.

In conclusion, we have shown that the Wick rotation of the Hadronic tensor to Euclidean
space-time can be performed straightforwardly only if k2 < 4m2

π. This condition is quite limiting,
especially for the decay of heavy mesons like the D and B. It should be also noted, however, that on
the actual simulation we work with a finite lattice extent. When considering the lattice correlators,
we will see that, at finite time extent T , the divergent integrals become only exponentially enhanced.
Moreover, on a finite lattice we do not have a continuum of states, but they are discretized due to
the quantization of the spatial momentum. In practice, if the number of such states is small, the
terms with the exponentially growing exponentials can be explicitly subtracted, thus extending the
validity of the method beyond the region k2 < 4m2

π. The remaining issue is the correction for the
non-exponential finite-volume effects (analogous to those corrected by the Lellouch-Lüscher factor
in K → ππ decays [32]). We postpone such a discussion to a future study and for now we restrict
our numerical analysis to kaon decays in a lattice gauge ensemble with an unphysical pion mass,
such that the condition mK < 2mπ is always fulfilled. Thus, two-pion internal states have always
larger energy than the external ones and the conditions (1.44) - (1.45) are both satisfied.

Now that we have discussed the analytic continuation to Euclidean space-time, we proceed to
the presentation of our strategy for extracting the SD form factors from suitable three-point lattice
correlation functions.

1.3 The three-point lattice correlator

The principal ingredient in evaluating the decay amplitude on a Euclidean lattice, with finite
space-time volume V = L3 × T , is the correlation function

Mµν
W (tx, t; k,p) = T ⟨Jν

W (t) Ĵµ
em(tx,k) P̂ (0,p)⟩LT , (1.53)

where ⟨. . . ⟩LT denotes the average over the gauge field configurations at finite L and T. Note that in
Eq. (1.53) we have placed the interpolating operator P̂ (0,p) at time 0 and the weak current JW (t)
at time t. The three operators in Eq. (1.53) are as follows:

• P̂ (0,p) is the spatial Fourier transform of the interpolating operator for the decaying pseu-
doscalar meson at time t = 0:

P̂ (0,p) =
∑

z

eip·zP (0, z) , (1.54)

where P (0, z) = iψU (0, z)γ5ψD(0, z) for a positively charged meson or P (0, z) = iψD(0, z)γ5ψU (0, z)
for a negatively charged one and ψU,D indicate the fields of up-type and down-type quarks respectively.
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• The renormalized hadronic weak current, Jν
W (t) = Jν

V (t) − Jν
A(t) is placed at a generic time t

and at the origin in space. The vector and axial currents, Jν
V (t) and Jν

A(t) respectively, satisfy the
continuum Ward identities (up to discretization effects). In the Twisted-Mass discretization of the
fermionic action [38], the vector and axial vector currents we use are given by

Jν
V (t) = ZA ψ̄D(t)γνψU (t) , Jν

A(t) = ZV ψ̄D(t)γνγ5ψU (x), (1.55)

for a positively charged meson or their Hermitian conjugates for a negatively charged one, where
ZA,V are the renormalization factors ensuring that the Ward identities are satisfied 2.

• The electromagnetic current, Jµ
em(tx,x), is defined by

Jµ
em(tx,x) =

∑
f

qf J
µ
f (tx,x) , (1.56)

where f is the flavour index and the charge qf is equal to 2/3 for up-type quarks and to −1/3 for
down-type quarks. A possible choice for the lattice electromagnetic current is the local operator
Jµ

f (tx,x) = Z loc
V q̄f (tx,x)γµqf (tx,x), where Z loc

V is the finite renormalization constant of the vector
current (Z loc

V = ZA with Twisted-Mass at maximal twist). We choose instead to use the exactly
conserved lattice vector current which with Twisted-Mass Fermions at maximal twist is given by 3

Jµ
f (x) = −

{
ψ̄f (x) i rfγ5 − γµ

2 Uµ(x)ψf (x+ µ̂) − ψ̄f (x+ µ̂) i rfγ5 + γµ

2 Uµ(x)†ψf (x)
}
. (1.57)

In Eq. (1.57), Uµ(x) are the QCD link variables and rf = ±1 is the Wilson parameter of the flavour
f [40]. The spatial momentum k of the current is assigned by defining

Ĵµ
em(tx,k) =

∑
x

e−ik·(x+ı̂/2) Jµ
em(tx,x) . (1.58)

In order to obtain the decay amplitude, we need to integrate Mµν
W (tx, t; k,p) over tx, as seen for

example in Eq. (1.32). To this end we construct the function:

Cµν(t, Eγ ,k,p) =

−iθ (T/2 − t)
T∑

tx=0

(
θ (T/2 − tx) eEγ tx + θ (tx − T/2) e−Eγ(T −tx)

)
Mµν

W (tx, t; k,p)

−iθ (t− T/2)
T∑

tx=0

(
θ (T/2 − tx) e−Eγ tx + θ (tx − T/2) e−Eγ(tx−T )

)
Mµν

W (tx, t; k,p) .

(1.59)

On a lattice with a large but finite temporal extent T , the required matrix element can be obtained
from the first term on the top line of Eq. (1.59). This is illustrated in the left-hand diagram of

2Note that the renormalization factors to be used in Twisted-Mass at maximal twist are chirally-rotated with
respect to the ones of standard Wilson fermions [39]. This is a consequence of the fact that the up-type and down-type
quark fields in the action are discretised with opposite values of the Wilson parameter.

3With twisted boundary conditions we use the corresponding conserved current given by Eq. (B10) of Ref. [6]
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p p− k

P̂ (0,p) Ĵµ
em(tx,k) Jν

W (t)

time
0 tx t T

2

p− k p

P̂ (0,p)Ĵµ
em(tx,k)Jν

W (t)

time
t tx T = 0T

2

Figure 1.4: Schematic diagrams representing the correlation function Cµν(t, Eγ ,k,p) used to extract the
form factors, see Eqs. (1.53) and (1.59). The interpolating operators for the meson P̂ and the weak current
JW are placed at fixed times 0 and t, while the electromagnetic current Ĵem is inserted at tx which is
integrated over 0 ≤ tx ≤ T , where T is the temporal extent of the lattice. The left and right panels correspond
to the leading contributions to the correlation functions for t < T

2 and t > T
2 respectively, with mesons

propagating with momenta p or p − k.

Figure 1.5: The diagram on the left represents the contributions to the correlation functions arising from
the emission of the photon by the sea quarks. In our numerical simulations, we work in the electroquenched
approximation and neglect such diagrams. The diagram on the right explains our choice of the spatial
boundary conditions, which allow us to set arbitrary values for the meson and photon spatial momenta. The
spatial momenta of the valence quarks, modulo 2π/L, in terms of the twisting angles are as indicated. Each
diagram implicitly includes all orders in QCD.

Fig. 1.4, and it should be remembered that tx can also be larger than t. The second term on the
second line of Eq. (1.59) represents the time-reversed process (we discuss the properties of the
matrix element under time reversal in the next section) and is illustrated in the right-hand diagram
of Fig. 1.4, and again it should be remembered that tx can also be smaller than t. The second
term on the top line of Eq. (1.59) represents, on a periodic lattice of finite temporal extent, the
ordering where the electromagnetic current acts at an earlier time than the meson source that, in
the reduction formula to create an initial meson state, should be asymptotically far in the past.
Indeed, the contribution of this term disappears in the limit T → ∞. On the lattice with finite
temporal extension, however, we have found that its inclusion corrects sizeable finite T effects and
improves the quality of the numerical fits of Cµν(t, Eγ ,k,p). Similarly, the first term on the second
line of Eq. (1.59) represents, for the time-reversed process, the electromagnetic currents acting at a
time larger than the meson source. Its contribution also disappears in the infinite T limit, but its
inclusion improves the quality of the fit of Cµν(t, Eγ ,k,p).

Fig. 1.5 contains two diagrams presented to illustrate two important points concerning our
numerical calculation of the correlation functions and of the form factors. The diagram in the
left panel shows a quark-disconnected contribution to the correlation function originating from the
possibility that the virtual photon is emitted from sea quarks. In this paper we use the so-called
electroquenched approximation in which the sea-quarks are electrically neutral. In practice, this
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means that we have neglected the contributions represented by the diagram in the left panel of
Fig. 1.5. We note that the contribution of these diagrams vanishes in the limit of exact SU(3)
flavour symmetry.

The quark-connected diagram in the right panel of Fig. 1.5 is shown in order to explain the
strategy we have used to set the values of the spatial momenta. We have exploited the fact that
by working within the electroquenched approximation, it is possible to choose arbitrary values of
the spatial momenta by using different spatial boundary conditions for the quark fields [35]. More
precisely, we set the spatial boundary conditions for the "spectator" quark such that

ψ(x+ nL) = exp(2πin · θs)ψ(x) , (1.60)

where n is a three-vector of integers and θs is a three-vector of angles. For the temporal direction,
we employ anti-periodic boundary conditions. For each quark flavor f , we impose different boundary
conditions on qf and q̄f , the two component fields of Jµ

f . This is possible at the price of accepting
violations of unitarity that are exponentially suppressed with the volume [41, 42]. By setting
the boundary conditions as illustrated in the figure we have thus been able to choose arbitrary
(non-quantized) values for the meson and photon spatial momenta

p = 2π
L

(θ0 − θs) , k = 2π
L

(θ0 − θt) , (1.61)

by tuning the real three-vectors θ0,t,s. We find that the most precise results are obtained with small
values of |p| and in particular with p = 0.

1.3.1 Spectral decomposition

In order to show that it is possible to extract the hadronic tensor Hµν from the function in Eq. (1.59)
we now perform a spectral decomposition of Cµν(t, Eγ ,k,p), defined in Eqs. (1.59) and (1.53). In
the following, we shall use continuum notation for the time integrals, but we will consider the
finite time-extent of the lattice T . We analyze each different time–ordering separately. In order to
keep the notation clean, in the following, when inserting a complete set of internal states, we will
always use |n⟩ without distinguishing the difference in the flavor of the intermediate hadronic states
contributing to the different time-orderings.

Time-ordering tx < t <
T

2
The contribution to Cµν(t, Eγ ,k,p) coming from this time ordering is:

Cµν
1 = −i

∫ t

0
eEγtx ⟨0|Jν

W (t) Ĵµ
em(tx,k) P̂ (0,p)|0⟩ dtx . (1.62)

The lightest state interpolated by the operator P̂ (0,p) is by construction the charged pseudoscalar
meson P with energy E =

√
m2

P + p2, and so we have

Cµν
1 = −i

∫ t

0
eEγtx ⟨0|Jν

W (t) Ĵµ
em(tx,k)|P (p)⟩ ⟨P (p)|P |0⟩

2E dtx + . . . , (1.63)
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Where the dots represent terms exponentially suppressed by the energy gap between the fundamental
state |P ⟩ and the excited ones.

We now insert a complete set of intermediate states between the two currents operator, and we
obtain

Cµν
1 = −i ⟨P (p)|P |0⟩

2E

∫ t

0
eEγtx

∑
n

⟨0|Jν
W (t)|n⟩ ⟨n|Ĵµ

em(tx,k)|P (p)⟩
2En

dtx + . . .

= −i ⟨P (p)|P |0⟩
2E

∑
n:pn=p−k

⟨0|Jν
W |n⟩ ⟨n|Jµ

em|P (p)⟩
2En

e−tEn

∫ t

0
e(Eγ+En−E)tx dtx + . . .

= −i ⟨P (p)|P |0⟩
2E

∑
n:pn=p−k

⟨0|Jν
W |n⟩ ⟨n|Jµ

em|P (p)⟩
2En

e−tEn
et(Eγ+En−E) − 1
(Eγ + En − E) + . . .

= −i ⟨P (p)|P |0⟩
2E e−t(E−Eγ) ∑

n:pn=p−k

⟨0|Jν
W |n⟩ ⟨n|Jµ

em|P (p)⟩
2En(En + Eγ − E)

(
1 − e−t(Eγ+En−E)

)
+ . . .

(1.64)

As we have shown in Sec. 1.2.1, we have Eγ +En −E > 0. Thus, the last exponential in the last
formula gives, for large t, a subleading contribution and can be neglected.

Time-ordering t < tx <
T

2
The contribution to Cµν(t, Eγ ,k,p) coming from this time ordering is:

Cµν
2 = −i

∫ T
2

t
eEγtx ⟨0|Ĵµ

em(tx,k) Jν
W (t) P̂ (0,p)|0⟩ dtx

= −i
∫ T

2

t
eEγtx ⟨0|Ĵµ

em(tx,k) Jν
W (t)|P (p)⟩ ⟨P (p)|P |0⟩

2E dtx + . . .

= −i ⟨P (p)|P |0⟩
2E

∫ T
2

t
eEγtx

∑
n

⟨0|Ĵµ
em(tx,k)|n⟩ ⟨n|Jν

W (t)|P (p)⟩
2En

dtx + . . .

= −i ⟨P (p)|P |0⟩
2E

∑
n:pn=k

⟨0|Jµ
em|n⟩ ⟨n|Jν

W |P (p)⟩
2En

et(En−E)
∫ T

2

t
e(Eγ−En)tx dtx + . . .

= −i ⟨P (p)|P |0⟩
2E

∑
n:pn=k

⟨0|Jµ
em|n⟩ ⟨n|Jν

W |P (p)⟩
2En

et(En−E) e
T
2 (Eγ−En) − et(Eγ−En)

(Eγ − En) + . . .

= −i ⟨P (p)|P |0⟩
2E e−t(E−Eγ) ∑

n:pn=k

⟨0|Jµ
em|n⟩ ⟨n|Jν

W |P (p)⟩
2En(En − Eγ)

(
1 − e−( T

2 −t)(En−Eγ)
)

+ . . .

(1.65)

Since we are working under the assumption k2 < 4m2
π, the last exponential in the last formula

gives a subleading contribution in the region 0 ≪ t ≪ T/2, being satisfied the condition on the
internal state En − Eγ > 0.
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Time-ordering t <
T

2 < tx

The contribution to Cµν(t, Eγ ,k,p) coming from this time ordering is:

Cµν
3 = −i

∫ T

T
2

e−Eγ(T −tx) ⟨0|Ĵµ
em(tx,k) Jν

W (t) P̂ (0,p)|0⟩ dtx

= −i
∫ T

T
2

e−Eγ(T −tx) ⟨0|Ĵµ
em(tx,k) Jν

W (t)|P (p)⟩ ⟨P (p)|P |0⟩
2E dtx + . . .

= −i ⟨P (p)|P |0⟩
2E

∫ T

T
2

e−Eγ(T −tx)∑
n

⟨0|Ĵµ
em(tx,k)|n⟩ ⟨n|Jν

W (t)|P (p)⟩
2En

dtx + . . .

= −i ⟨P (p)|P |0⟩
2E

∑
n:pn=k

⟨0|Jµ
em|n⟩ ⟨n|Jν

W |P (p)⟩
2En

et(En−E) e−T Eγ

∫ T

T
2

e(Eγ−En)tx dtx + . . .

= −i ⟨P (p)|P |0⟩
2E

∑
n:pn=k

⟨0|Jµ
em|n⟩ ⟨n|Jν

W |P (p)⟩
2En

et(En−E)

× e−T Eγ
−eT (Eγ−En) + e

T
2 (Eγ−En)

(En − Eγ) + . . .

= −i ⟨P (p)|P |0⟩
2E e−t(E−Eγ) ∑

n:pn=k

⟨0|Jµ
em|n⟩ ⟨n|Jν

W |P (p)⟩
2En(En − Eγ)

×
(
e−( T

2 −t)(Eγ+En) − e−tEγ e−(T −t)En

)
+ . . . (1.66)

We observe that, for 0 ≪ t ≪ T
2 , this contribution is always exponentially suppressed with

respect to Cµν
1 and Cµν

2 , for any values of Eγ and En. The contribution Cµν
3 comes from the second

term in the first line of Eq. (1.59), and so we have explicitly shown the sub-leading nature of this
term, as anticipated.

Time-ordering tx <
T

2 < t

In this time-ordering, and in the next ones, we have t > T
2 . Thus, thanks to the periodic boundary

conditions on the time extent of the lattice, the interpolating pseudoscalar operator P gives the
leading contribution when annihilating the pseudoscalar meson P− at the time T , instead of
creating P+ at time 0. Later on, we will see that this is consistent with the interpretation about the
correlator representing the charge and parity (CP) conjugate process when t > T

2 . Due to the CPT
symmetry, this is equivalent to saying that, for t in the second half of the lattice, the correlator
represents the time-reversed process. Thus, in the next formulae, we will indicate as |P (p)⟩ and |n⟩
the charge conjugate states of |P (p)⟩ and |n⟩

The contribution to Cµν(t, Eγ ,k,p) coming from this time ordering is:

Cµν
4 = −i

∫ T
2

0
e−Eγtx ⟨0|P̂ (T,p) Jν

W (t) Ĵµ
em(tx,k)|0⟩ dtx
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= −i
∫ T

2

0
e−Eγtx

〈
P (p)

∣∣∣Jν
W (t) Ĵµ

em(tx,k)
∣∣∣0〉

〈
0
∣∣∣P ∣∣∣P (p)

〉
e−T E

2E dtx + . . .

= −i

〈
0
∣∣∣P ∣∣∣P (p)

〉
2E e−T E

∫ T
2

0
e−Eγtx

∑
n

〈
P (p)

∣∣∣Jν
W (t)

∣∣∣n〉 ⟨n |Ĵµ
em(tx,k)|0⟩

2En
dtx + . . .

= −i

〈
0
∣∣∣P ∣∣∣P (p)

〉
2E

∑
n:pn=k

〈
P (p)

∣∣∣Jν
W

∣∣∣n〉 ⟨n |Jµ
em|0⟩

2En
e−T Ee−t(En−E)

∫ T
2

0
e(En−Eγ)tx dtx + . . .

= −i

〈
0
∣∣∣P ∣∣∣P (p)

〉
2E

∑
n:pn=k

〈
P (p)

∣∣∣Jν
W

∣∣∣n〉 ⟨n |Jµ
em|0⟩

2En
e−T Ee−t(En−E) e

T
2 (En−Eγ) − 1
(En − Eγ) + . . .

= −i

〈
0
∣∣∣P ∣∣∣P (p)

〉
2E e−(T −t)(E−Eγ) ∑

n:pn=k

〈
P (p)

∣∣∣Jν
W

∣∣∣n〉 ⟨n |Jµ
em|0⟩

2En(En − Eγ)

×
(
e−T Eγ − e−(t− T

2 )En e−( 3
2 T −t)Eγ

)
+ . . .

(1.67)

As for Cµν
3 , this contribution is exponentially suppressed, when T

2 ≪ t ≪ T , for any values of En

and Eγ . This contribution is the one coming from the first term in the second line of Eq. (1.59).

Time-ordering T

2 < tx < t

The contribution to Cµν(t, Eγ ,k,p) coming from this time ordering is:

Cµν
5 = −i

∫ t

T
2

e−Eγ(tx−T ) ⟨0|P̂ (T,p) Jν
W (t) Ĵµ

em(tx,k)|0⟩ dtx

= −i
∫ t

T
2

e−Eγ(tx−T )
〈
P (p)

∣∣∣Jν
W (t) Ĵµ

em(tx,k)
∣∣∣0〉

〈
0
∣∣∣P ∣∣∣P (p)

〉
e−T E

2E dtx + . . .

= −i

〈
0
∣∣∣P ∣∣∣P (p)

〉
2E e−T E eT Eγ

∫ t

T
2

e−Eγtx
∑

n

〈
P (p)

∣∣∣Jν
W (t)

∣∣∣n〉 ⟨n |Ĵµ
em(tx,k)|0⟩

2En
dtx + . . .

= −i

〈
0
∣∣∣P ∣∣∣P (p)

〉
2E

∑
n:pn=k

〈
P (p)

∣∣∣Jν
W

∣∣∣n〉 ⟨n |Jµ
em|0⟩

2En

× e−T (E−Eγ)e−t(En−E)
∫ t

T
2

e(En−Eγ)tx dtx + . . .

= −i

〈
0
∣∣∣P ∣∣∣P (p)

〉
2E

∑
n:pn=k

〈
P (p)

∣∣∣Jν
W

∣∣∣n〉 ⟨n |Jµ
em|0⟩

2En

× e−T (E−Eγ)e−t(En−E) e
t(En−Eγ) − e

T
2 (En−Eγ)

(En − Eγ) + . . .
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= −i

〈
0
∣∣∣P ∣∣∣P (p)

〉
2E e−(T −t)(E−Eγ) ∑

n:pn=k

〈
P (p)

∣∣∣Jν
W

∣∣∣n〉 ⟨n |Jµ
em|0⟩

2En(En − Eγ)
(
1 − e−(t− T

2 )(En−Eγ)
)

+ . . .

(1.68)

Once again, the last exponential in the last formula gives a subleading contribution in the region
T/2 ≪ t ≪ T , being En − Eγ > 0.

Time-ordering T
2 < t < tx

The contribution to Cµν(t, Eγ ,k,p) coming from this time ordering is:

Cµν
6 = −i

∫ T

t
e−Eγ(tx−T ) ⟨0|P̂ (T,p) Ĵµ

em(tx,k) Jν
W (t)|0⟩ dtx

= −i
∫ T

t
e−Eγ(tx−T )

〈
P (p)

∣∣∣Ĵµ
em(tx,k) Jν

W (t)
∣∣∣0〉

〈
0
∣∣∣P ∣∣∣P (p)

〉
e−T E

2E dtx + . . .

= −i

〈
0
∣∣∣P ∣∣∣P (p)

〉
2E e−T E eT Eγ

∫ T

t
e−Eγtx

∑
n

〈
P (p)

∣∣∣Ĵµ
em(tx,k)

∣∣∣n〉 ⟨n |Jν
W (t)|0⟩

2En
dtx + . . .

= −i

〈
0
∣∣∣P ∣∣∣P (p)

〉
2E

∑
n:pn=p−k

〈
P (p)

∣∣∣Jµ
em

∣∣∣n〉 ⟨n |Jν
W |0⟩

2En

× e−T (E−Eγ) etEn

∫ T

t
e−(Eγ+En−E)tx dtx + . . .

= −i

〈
0
∣∣∣P ∣∣∣P (p)

〉
2E

∑
n:pn=p−k

〈
P (p)

∣∣∣Jµ
em

∣∣∣n〉 ⟨n |Jν
W |0⟩

2En

× e−T (E−Eγ) etEn
e−t(Eγ+En−E) − e−T (Eγ+En−E)

Eγ + En − E
+ . . .

= −i

〈
0
∣∣∣P ∣∣∣P (p)

〉
2E

∑
n:pn=p−k

〈
P (p)

∣∣∣Jµ
em

∣∣∣n〉 ⟨n |Jν
W |0⟩

2En(Eγ + En − E) e−(T −t)(E−Eγ)
(
1 − e−(T −t)(Eγ+En−E)

)
(1.69)

As for the previous terms, the last exponential in the last formula gives a subleading contribution in
the region T/2 ≪ t ≪ T .

1.4 The hadronic tensor from the lattice correlator

In this section, we use the information we got from the spectral decomposition to establish the
relation between the lattice three-point function of Eq. (1.59) and the hadronic matrix element Hµν .
In the following, we will also assume the validity of the internal state conditions (1.44) and (1.45).

In the first half of the lattice, that is, for t < T
2 we have
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θ(T/2 − t)Cµν(t, k, p) = Cµν
1 + Cµν

2 + Cµν
3 = −ie

−t(E−Eγ) ⟨P (p)|P |0⟩
2E

×
[∑

n

⟨0|Jν
W (0)|n⟩ ⟨n|Jµ

em(0,k)|P (p)⟩
2En (Eγ + En − E) +

∑
n

⟨0|Jµ
em(0,k)|n⟩ ⟨n|Jν

W (0)|P (p)⟩
2En (En − Eγ)

]
,

(1.70)

where we neglected all the terms that are exponentially suppressed in the time region 0 ≪ t ≪ T
2 .

By comparing Eq. (1.70) with Eqs. (1.35) and (1.36), we recognize the relation

θ(T/2 − t)Cµν(t, k, p) = e−t(E−Eγ) ⟨P (p)|P |0⟩
2E [Hµν(k, p)] . (1.71)

Now let’s consider the second half of the lattice. From the spectral analysis we obtained:

θ(t− T/2)Cµν(t, k, p) = Cµν
4 + Cµν

5 + Cµν
6 = −i e

−(T −t) (E−Eγ)⟨0|P |P (p) ⟩
2E

×

∑
n

〈
P (p)

∣∣∣Jµ
em(0,k)

∣∣∣n〉 ⟨n |Jν
W (0)|0⟩

2En (Eγ + En − E) +
∑

n

〈
P (p)

∣∣∣Jν
W (0)

∣∣∣n〉 ⟨n |Jµ
em(0,k)|0⟩

2En (En − Eγ)

 .
(1.72)

Looking at Eq. (1.72) we recognize that we obtained the time reversal process of the original one, or,
which is equivalent to say, the CP (parity and charge) conjugate process. It can be demonstrated
that, in the second half of the lattice, the correlator is equal to

θ(t− T/2)Cµν(t, Eγ ,k,p) = e−(T −t) (E−Eγ)⟨P (E,−p)|P |0⟩
2E Hµν(Eγ ,−k, E,−p) . (1.73)

Thus, our final formula, which relates the Euclidean lattice correlator to the physical Minkowskian
hadronic tensor in both halves of the lattice, is

Cµν(t, Eγ ,k,p) = θ(T/2 − t) e
−t(E−Eγ) ⟨P |P |0⟩

2E Hµν(Eγ ,k, E,p)

+ θ(t− T/2) e
−(T −t) (E−Eγ)⟨P (E,−p)|P |0⟩

2E Hµν(Eγ ,−k, E,−p) . (1.74)

By looking at the form factor decomposition in Eqs. (1.19) - (1.21), we can deduce the properties
of the different Lorentz components when inverting the spatial momenta p and k. For example,
when both indices are either temporal or spatial ones, the axial component of the hadronic tensor
is even with respect to the spatial momenta, while the vector component is odd. Vice versa, with
one temporal index and a spatial one, the axial component of the hadronic tensor is odd while the
vector one is even.

We use these time reversal properties of the lattice correlators, to either symmetrize or anti-
symmetrize the correlators between the two halves [0, T

2 ] and [T
2 , T ] of the lattice, and then we will
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work just within the first half of the lattice time-extent, defining

Hµν
L (t, k,p) = 2E

e−t(E−Eγ) ⟨P (p)|P |0⟩
Cµν(t, Eγ ,k,p) = Hµν(k,p) + ... (1.75)

where the subscript L stands for "lattice" and the ellipsis represents the sub-leading exponentials.
As we have shown, the average of the correlator between the two halves of the lattice is equivalent

to the average between opposite directions of the spatial momenta. By working with a twisted mass
lattice action at maximal twist, this fact ensures the O(a)-improvement, with a being the lattice
spacing, i.e. the reduction of the discretization errors to ones of O(a2) [43].

On the lattice, it is useful to compute and study separately the axial and the vector part of the
correlators in order to determine the corresponding form factors.

1.4.1 Infrared behavior of the lattice three-point functions

In this section we study the behavior of the lattice Euclidean correlation function Cµν(t, Eγ ,k,p)
in the limit k → 0 which, as we will see below, is nontrivial. From the spectral analysis, see for
example Eq. (1.64), one can see that

Cµν(t, Eγ ,k,p) = cµν
1 e−tE(p) + cµν

2 e−t{E(p−k)+Eγ} + . . . , (1.76)

where the dots represent exponentially suppressed contributions with an energy gap which, in the
soft photon limit, is of the order of 2mπ. The first exponential corresponds to the on-shell external
meson P (p) with spatial momentum p, and gives the contribution we aim to isolate, while the second
exponential corresponds to the P (p − k) + γ internal state, composed of an on-shell meson P (p − k)
with spatial momentum p − k, and a virtual photon with spatial momentum k and off-shell energy
Eγ . In other words, the second exponential represents the unphysical contribution given from the
lightest internal state contributing to the correlator in the time-ordering tx < t. Previously, in Sec.
1.2.1, we demonstrated the validity of the condition E(p−k)+Eγ > E(p). However, this is true only
for non-vanishing values of the photon four-momentum. Indeed, when either k or Eγ are non-zero,
it is possible to isolate the matrix element corresponding to the ground state P (p), since the second
exponential in Eq. (1.76) is subleading at large time separations t. Instead, in the exact limit k → 0,
the energy-gap between the two states vanishes, and the lattice Euclidean correlator Cµν(t, 0,0,p)
has a non-trivial behavior which we now discuss, paying special attention to the leading cutoff effects.
This has been already done for P → ℓνℓγ decays, with the emission of a real photon, in Appendix
C of Ref. [6], focusing on the spatial components of Cµν , which are the only ones relevant in that
case. Now, we generalize the analysis of Ref. [6] to the components C0ν and Cµ0, with µ, ν = 0, 1, 2, 3.

The starting point is the electromagnetic Ward Identity that, for Wilson-like Fermions adopted
in this study, reads [6]

3∑
µ=0

2
a

sin (akµ/2)Cµν
A (t, k,p) = Cν

A(t,p) − Cν
A(t, Eγ ,p − k) , (1.77)
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where we have defined

Cµν
A (t, k,p) = −i

∫
d4y d3x e−ik·(y+µ̂/2)−ip·x⟨0|T [ Jν

A(0) Jµ
em(y)P (−t,−x) ]|0⟩ , (1.78)

Cν
A(t,p) =

∫
d3x e−ip·x⟨0|T [ Jν

A(0)P (−t,−x) ]|0⟩

= pν f̂P (p) ĜP (p)
2Ê(p)

e−tÊ(p) + . . . , (1.79)

Cν
A(t, Êγ ,p − k) = e−Êγt

∫
d3x e−i(p−k)·x⟨0|T [ Jν

A(0)P (−t,−x) ]|0⟩

= uν f̂P (p − k) ĜP (p − k)
2Ê(p − k)

e−tÊ(p−k)−tÊγ + . . . , (1.80)

and where the ellipsis represents sub-leading exponentials with an energy gap that, in the infrared
limit, starts at order 2mπ. In Eqs. (1.78) - (1.80) the integrals are to be read as lattice sums,
k = (iÊγ ,k) is the Euclidean photon’s four-momentum, while the on-shell Euclidean four-momenta
of the mesons P (p) and P (p − k) are given respectively by

p =
(
iÊ(p), p

)
, u =

(
iÊ(p − k), p − k

)
. (1.81)

In the previous expressions, the hat symbol denotes lattice quantities, which are related to their
continuum counterpart by 4

f̂P (p) = fP +O(a2) , ĜP (p) = GP +O(a2) ,

Ê(p) = E +O(a2) , Êγ = Eγ +O(a2) , (1.82)

where fP , GP , E(p) and Eγ are respectively the continuum decay constant, the continuum matrix
element of the pseudoscalar density used as the interpolating operator (GP = ⟨0|P |P (p)⟩), the
continuum energy of the meson and of the virtual photon.

We now differentiate Eq. (1.77) with respect to kµ and then set k = 0. Since we are considering
a generic off-shell photon, the temporal and spatial components of the photon momentum kµ are
treated as independent quantities. When the indices µ and ν are spatial, one obtains the result
quoted in Eq. (C17) of Ref. [6],

Cij
A (t, 0,p) = f̂P (p)ĜP (p)

2Ê(p)
e−tÊ(p)

×
{
δij + pj

[
1

f̂P (p)
∂f̂P (p)
∂pi

+ 1
ĜP (p)

∂ĜP (p)
∂pi

−
(
t+ 1

Ê(p)

)
∂Ê(p)
∂pi

]}
+ . . . .

(1.83)

4In our Twisted mass formulation, cut-off effects on parity-even observables start at order O(a2).
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Moreover, the H(3) symmetry of the lattice implies

∂f̂P (p)
∂pi

= pi ×O(a2), ∂ĜP (p)
∂pi

= pi ×O(a2), ∂Ê(p)
∂pi

= pi

E(p) ×
(
1 +O(a2)

)
(1.84)

so that

Cij
A (t, 0,p) = f̂P (p) ĜP (p)

2Ê(p)
e−tÊ(p)

{
δij − pi pj

Ê2(p)

(
1 + t Ê(p) +O(a2)

)}
+ . . . . (1.85)

In the rest frame of the meson, p = 0, which we use in our study, we therefore obtain for the spatial
components of the correlation function:

Cij
A (t, 0,0) = δij f̂P (0) ĜP (0)

2Ê(0)
e−tÊ(0) + . . . . (1.86)

For the component C00
A the same procedure gives

C00
A (t, 0,p) = −t Ê(p) f̂P (p) ĜP (p)

2Ê(p)
e−tÊ(p) + . . . . (1.87)

For the components Ci0
A , i.e. for the correlation function with J0

A and J i
em, we obtain

Ci0
A (t, 0,p) = f̂P (p) ĜP (p)

2Ê(p)
e−tÊ(p) × Ê(p)

[
1

f̂P (p)
∂f̂P (p)
∂pi

+ 1
ĜP (p)

∂ĜP (p)
∂pi

− t
∂Ê(p)
∂pi

]
+ . . .

= − f̂P (p) ĜP (p)
2Ê(p)

e−tÊ(p) × Ê(p) pi
(
t+O(a2)

)
+ . . . , (1.88)

that in our reference frame becomes

Ci0
A (t, 0,0) = 0 + . . . . (1.89)

Similarly, for the components C0i
A , differentiating equation Eq. (1.77) results in

C0j
A (t, 0,p) = −pj t

f̂P (p) ĜP (p)
2Ê(p)

e−tÊ(p) + . . . , (1.90)

which in the rest frame of the meson becomes

C0j
A (t, 0,0) = 0 + . . . . (1.91)

As we will see in the next section, Eq. (1.86) allows one to subtract the point-like contribution
from the diagonal spatial components Cii

A components, non-perturbatively to all orders in the lattice
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Figure 1.6: Determination of the 00 component of the hadronic tensor, from the lattice three-point
correlation function at k = 0. The green line is the result of a linear fit in time aH00

L,A(t, 0,0) = −αfit
0 t,

where αfit
0 is a fit parameter, and which is compared with the predicted value, αpred

0 , derived from Eq. (1.87).
The fit was performed in the interval t = (4, 21), away from the center of the lattice, where backward
propagating contributions to the correlation function become significant.

spacing a. From Eqs. (1.89) and (1.90), we see that, instead, in the limit k → 0 the contribution
from the P (p−k) +γ state exactly cancels the signal. Hence, for such components, it is not possible
to extract, in the exact limit k = 0, the physical matrix element from the Euclidean three point
function.

Finally, it is worthwhile noting the peculiar behavior in t of the purely temporal component
of the lattice three point function, C00

A (t, 0,p). From Eq. (1.87) it can be seen that C00
A (t, 0,p)

exhibits a time-behavior of type t e−tÊP (p), which is a manifestation of the singular behavior of the
correlation function at large distances, and which gives rise to a double pole in momentum space.
In our simulation, we found numerical evidence for the presence of such a behavior. This is shown
in Fig. 1.6, where we compare our numerical data for H00

L,A(t, 0,0), defined in Eq. (1.75), with the
prediction of Eq. (1.87).

We remark that in our analysis we have not used the purely temporal component C00
A , which

would make it difficult to identify the plateaux due to the presence of a large contribution from the
excited state P (p − k) + γ, at small values of k.

1.5 Form factor lattice estimators

In the last section, we explained in detail how the hadronic tensor Hµν can be extracted on the
lattice from the Euclidean three-point function Cµν . Now we face the problem of employing the
lattice quantity Hµν

L , defined in Eq. (1.75), to define lattice estimators for the structure dependent
form factors. To this end, we first need to choose a specific reference frame.
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1.5.1 Reference frame and non-zero components

In our numerical study we choose the meson to be at rest, p = 0, since we found that the lattice
correlation functions are less noisy in this case, and the spatial momentum of the photon to be in
the z-direction, k = (0, 0, kz). The form-factors depend on two independent variables which can be
chosen to be the invariants k2, where k is the four-momentum of the photon, and q2 ≡ (p − k)2.
In Chapter 2 we present our results in terms of the dimensionless variables xk and xq defined in
Eq. (2.1) in terms of k2 and q2. In this section however, in which we discuss the extraction of the
form factors from correlation functions computed in the frame defined above, it is more transparent
to present the discussion with k2 and kz as the independent variables, together with the energy of
the photon Eγ given by E2

γ = k2 + k2
z .

In the rest frame of the meson and with k = (0, 0, kz), the only non-zero elements of the vector
component of the hadronic tensor, Hµν

V , are H12
V and H21

V which are related to the vector form
factor FV by

H12
V = −H21

V = iFV kz . (1.92)

The axial component of the hadronic tensor, Hµν
A , is parametrized by the SD form factors FA,

H1 and H2, and by the meson decay constant fP . In the reference frame defined above, the non-zero
elements of Hµν

A are given by

H00
A = −H1

k2
z

mP
−H2

k2
z (mP − Eγ)

2mPEγ − k2 − FA
k2

z

mP
+ fP

2m2
P −mPEγ + k2

z

2mPEγ − k2 , (1.93)

H03
A = −H1

Eγkz

mP
+H2

kz(E2
γ − k2)

2mPEγ − k2 − FA
(mP − Eγ) kz

mP
− fP

kz (2mP − Eγ)
2mPEγ − k2 , (1.94)

H30
A = −H1

Eγkz

mP
−H2

kzEγ (mP − Eγ)
2mPEγ − k2 + FA

kzEγ

mP
− fP

kz (mP − Eγ)
2mPEγ − k2 , (1.95)

H33
A = −H1

E2
γ

mP
+H2

Eγk
2
z

2mPEγ − k2 − FA
Eγ (mP − Eγ)

mP
− fP

Eγ (2mP − Eγ)
2mPEγ − k2 , (1.96)

H11
A = H22

A = −H1
k2

mP
− FA

(
mPEγ − k2)

mP
− fP . (1.97)

Here and in the following we use continuum notation for the four-vectors but in lattice computa-
tions, in order to reduce the discretization uncertainties, the energy and momentum carried by the
electromagnetic current can be understood by the following replacements:

kz → k̂z = 2
a

sin
(
akz

2

)
, Eγ = 2

a
sinh−1

a2
√√√√k̂2

z +
(

2
a

sinh
(
a
√
k2

2

))2
 (1.98)

where kz and
√
k2 are the continuum, physical values for the photon’s spatial momentum (which

here is directed along the z-axis) and for the photon’s virtuality respectively.
In order to extract the axial form factors, we need to combine these non-zero component of Hµν

A
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into three independent expressions of FA, H1 and H2, in which the point-like term proportional to
fP has been subtracted. We now address the delicate issue of subtracting the point-like term.

1.5.2 Subtraction of the point-like term

To determine the SD axial form factors from knowledge of the non-zero components of Hµν
A , it

is necessary to subtract the point-like terms proportional to fP . From the previous equations, it
follows that the point-like terms become dominant in the infrared limit, k → 0, where the SD part
of the hadronic tensor vanishes. This is expected, since soft photons cannot probe the internal
structure of the meson. However, this poses the problem for the numerical evaluation of the SD
form factors at small k2, that residual O(a2) discretization effects in the subtraction of the point-like
term contribute as enhanced artifacts in the determined values of the SD form factors. Moreover,
these artifacts diverge as k → 0. This problem has already been encountered in the previous work
on P → ℓν̄ℓγ decays [6], where it was found that performing the subtraction using the value of fP

extracted from two-point correlation functions results in unphysically large values of FA in the
soft-photon limit. In the same paper, a solution to this problem was proposed. It has been showed
that by exploiting the electromagnetic Ward Identity in the lattice theory, the subtraction of the
point-like contribution can be performed non-perturbatively to all orders in the lattice spacing, thus
avoiding infrared-divergent lattice artifacts in the resulting SD form factors. In particular, it has
been demonstrated that, for the diagonal spatial components of the lattice correlation function,
which are smooth in the limit k → 0, this can be achieved by using the values of fP obtained from
the same components evaluated at zero photon momentum [6].

A similar situation occurs also when the final-state photon is virtual, albeit in this case the
lepton masses provide an energy-momentum cut-off for the photon. Proceeding similarly, we define
the subtracted quantities for the diagonal components as follows:

H̃33
A (kz, k

2) ≡ H33
A (kz, k

2) −H33
A (0, 0)Eγ (2mP − Eγ)

2mPEγ − k2

= −H1
E2

γ

mP
+H2

Eγk
2
z

2mPEγ − k2 − FA
Eγ (mP − Eγ)

mP

H̃11
A (kz, k

2) ≡ H11
A (kz, k

2) −H11
A (0, 0)

= −H1
k2

mP
− FA

(
mPEγ − k2)

mP
. (1.99)

Unfortunately, the same procedure cannot be used for the other components. The reason is that,
in the limit k → 0, the "excited" state consisting of a meson P with momentum −k and a photon
with energy Eγ becomes degenerate with the "ground" state of the meson P at rest. As we have
explicitly shown in Sec. 1.4.1, in the k → 0 limit, the off-diagonal components, C30

A and C03
A go to

zero; the contribution of the P + γ state cancels that of the ground state. These components at
zero photon momentum cannot therefore be used to subtract the contribution proportional to fP .
Instead, we define a linear combination of the two off-diagonal components, which in the continuum
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cancels the point-like term proportional to fP , that is:

H
[3,0]
A (kz, k

2) ≡ H30
A (kz, k

2) −H03
A (kz, k

2)
(
mP − Eγ

2mP − Eγ

)

= −H1
Eγkz

2mP − Eγ
−H2

kz(mP − Eγ)
2mP − Eγ

+ FA
kzmP

2mP − Eγ
. (1.100)

In the numerical study of K → ℓ νℓ ℓ
′+ ℓ′− decays, we also have an infrared cut-off on the photon

virtuality k2, given either by the non-negligible muon mass or by the experimental cut on the
two-electron invariant mass mee =

√
k2 > 145 MeV [9]. We observe that the form factors have a

smooth behavior as a function of the photon momentum, without any anomalous increase in the
infrared region caused by residual discretization errors in the subtraction of the point-like term.

An alternative possibility, one which we have not explored in this study, would be to compute
the correlation function with the meson in motion (p ̸= 0) and to use different components of the
correlation functions to extract the form factors.

1.5.3 Lattice estimators

Once we computed three independent linear combinations of the three axial form factors using lattice
QCD, the form factors themselves are obtained by inverting the matrix of coefficients. Specifically,
our estimators of the axial form factors, H̄1(t, k2, kz), H̄2(t, k2, kz) and F̄A(t, k2, kz), are obtained
from the axial component of the lattice tensor Hµν

L,A(t, k) ≡ Hµν
L,A(t, k,0) of Eq. (1.75) as follows:


H̄1(t, k2, kz)

H̄2(t, k2, kz)

F̄A(t, k2, kz)

 ≡


− Eγkz

2mP −Eγ
−kz(mP −Eγ)

2mP −Eγ

kzmP
2mP −Eγ

−E2
γ+k2

mP

Eγk2
z

2EγmP −k2
E2

γ−2EγmP +k2

mP

k2−E2
γ

mP

Eγk2
z

2EγmP −k2
E2

γ−k2

mP


−1


H
[3,0]
L,A (t, k)

H̃33
L,A(t, k) + H̃11

L,A(t, k)

H̃33
L,A(t, k) − H̃11

L,A(t, k)


(1.101)

We recall that the diagonal components H̃33
L,A and H̃11

L,A are defined in Eq. (1.99) after the
subtraction of the point-like contributions proportional to H33

A,L(t, 0) = H11
A,L(t, 0) = H22

A,L(t, 0). In
the time region 0 ≪ t ≪ T/2, the estimators H̄1(t, k2, kz), H̄2(t, k2, kz) and F̄A(t, k2, kz), tend to
the corresponding form factors.

In the limit kz → 0, two of the components of the vector on the right-hand side of Eq. (1.101),
H

[3,0]
L,A (t, k) and H̃33

L,A(t, k) − H̃11
L,A(t, k), both go to zero for all values of k2, see Eqs. (1.94) - (1.100).

This fact can be used to define equivalent estimators of the form factors, obtained by making the
following replacements in Eq. (1.101):

H
[3,0]
L,A (t, k) → H

[3,0]
L,A (t, k) −H

[3,0]
L,A (t, (

√
k2,0)) (1.102)
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and

H̃33
L,A(t, k) − H̃11

L,A(t, k) →
(
H̃33

L,A(t, k) − H̃11
L,A(t, k)

)
−
(
H̃33

L,A(t, (
√
k2,0)) − H̃11

L,A(t, (
√
k2,0))

)
.

(1.103)

The correlated subtraction of the contribution coming from the kinematic point with the same value
of k2 but zero photon spatial momentum kz, help to reduce the statistical noise of the estimators
and improves the corresponding plateaux. The amount of improvement depends on the kinematic
point and on the form factor being considered.

Finally, for the vector form factor FV , we define the following estimator:

F̄V (t, k2, kz) =
H12

L,V (t, k) −H2,1
L,V (t, k)

2ikz
, (1.104)

which, again, for 0 ≪ t ≪ T/2 tends to the FV form factor.
Having explained our procedure for extracting the SD form factors from three-point lattice

correlation functions, we now proceed to present our numerical results.



Chapter 2

Lattice numerical results and analysis

for the form factors

In this chapter, we implement the procedure developed in the previous sections in order to obtain a
theoretical prediction for the structure dependent form factors entering the K → ℓ νℓ ℓ

′+ℓ′− decays.
After showing the lattice results we obtained for the form factors, we compare our results with

ChPT predictions, experimental data and real photon emission in lattice simulations. We remember
to the reader that in Appendix B are explained in detail all the basic elements of lattice QCD
calculations.

2.1 Simulation strategy

The simulations have been performed on the A40.32 ensemble generated by the ETMC [2] with
Nf = 2 + 1 + 1 dynamical quark flavors, a space-time volume of 323 × 64 and a lattice spacing of
a = 0.0885(36) fm. The analysis was performed on 100 gauge configurations. The light quarks are
heavier than the corresponding physical ones and correspond to mπ ≃ 320 MeV and mK ≃ 530 MeV.
These meson masses satisfy the condition mK < 2mπ which, as discussed in Sec. 1.2, guarantees
the absence of internal lighter states that would spoil the Wick rotation and thus the extraction of
the physical hadronic tensor from Euclidean correlators.

We used smeared interpolating sources for the kaon field, obtained applying 128 steps of
Gaussian smearing with step-size parameter ϵ = 0.1. Moreover, we used four stochastic sources
on each time slice when inverting the Dirac operator. On this ensemble, the values of the two
renormalization constants are ZA = 0.731(8) and ZV = 0.587(4) [2]. The statistical analysis
of the lattice data has been performed employing the jackknife resampling method in order to
properly handle autocorrelation effects and cross-correlations among the different form factors in
the computation of the branching ratios.

Below, we will compare our results for the form factors and branching ratios with those deter-
mined in experiments [9] and chiral perturbation theory. While these comparisons are interesting
and instructive, it must be remembered that our computations were performed with unphysical
quark masses, at a single value of the lattice spacing and on a single volume. Until the corre-

38
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Figure 2.1: The colored bands represent the range of allowed physical values of (xk, xq) when neglecting
lepton masses, so that 0 < xk < 1 and 0 < xq < 1 − xk. The points correspond to the 15 choices of (xk, xq)
used in this analysis.

sponding systematic uncertainties are studied in the future, the comparison with the experimental
measurements may be indicative, but cannot be considered definitive.

2.1.1 Kinematics of the simulation

As already outlined in Sec. 1.3, we used twisted boundary conditions in order to evaluate the
hadronic tensor for a range of values of the photon’s spatial momentum k. To probe the region of
the phase-space relevant for the four K → ℓ νℓ ℓ

′+ℓ′− decay channels, with ℓ, ℓ′ = e, µ, we evaluate
the Euclidean three-point functions Cµν(t, Eγ ,k,p) for fifteen different values of (Eγ ,k), with
k = (0, 0, kz), and restricted our analysis to the kaon rest frame p = 0. We find it convenient to
parametrize the phase space in terms of the two dimensionless parameters xk and xq, defined as

xk ≡
√

k2

m2
K

, xq ≡
√

q2

m2
K

, (2.1)

where q is the four-momentum of the lepton-neutrino pair created by the weak Hamiltonian. In
terms of xk and xq the photon’s four-momentum, (Eγ , 0, 0, kz), (in the kaon’s rest frame) is given by

Eγ = mK

2 (1 + x2
k − x2

q) , kz = mK

2

√
(1 − x2

k − x2
q)2 − 4x2

kx
2
q . (2.2)

The allowed range of values of xk and xq is given in terms of the lepton masses, mℓ and mℓ′ , by

mℓ

mK
≤ xq ≤ 1 − xk ; 2mℓ′

mK
≤ xk ≤ 1 − mℓ

mK
, (2.3)

so that the phase space has a triangular shape in the xk -xq plane.
In Fig. 2.1 we show the positions of the fifteen simulated kinematic configurations, which we take

as equally spaced in the xk -xq plane. For completeness, the corresponding numerical values of xk

and xq are reported in Tab. 2.1. In Tab.2.1, for each combination of xk and xq, we also reported the
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xk xq off=xk · amL
K θ

0.28 0.12 0.074 0.60
0.28 0.24 0.074 0.56
0.28 0.36 0.074 0.50
0.28 0.48 0.074 0.41
0.28 0.61 0.074 0.29
0.41 0.12 0.11 0.54
0.41 0.24 0.11 0.50
0.41 0.36 0.11 0.42
0.41 0.48 0.11 0.30
0.53 0.12 0.14 0.46
0.53 0.24 0.14 0.41
0.53 0.36 0.14 0.30
0.65 0.12 0.17 0.36
0.65 0.24 0.17 0.28
0.77 0.12 0.20 0.23

Table 2.1: Values of (xk, xq) selected for the lattice calculation of the form factors. For each combination
we also reported the offshellness xk · (amL

K) and the twisted angle θ to be assigned for the A40.32 ensemble.

corresponding parameters to be assigned to the lattice simulation for the A40.32 ensemble. They
are the offshellness xk · (amL

K) and the twisted angle θ = L
aπ arcsin

(
a|k̂|/2

)
, where amL

K is the kaon
mass for the A40.32 ensemble in lattice units, a is the lattice spacing, L is the spatial length of
the lattice and a|k̂| is the magnitude of the lattice spatial momentum in lattice unit. It should be
noted that our computations are limited to xk ≥ 0.28. This choice is appropriate to describe both
the cases in which a µ+µ− or a e+e− pair is produced in the radiative decay of the kaon. Indeed,
in the first case the lowest allowed value of xk is given by 2mµ/mK ≃ 0.428, while for decays in
which an e+e− pair is produced, although very low values of xk are kinematically allowed, the
experimental branching ratios have been determined with values of the electron-positron invariant
mass

√
k2 > 145 MeV (xk > 0.294) for K+ → µ+ νµ e

+ e− decays and
√
k2 > 150 MeV (xk > 0.304)

for K+ → e+ νe e
+ e− decays [9].

2.2 Form factor numerical results

For each kinematics, we compute on the lattice the correlators of Eq. (1.59) and we use the strategy
explained in Sec. 1.5 to obtain the estimators of the structure dependent form factors. These are
functions of the time t in which the weak current is placed, and when 0 ≪ t ≪ T/2, if a plateau is
reached, the value of the estimator will tend to the value of the relative form factor.

In Figs. 2.2, 2.3 and 2.4, we present the estimators H̄1(t, xk, xq), H̄2(t, xk, xq), F̄A(t, xk, xq) and
F̄V (t, xk, xq) for selected values of xk and xq. In each figure, the shaded region indicates the result
of a constant fit in the corresponding time interval. Figs. 2.2 and 2.3 illustrate the feature that for
kinematics corresponding to small values of kz (i.e. when xq + xk ≃ 1) the estimator of the axial
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Figure 2.2: Extraction of the form factors FA, FV , H1, H2 from the plateaux of the corresponding estimator.
The data correspond to xk = 0.41 and xq = 0.48.
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Figure 2.3: Extraction of the form factors FA, FV , H1, H2 from the plateaux of the corresponding estimator.
The data correspond to xk = 0.77 and xq = 0.12.
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Figure 2.4: Extraction of the form factors FA, FV , H1, H2 from the plateaux of the corresponding estimator.
The data correspond to xk = 0.28 and xq = 0.12.

form factor FA becomes somewhat noisy, leading to increased uncertainties in its determination.
On the other hand, for other values of (xk, xq) and for all other form factors, the precision achieved
is very good and typically of the order of five to ten percent. To check the stability of our numerical
results, we verified that the values of the form factors remain consistent within errors by changing
the time interval adopted for the fits by a few units.

2.3 Form factor analysis

In the previous section, we presented our numerical results obtained for the structure dependent
form factors at fifteen different kinematics. But in order to obtain a differential decay rate in
momentum space, and then to integrate it in the phase space, we need an expression of the form
factors as continuum functions of the two variables xk and xq. To do so, we fit the lattice form
factors, using two different ansatzes to describe their dependence on xk and xq. The first is a simple
polynomial in x2

k and x2
q given by

Fpoly(xk, xq) = a0 + akx
2
k + aqx

2
q , (2.4)

where a0, ak and aq are free fitting parameters. We find that this simple form represents our data
very well, and the corresponding results presented in Chapter 3 for the branching ratios are obtained
using Eq. (2.4). However, we have also performed fits using ansatzes which include additional terms
which are quartic in xk and xq, i.e. terms proportional to x2

kx
2
q , x4

k and x4
q . We find that including
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Figure 2.5: The fitting functions corresponding to the polynomial and the pole-like fits of Eqs. (2.4) and(2.5)
are plotted, along with the lattice data, as function of xq and at a fixed value of xk = 0.28 (panels 1-4) and
xk = 0.41 (panels 5-8) . The red line corresponds to the 1-loop ChPT prediction with F = fK/

√
2.
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Figure 2.6: The fitting functions corresponding to the polynomial and the pole-like fits of Eqs. (2.4) and(2.5)
are plotted, along with the lattice data, as function of xk and at a fixed value of xq = 0.12 (panels 1-4) and
xq = 0.24 (panels 5-8). The red line corresponds to the 1-loop ChPT prediction with F = fK/

√
2.
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all or some of such terms does not improve the fits, generally results in overfitting our data, and
only negligibly changes the results for the form factors and decay rates.

The second ansatz has a pole-like structure of the form

Fpole(xk, xq) = A(
1 −Rkx

2
k

) (
1 −Rqx2

q

) , (2.5)

where again A,Rk and Rq are free fitting parameters. The quality of the fit in all cases is very good,
with the reduced χ2 always smaller than one.

The results of both fits for each form factor are showed in the panels of Figs. 2.5 - 2.6. The
two colored bands represent the result of the form factor interpolations obtained using either the
polynomial or the pole-like ansatz (Eqs. (2.4) and (2.5) respectively). In each panel, we represent a
form factor as a function of xq at fixed xk, or vice-versa. The red line represent the ChPT prediction
for that form factor at next to leading order, which we discuss in detail in the next section. The
parameters of both the polynomial and pole-like fits are collected in Tab. 2.2.

a0 ak aq A Rk Rq

H1 0.1755(88) 0.113(30) 0.086(24) 0.1792(78) 0.453(88) 0.40(10)
H2 0.199(21) 0.341(84) -0.03(3) 0.217(17) 0.87(12) -0.2(2)
FA 0.0300(43) 0.04(4) 0.00(1) 0.0320(30) 0.74(50) 0.0(3)
FV 0.0912(39) 0.044(18) 0.0246(59) 0.0921(38) 0.38(13) 0.233(49)

Table 2.2: Values of the fit parameters for all the form factors, as obtained from the polynomial and
pole-like fits of Eqs. (2.4) and (2.5).

a0,H1 ak,H1 aq,H1 a0,H2 ak,H2 aq,H2 a0,FA
ak,FA

aq,FA
a0,FV

ak,FV
aq,FV

a0,H1 1 −0.49 0.33 0.89 −0.58 −0.016 0.34 −0.79 −0.64 0.44 −0.18 0.18
ak,H1 −0.49 1 −0.40 −0.38 0.31 0.10 −0.65 0.60 0.19 0.076 −0.052 0.14
aq,H1 0.33 −0.40 1 0.30 −0.51 −0.66 −0.017 −0.081 −0.24 0.40 −0.56 0.27
a0,H2 0.89 −0.38 0.30 1 −0.76 −0.083 0.37 −0.75 −0.61 0.37 −0.28 0.27
ak,H2 −0.58 0.31 −0.51 −0.76 1 0.33 −0.31 0.54 0.45 −0.48 0.34 −0.44
aq,H2 −0.016 0.10 −0.66 −0.083 0.33 1 0.18 −0.24 −0.31 −0.46 0.11 −0.37
a0,FA

0.34 −0.65 −0.017 0.37 −0.31 0.18 1 −0.74 −0.10 −0.24 0.17 −0.20
ak,FA

−0.79 0.60 −0.081 −0.75 0.54 −0.24 −0.74 1 0.48 −0.16 0.00048 −0.14
aq,FA

−0.64 0.19 −0.24 −0.61 0.45 −0.31 −0.10 0.48 1 −0.17 0.53 0.14
a0,FV

0.44 0.076 0.40 0.37 −0.48 −0.46 −0.24 −0.16 −0.17 1 −0.22 0.76
ak,FV

−0.18 −0.052 −0.56 −0.28 0.34 0.11 0.17 0.00048 0.53 −0.22 1 −0.20
aq,FV

0.18 0.14 0.27 0.27 −0.44 −0.37 −0.20 −0.14 0.14 0.76 −0.20 1

Table 2.3: Correlation matrix for the fit parameters corresponding to the polynomial fit described in Eq.
(2.4).
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AH1 Rk,H1 Rq,H1 AH2 Rk,H2 Rq,H2 AFA
Rk,FA

Rq,FA
AFV

Rk,FV
Rq,FV

AH1 1 −0.57 0.13 0.87 −0.69 0.25 −0.48 −0.63 −0.58 0.49 −0.26 0.20
Rk,H1 −0.57 1 −0.45 −0.48 0.46 −0.075 −0.10 0.70 0.25 −0.094 0.0058 0.034
Rq,H1 0.13 −0.45 1 −0.0030 −0.37 −0.58 −0.019 0.038 −0.15 0.17 −0.51 0.24
AH2 0.87 −0.48 −0.0030 1 −0.62 0.34 −0.36 −0.61 −0.52 0.21 −0.25 0.12
Rk,H2 −0.69 0.46 −0.37 −0.62 1 −0.053 0.25 0.49 0.48 −0.41 0.42 −0.45
Rq,H2 0.25 −0.075 −0.58 0.34 −0.053 1 −0.096 −0.45 −0.47 −0.31 0.042 −0.27
AFA

−0.48 −0.10 −0.019 −0.36 0.25 −0.096 1 −0.15 0.43 −0.52 0.37 −0.40
Rk,FA

−0.63 0.70 0.038 −0.61 0.49 −0.45 −0.15 1 0.25 −0.069 −0.089 −0.080
Rq,FA

−0.58 0.25 −0.15 −0.52 0.48 −0.47 0.43 0.25 1 −0.049 0.57 0.17
AFV

0.49 −0.094 0.17 0.21 −0.41 −0.31 −0.52 −0.069 −0.049 1 −0.17 0.67
Rk,FV

−0.26 0.0058 −0.51 −0.25 0.42 0.042 0.37 −0.089 0.57 −0.17 1 −0.37
Rq,FV

0.20 0.034 0.24 0.12 −0.45 −0.27 −0.40 −0.080 0.17 0.67 −0.37 1

Table 2.4: Correlation matrix for the fit parameters corresponding to the pole fit described in Eq. (2.5).

For completeness, in Tabs. 2.3 - 2.4 we also give the correlation matrices for the form factor fit
parameters. Since we adopted two different fitting ansatzes, given in Eq. (2.4) and Eq. (2.5), we
have two different matrices. Each one is a 12 × 12 matrix, since there are four form factors, each
one described by a function defined through three parameters, and so there are twelve different
parameters for each ansatz. Given two different parameters A and B, the correlation between them
has been computed according to

ρA,B =
∑

i (Ai − µA) (Bi − µB)√∑
i (Ai − µA)2

√∑
i (Bi − µB)2

, µA = 1
N

∑
i

Ai , µB = 1
N

∑
i

Bi , (2.6)

where Ai and Bi are the jackknife samples for two parameters and the sum runs over all the
jackknifes.

2.4 Comparison with ChPT predictions

Before our lattice calculation, the only theoretical prediction for the structure dependent form factors
entering the processes K → ℓ νℓ ℓ

′+ℓ′− have been obtained with Chiral Perturbation Theory (ChPT).
ChPT is an effective theory which describes QCD at low energy making use of the spontaneously
broken Chiral symmetry of QCD for massless quarks, which is a good approximation for the light
quark sector of the theory, that includes up, down and, to a smaller extent, strange quarks. Thus,
ChPT provides an effective theory to compute a prediction for the structure dependent form factors
and so for the branching ratios, when the decaying meson P+ is a light pseudoscalar meson, like a
kaon or a pion.
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The 1-loop ChPT predictions for the form factors H1, H2, FA and FV of the K+-meson read [23]

H1(k2) = H2(k2) = 2
√

2F mK

(
FK

em(k2) − 1
)

k2 , (2.7)

FV =
√

2mK

4π2 F
, (2.8)

FA = 8
√

2mK

F
(Lr

9 + Lr
10) . (2.9)

where F is the ChPT leading-order low-energy constant (LEC), while Lr
9 and Lr

10 are ChPT LECs
at next-to-leading order.

The 1-loop ChPT prediction for the kaon electromagnetic form factor FK
em(k2) reads

FK
em(k2) = 1 +Hππ(k2) + 2HKK(k2) , (2.10)

where the function H(k2) is given by

H(t) = 4
3
Lr

9
F 2 t+ 2

F 2 tM
r(t) , (2.11)

M r(t) = 1
12t

(
t− 4M2

)
J̄(t) + 1

288π2 − κ

6 , (2.12)

J̄(t) = − 1
16π2

∫ 1

0
dx log

(
1 − t

M2 x (1 − x)
)
, (2.13)

κ(M,µ) = 1
32π2

[
1 + log M

2

µ2

]
, (2.14)

where µ is the renormalization scale that we set to the ρ+ mass Mρ+ ∼ 0.775 GeV. For the LECs
Lr

9 and Lr
10, we use the values

Lr
9 = 6.9 × 10−3 Lr

10 = −5.2 × 10−3 , (2.15)

taken from [44].
The low energy constant F = fP /

√
2 represents the value of the meson decay constant at leading

order in Chiral Perturbation Theory, that is, in the limit of massless quarks. In this limit, there is
no distinction between the pion or kaon decay constant. In other words, the difference between
fπ, fK and

√
2F is generated only at the next to leading order in the chiral expansion. When

evaluating the branching ratios using the ChPT predictions for the form factors, we accounted
for this ambiguity to estimate the uncertainty of the numerical results. We evaluated the ChPT
predictions for the form factors using the physical charged kaon and pion masses and setting either
F = fπ/

√
2 or F = fK/

√
2, where fπ and fK are the physical values of these decays constants. We

label these two determinations as ChPT(fπ) and ChPT(fK), respectively. Their difference is taken
as the uncertainty of the ChPT prediction at this order.

Finally, notice that at this order, the 1-loop prediction for the form factors does not depend
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on q2. Moreover, the dependence on the virtuality k2 is very mild as well, and only enters the
prediction for the form factors H1 and H2, through the O(k4) corrections to the parametrization of
the electromagnetic form factor

FK
em(k2) = 1 + ⟨r2

K⟩
6 k2 + O(k4) , (2.16)

where ⟨r2
K⟩ is the kaon’s mean-square radius. We also notice that, with our definition of the form

factors, one has H1 = H2 at 1 loop.
From Figs. 2.5 - 2.6 it can be seen that our results are reasonably consistent with the ChPT

predictions. Note, however, that, since at NLO ChPT does not include any momentum dependence
of the form factors, the comparison should be made with their values at xk = 0 and xq = 0, that
is with the parameters a0 or A. Moreover, even at zero momenta, the comparison can only be
approximate due to the fact that the ChPT prediction is exactly valid only at zero momenta and in
the chiral limit. Finally, we remind that our lattice results are affected by systematic errors, such as
the continuum, chiral and infinite-volume extrapolations, that will be studied in the future.

2.5 Experimental data and VMD description of the form factors

In Ref. [9], the authors presented the first experimental measure for the branching ratios of the
processes K+ → e+e−e+νe and K+ → e+e−µ+νµ. Then they used the experimental data to extract
information about the structure dependent form factors.

In particular, a Vector Meson Dominance (VMD) ansatz has been used in order to describe
the momentum behavior of the form factors H1, FA, FV , and has been then used in order to
reproduce the experimental data. The authors of Ref. [9] expressed H2 only in terms of the kaon
electromagnetic form factor, as the NLO ChPT prediction of Eq. (2.7). Thus their analysis of the
SD form factors is restricted to FA, FV and H1. Within the VMD framework, the momentum
dependence of the form factors is assumed to be determined by the masses of the low-lying resonances
created by the electromagnetic and weak currents. In Ref. [9], for each of the three form factors, the
fitting function has been taken to be of the form

FVMD (xk, xq) = F (0, 0)(
1 − x2

k m
2
K/m

2
ρ

) (
1 − x2

q m
2
K/m

2
K∗

) , (2.17)

where F (0, 0) is the only free fitting parameter. In Eq. (2.17), mρ is the mass of the ρ meson, while
mK∗ is the mass of the K∗(1270) in the axial channel, and that of the K∗(892) in the vector one. Thus,
the VMD model corresponds to fixing, in the pole-like fit of Eq. (2.5), Rk = (mK/mρ)2 ≃ 0.4116,
and Rq = (mK/mK∗(1270))2 ≃ 0.1513 for the axial channel and Rq = (mK/mK∗(892))2 ≃ 0.3064
for the vector one.

We notice that the fitted values of Rk and Rq reported in Tab. 2.2, are in qualitative agreement
with the values predicted by VMD, albeit with large errors. In particular, we are not able to see a
clear xk and xq dependence in the lattice data for FA, while the value of the fit parameter Rq, for
the form factor H1, seems to be larger than the expectation based on VMD. Concerning the form
factor H2, the dominant contribution from the low-lying intermediate state comes from the virtual
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Figure 2.7: The experimental VMD fits for the form factors H1, FA and FV performed in [9] are plotted,
together with our lattice data, as a function of xq at a fixed value of xk = 0.28. The red line corresponds to
the 1-loop ChPT prediction with F = fK/

√
2.

K+ state created by the weak current (|nf ⟩ = |K+⟩ in Eq. (1.35)). The resulting contribution
H2;K+ to H2 is then proportional to the electromagnetic kaon form factor FK

em(xk) [23]

H2;K+ = 2fK

mK

FK
em(xk) − 1

x2
k

, (2.18)

as also shown by the prediction from ChPT presented in Eq. (2.7). As shown in Tab. 2.2 and in
Fig. 2.5, we do not see any clear xq dependence in our lattice data for H2 in agreement with the
prediction of Eq. (2.18)1. Moreover, making use of Eq. (2.16) one has that the contribution from the
intermediate kaon to H2 at xk = 0 is given by

H2;K+(xk = 0) = fKmK
⟨r2

K⟩
3 . (2.19)

Using the value from the PDG, ⟨r2
K⟩ = (0.560 ± 0.031 fm)2 [8] and the physical values of

1This depends on the choice we had made in Eq. (1.21) for the kinematic prefactor in the definition of H2 in the
decomposition of the hadronic tensor in terms of form factors. If instead we had employed the same parametrization
as in Refs. [23] or [37], we would have had a pole 1/(1 − x2

q) in the expression in Eq. (2.18).
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Figure 2.8: The experimental VMD fits for the form factors H1, FA and FV performed in [9] are plotted,
together with our lattice data, as function of xk at a fixed value of xq = 0.12. The red line corresponds to the
1-loop ChPT prediction with F = fK/

√
2.

the kaon mass and decay constant, one obtains H2;K+(xk = 0) = 0.206(23), which nicely agrees
with the value we obtained for the parameter A in the pole-like fit of H2 presented in Tab. 2.2.
Assuming the dominance of the rho-meson pole in the electromagnetic form factor FK

em, one has
that H2 ∝ 1/(1 −Rkx

2
k) with Rk = (mK/mρ)2 ≃ 0.4116. In this case, our fitted value of Rk turns

out to be larger than the value predicted by VMD.
In Tab. 2.5 we compare the values of F (0, 0) obtained from experiments by assuming VMD and

presented in Ref. [9], with the corresponding values of the form factors at zero xk and xq that we
obtained from our lattice data by using the pole fit of Eq. (2.5), i.e. the values for the parameter A
reported in Tab. 2.2. Despite the systematic uncertainties affecting our lattice computation, the
results are in reasonably good agreement. The largest discrepancy that we observe, which is of
O(20%), is for the form factor H1. In Figs. 2.7 and 2.8 we compare our lattice data for the form
factors H1, FA, FV , with the result of the experimental VMD fits performed in [9]. The figures
show that the lattice computation for the form factors FA and FV is consistent, within errors, with
the experimental fit performed by assuming VMD, while the lattice determination of H1 deviates
significantly from the experimental fit.
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H1(0, 0) FA(0, 0) FV (0, 0)
This work 0.1792(78) 0.0320(30) 0.0921(38)

Experiment [9] 0.227(19) 0.035(19) 0.112(18)

Table 2.5: Comparison of the values of the VMD fit parameters F (0, 0) for the form factors H1, FA and FV

as obtained in Ref. [9] with the lattice results from this work (using the pole fit in Eq. (2.5)).

2.6 Comparison with previous lattice results on real photon emis-

sion

We end this chapter by comparing the results for the form factors FV and FA obtained in this
work, and extrapolated to xk = 0 using Eqs. (2.4) and (2.5), with those reported on the same
configurations in the earlier lattice study on real photon emission [6], i.e. for the decays K → ℓνℓγ

2.
The comparison is shown in Fig. 2.9 and shows good agreement, in spite of the fact that the ansatzes
and parameters in Eqs. (2.4) and (2.5) were obtained from fits to data with xk ≥ 0.28.
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Figure 2.9: Extrapolation of our lattice results for FV (left) and FA (right) to xk = 0 using the polynomial
and pole fit ansatzes defined in Eqs. (2.4) and (2.5) (colored bands). The black points correspond to the lattice
results for FV and FA obtained directly at xk = 0 in the lattice study of K → ℓνℓγ decays [6].

2The form factors H1 and H2 do not contribute to the amplitude for K → ℓνℓγ decays.



Chapter 3

Numerical results for differential decay

rate and branching ratios

In this chapter, we discuss the theoretical predictions for the decay rates and branching ratios of the
processes K+ → ℓ+ νℓ ℓ

′+ ℓ′−, coming from the lattice determinations of the structure dependent
form factors. From the knowledge of the hadronic tensor Hµν , the K+ → ℓ+νℓ ℓ

′+ℓ′− decay rate is
obtained by integrating the square of the unpolarised amplitude, ∑spins |M|2, over the phase space
of the final-state charged leptons and neutrino. We derived in Section 1.1.3 that, when the two
positively-charged leptons are different, i.e. when ℓ ̸= ℓ′, the amplitude M is given by

M = −GF√
2
V ∗

us

e2

k2 ū(pℓ′−)γµv(pℓ′+)
[
fKL

µ(pℓ′+ , pℓ′− , pℓ+ , pνℓ
) −Hµν

SD(p, q) lν(pℓ+ , pνℓ
)
]
, (3.1)

where the leptonic vectors are given by

Lµ(pℓ′+ , pℓ′− , pℓ+ , pνℓ
) = mℓ ū(pνℓ

)(1 + γ5)
{

2pµ − kµ

2p · k − k2 −
2pµ

ℓ+ + /kγµ

2pℓ+ · k + k2

}
v(pℓ+) , (3.2)

lµ(pℓ+ , pνℓ
) = ū(pνℓ

)γµ(1 − γ5)v(pℓ+) . (3.3)

In Eqs. (3.1) - (3.3), p is the four-momentum of the kaon, k = pℓ′+ + pℓ′− , and q = pℓ+ + pνℓ
. In

Eq. (3.1), the first term in the square parentheses gives the decay rate in the approximation in which
the decaying kaon is treated as a point-like particle and includes the radiation from both the meson
and charged lepton 1. Except for the kaon decay constant fK , the non-perturbative contribution to
the rate is entirely contained in the second term of Eq. (3.1). The SD part of the hadronic tensor
Hµν

SD is defined in Eq. (1.21).
When ℓ = ℓ′, since the final-state positively-charged leptons are indistinguishable, the exchange

contribution, in which the momenta pℓ′+ and pℓ+ are interchanged, must be added to the amplitude
M resulting in the replacement

M(pℓ′+ , pℓ′− , pℓ+ , pνℓ
) → M(pℓ′+ , pℓ′− , pℓ+ , pνℓ

) − M(pℓ+ , pℓ′− , pℓ′+ , pνℓ
) . (3.4)

1This term is frequently referred to as the inner-bremsstrahlung contribution.

52
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The branching ratio for K+ → ℓ+ νℓ ℓ
′+ ℓ′− decays is given by

BR
[
K+ → ℓ+ νℓ ℓ

′+ ℓ′−
]

=

S
2mK ΓK (2π)8

∫ ∑
spins

|M|2 δ (p− pℓ+ − pνℓ
− pℓ′+ − pℓ′−) d

3pℓ+

2Eℓ+

d3pνℓ

2Eνℓ

d3pℓ′+

2Eℓ′+

d3pℓ′−

2Eℓ′−
,(3.5)

where ΓK = 5.3167(86) × 10−17 GeV is the total decay rate of the K+ meson [8] and S is a symmetry
factor that takes the value S = 1 for ℓ ̸= ℓ′ and S = 1/2 for ℓ = ℓ′. Since the phase-space integration
is considerably easier for the case ℓ ̸= ℓ′, in which a significant part of the integration can be
performed analytically, we will discuss the two cases separately.

3.1 Decay rates formulae for ℓ ̸= ℓ′

When the final state leptons have different flavors, the integral over the spatial momenta of the
final-state particles can be partially performed analytically using invariance arguments and the fact
that in ∑spins |M|2 the form factors only depend on k2 = (pℓ′+ + pl′−)2 and q2 = (pℓ+ + pνℓ

)2 [45].
This leads to the following simplified expression for the differential decay rate [23]

dΓ
[
K+ → ℓ+ νℓ ℓ

′+ ℓ′−
]

= α2G2
F |Vus|2m5

K G(xk, rℓ′)
{

−
∑
spins

T ∗
µ T

µ
}
dxk dxq dy , (3.6)

where

rℓ = m2
ℓ

m2
K

, rℓ′ = m2
ℓ′

m2
K

, y = 2pℓ · p
m2

K

,

G(xk, rℓ′) = 2xq

192π3xk

(
1 + 2rℓ′

x2
k

)√
1 − 4rℓ′

x2
k

, (3.7)

Tµ =
√

2
m2

K

{fKL
µ −Hµν

SD lν} .

The dimensionless integration variables xk and xq have been defined in Eq. (2.1). The integration
domain for the variable y is given by

A−B ≤ y ≤ A+B , (3.8)

where

A = (2 − xγ)(1 + x2
k + rℓ − xγ)

2(1 + x2
k − xγ) , B =

(1 + x2
k − xγ − rℓ)

√
x2

γ − 4x2
k

2(1 + x2
k − xγ) (3.9)

xγ ≡ 2p · k
m2

K

= 1 + x2
k − x2

q , (3.10)
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and the limits of integration for xk and xq are given in Eq. (2.3). Since the form factors only
depend on the invariant mass of the lepton-antilepton pair (xkmK) and on the invariant mass of
the lepton-neutrino pair (xqmK), the integral over the variable y can also be performed analytically,
leading to the following expression for the double differential decay rate:

∂2 Γ
∂xk ∂xq

= α2G2
F |Vus|2m5

K

[
Γ′′

pt(xk, xq) + Γ′′
int(xk, xq) + Γ′′

SD(xk, xq)
]
. (3.11)

The differential rate is written as a sum of three different contributions. The first term, Γ′′
pt(xk, xq),

is the point-like contribution proportional to f2
K and gives the total differential decay rate in absence

of any SD terms (i.e. if Hµν
SD = 0). The third term, Γ′′

SD(xk, xq), is the contribution to the decay
rate coming entirely from Hµν

SD, and corresponds to a quadratic expression of the form factors
H1, H2, FA, FV . Finally, Γ′′

int(xk, xq) is the interference term between the point-like and SD
components of the amplitude. It arises from contributions of the form Hµν

SDLµlν in T ∗
µT

µ and is
proportional to fK and depends linearly on the form factors. Clearly, all the information from the
internal structure of the kaon (i.e. from Hµν

SD) is contained in Γ′′
int(xk, xq) and Γ′′

SD(xk, xq).
The Γ′′ functions are all dimensionless quantities which can be evaluated directly from the

knowledge of the form factors and of the dimensionless ratio fK/mK , for which we use our lattice
value fK/mK = 0.3057(11). Their explicit expressions in terms of H1, H2, FA, FV , and fK/mK are
presented in Appendix C. Using these formulae and the form factors obtained from the polynomial
and pole-like fits described in the previous chapter, we are able to evaluate each of the terms on
the right-hand side of Eq. (3.11). In order to obtain the total decay rates, we rely on numerical
integration using Gaussian quadrature rules.

3.2 Decay rates formulae for ℓ = ℓ′

When the final state leptons have the same flavor, the exchange contribution must be added as
shown in Eq. (3.4). In this case ∑spins |M|2, depends on products of form factors evaluated at
k2 = (pℓ′+ + pℓ′−)2 and q2 = (pℓ+ + pνℓ

)2 as before, but also at the exchanged invariant masses
k′ 2 = (pℓ+ + pℓ′−)2 and q′ 2 = (pℓ′+ + pνℓ

)2. It is not possible to integrate analytically as many
variables as before. For the decay K+ → ℓ+νℓℓ

′+ℓ′−, the four-body phase space dΦ4 can be written
in terms of five Lorentz invariant quantities xk, xq, y12, y34, ϕ as [22]

dΦ4 = S λωm4
K

214 π6 dxk dxq dy12 dy34 dϕ , (3.12)

where ω = 2xkxq, the symmetry factor S = 1
2 for the case ℓ = ℓ′, λ =

√
(1 − x2

k − x2
q)2 − 4x2

kx
2
q and

the three additional integration variables y12, y34 and ϕ, are defined as

y12 ≡ 2
m2

K λ
(pℓ′− − pℓ′+)·(pℓ+ + pνℓ

) ,

y34 ≡ 2
m2

K λ

((
1 + rℓ

x2
q

)
pνℓ

−
(

1 − rℓ

x2
q

)
pℓ+

)
·(pl′+ + pℓ′−) , (3.13)
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sinϕ ≡ − 16
λωm4

K

1√
(λ2

12 − y2
12)(λ2

34 − y2
34)

ϵµνρσ p
µ
ℓ′− p

ν
ℓ′+ pρ

νℓ
pσ

ℓ+

where

λ12 =
√

1 − 4 r
′
ℓ

x2
k

, λ34 = 1 − rℓ

x2
q

. (3.14)

The integration domain is given by

−λ12 ≤ y12 ≤ λ12, −λ34 ≤ y34 ≤ λ34, ϕ ∈ [0, 2π] , (3.15)

while for xk and xq the limits of integration are as defined in Eq. (2.3).
In order to determine the decay rate, we have evaluated the square of the unpolarised amplitude,∑

spins |M|2, in terms of the five integration variables using FeynCalc [46]. As for the case when
ℓ ̸= ℓ′, we decompose the differential rate as a sum of a point-like, an interference and a quadratic
term (SD) in the form factors, i.e. as

∂5Γ
∂xk ∂xq ∂y12 ∂y34 ∂ϕ

= α2G2
F |Vus|2m5

K

[
Γ(5)

pt (xk, xq, y12, y34, ϕ) + Γ(5)
int(xk, xq, y12, y34, ϕ)

+ Γ(5)
SD(xk, xq, y12, y34, ϕ)

]
. (3.16)

The explicit, very lengthy, expressions for the three contributions Γ(5)
pt ,Γ

(5)
int and Γ(5)

SD, written in terms
of the five integration variables and the form factors, are not presented here but are available on
request from the author. The total rate can be obtained through standard Monte Carlo integration
of these expressions over the five-dimensional phase space. This has been done employing the GSL
implementation of the VEGAS algorithm of G.P. Lepage [47].

3.3 Numerical results and comparison with experiments and other

predictions

In this section, we give our final theoretical predictions for the different channels of K+ → ℓ+ νℓ ℓ
′+ ℓ′−

decays. In each subsection we also compare our results to experimental measurements (whenever
available), ChPT predictions and the lattice predictions coming from the very recent work [22].

In [22], a different lattice strategy was presented and implemented to compute the branching
ratio for the decays K+ → ℓ+ νℓ ℓ

′+ ℓ′−, but without determining the SD form factors themselves
and also without separating the point-like contribution from the structure dependent one at any
stage of the computation. The simulation in Ref. [22] was performed on a single gauge ensemble on
a 243 × 48 lattice with a ≃ 0.093 fm and with quark masses corresponding to mπ ≃ 352 MeV and
mK ≃ 506 MeV.

Concerning the ChPT predictions, they have been obtained by computing the branching ratios
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employing the next to leading formulae for the form factors that we reported in Section 2.4. As
discussed in that section, in the following we will evaluate the ChPT predictions for the form factors
setting either F = fπ/

√
2 or F = fK/

√
2, and label these two determinations as ChPT(fπ) and

ChPT(fK), respectively.
We address now each of the four possible channels of K+ → ℓ+ νℓ ℓ

′+ ℓ′− decays in a different
subsection.

3.3.1 K+ → e+ νe µ+ µ− decay

For the decay K+ → e+νe µ
+µ−, the differential decay rate is completely dominated by the SD terms,

since the point-like contribution is helicity suppressed (Lµ ∝ me). This is shown in Fig. 3.1, where
we plot, as functions of xk, the contributions from Γ′′

pt, Γ′′
int and from Γ′′

SD to the partially-integrated
differential decay rate ∂Γ(xk)/∂xk =

∫
dxq ∂

2Γ/∂xk∂xq.
Furthermore, we find that the dominant term in the integral of Γ′′

SD is the one proportional to
H2

1 , while the contribution to the rate coming from the form factor H2 turns out to be negligible.
The remaining linear and quadratic terms in the form factors give subdominant contributions to the
branching ratio of about 5% in total. Integrating the double differential decay rate of Eq. (3.11), we
obtain the following value for the branching ratio

BR
[
K+ → e+ νe µ

+ µ−
]

= 0.762 (49) × 10−8 . (3.17)

In Tab. 3.1 we compare this result with the recent lattice value from Ref. [22], with the prediction
from ChPT, and with the measurement from the E865 experiment at the Brookhaven AGS [10]. As
the table shows, our value of the branching ratio is in agreement with the updated determination
of Ref. [22], while there is a tension with the experimental measurement at the level of about 2σ.
However, it should be noted that both our computation and that of Ref. [22] are limited to a single
value of the lattice spacing, a single volume and to unphysically large light-quark masses. Given that
the branching ratio is dominated by the quadratic term proportional to H2

1 , an increase of about
25% in the value of H1, due to the missing continuum, chiral and infinite-volume extrapolations,
would reduce the tension between our result and the experimental measurement to about 1σ. It will
be very interesting in the future, once these extrapolations have been performed, to learn whether
H1 does indeed increase.

We also note, however, that there is a 1.6σ difference between the values of H1(0, 0) obtained in
Refs. [9] and [10]. The value of H1(0, 0) deduced by the E865 collaboration from the experimental
study of the decay K+ → e+νe µ

+µ− is H1(0, 0) = 0.303 ± 0.043 [10] 2. This value is somewhat
higher than the one obtained from studies of the decays K+ → e+νee

+e− and K+ → µ+νµe
+e−

also in the E865 experiment, H1(0, 0) = 0.227 ± 0.019 [9], which is quoted in Tab. 2.5.

3.3.2 K+ → µ+ νµ e+ e− decay

For the decay channel K+ → µ+νµe
+e−, the point-like contribution is not helicity suppressed

(Lµ ∝ mµ), and gives the dominant contribution to the differential decay rate at small values of the
e+e− invariant mass. This is illustrated in Fig. 3.2, where we plot the contributions of Γ′′

pt, Γ′′
int and

2We have combined the errors quoted in Eq. (7) of Ref. [10] in quadrature.
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BR
[
K+ → e+ νe µ

+ µ−]
This work point-like approximation Tuo et al. [22] ChPT(fπ) ChPT(fK) experiment [10]

0.762(49) × 10−8 3.0 × 10−13 0.72(5) × 10−8 1.19 × 10−8 0.62 × 10−8 1.72(45) × 10−8

Table 3.1: Comparison of our result for the branching ratio BR [K+ → e+ νe µ
+ µ−] with the one coming

from the point-like approximation, the result from Ref. [22] and with the results for the branching ratio
obtained using the NLO ChPT predictions for the SD form factors (Eq. (2.7)) setting either F = fπ/

√
2 or

F = fK/
√

2 (denoted by ChPT(fπ) and ChPT(fK) respectively). In the last column, we show the
experimental result from the E865 experiment [10].
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Figure 3.1: The contributions from Γ′′
pt, Γ′′

int and Γ′′
SD to the differential rate ∂Γ(xk)/∂xk, are shown for the

decay channel K+ → e+νeµ
+µ−. Although not shown in the figure, all contributions to ∂Γ(xk)/∂xk are zero

at xk = 2√
rℓ ≃ 0.4280 but grow rapidly as xk is increased.

Γ′′
SD to the partially integrated differential decay rate ∂Γ(xk)/∂xk. The contributions from Γ′′

pt and
Γ′′

int + Γ′′
SD become of similar size at values of xk ≃ 0.3 − 0.4, which corresponds approximately to

the cut on the e+e− invariant mass
√
k2 > 145, 150 MeV (xk > 0.294, 0.304) adopted in the E865

experiment [9]. For such values of the cut on xk, we find that the contribution to the decay rate
from Γ′′

int is greater than that of Γ′′
SD and that the contribution from the form factor H2 is again

negligible.
Imposing a cut on the e+e− invariant mass of xk > 0.284, we obtain the following value for the

branching ratio

BR
[
K+ → µ+ νµ e

+ e−
]

= 8.26 (13) × 10−8 . (3.18)

In Tab. 3.2 we compare our result for the branching ratio with the lattice determination of Ref. [22],
with the ChPT prediction and with the experimental result of Ref. [9].

For this channel we find a remarkable agreement with both the experimental result and the
ChPT prediction, while the lattice result of Ref. [22] is a little larger than ours. In this case, since the
interference term dominates over Γ′′

SD, systematic effects in our determination of the form factors,
due to lattice artifacts and to the unphysical quark masses, will only reflect linearly in the result for
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BR
[
K+ → µ+ νµ e

+ e−] for xk > 0.284
This work point-like approximation Tuo et al. [22] ChPT(fπ) ChPT(fK) experiment [9]

8.26(13) × 10−8 4.8 × 10−8 10.59(33) × 10−8 9.82 × 10−8 8.25 × 10−8 7.93(33) × 10−8

Table 3.2: Comparison of our result for the branching ratio BR [K+ → µ+ νµ e
+ e−] with the one coming

from the point-like approximation, the result from Ref. [22] and with the results for the branching ratio
obtained using the NLO ChPT predictions for the SD form factors (Eq. (2.7)) setting either F = fπ/

√
2 or

F = fK/
√

2 (denoted by ChPT(fπ) and ChPT(fK) respectively). In the last column, we show the
experimental result from the E865 experiment [9], which has been extrapolated from xk > 0.294 to xk > 0.284
using the formula presented in Ref [9].
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Figure 3.2: The contributions from Γ′′
pt, Γ′′

int and Γ′′
SD to the differential rate ∂Γ(xk)/∂xk, are shown for the

decay channel K+ → µ+νµe
+e−. Even if not shown in the figure, all contributions to ∂Γ(xk)/∂xk are zero

at xk = 2√
rℓ ≃ 0.00207 but grow rapidly as xk is increased.

the branching ratio; for example an increase in H1 of 20% would increase the branching ratio by
about 7%.

3.3.3 K+ → µ+ νµ µ+ µ− decay

For the decay channel K+ → µ+ νµ µ
+ µ−, we find that the point-like contribution corresponds

to about 30% of the total rate. This is shown in Fig. 3.3, where we plot the contributions to the
decay rate as a function of the lower cutoff on the invariant mass of the µ+µ− pair, from Γ(5)

pt alone
and from Γ(5)

int + Γ(5)
SD. For decays into identical leptons, the same cuts are always applied to both

invariant masses

√
k2 = mKxk =

√
(pℓ′+ + pℓ′−)2 ,

√
k′ 2 ≡ mKx

′
k =

√
(pℓ+ + pℓ′−)2 . (3.19)

We find that the contribution from the form factor H2 is again negligible and that the contribution
from the vector form factor FV is also very small. For the total branching ratio, we obtain the value

BR
[
K+ → µ+ νµ µ

+ µ−
]

= 1.178 (35) × 10−8 . (3.20)
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BR
[
K+ → µ+ νµ µ

+ µ−]
This work point-like approximation Tuo et al. [22] ChPT(fπ) ChPT(fK) experiment

1.178(35) × 10−8 3.7 × 10−9 1.45(6) × 10−8 1.51 × 10−8 1.10 × 10−8 –

Table 3.3: Comparison of our result for the branching ratio BR [K+ → µ+ νµ µ
+ µ−] with the one coming

from the point-like approximation, the result from Ref. [22] and with the results for the branching ratio
obtained using the NLO ChPT predictions for the SD form factors (Eq. (2.7)) setting either F = fπ/

√
2 or

F = fK/
√

2 (denoted by ChPT(fπ) and ChPT(fK) respectively).
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Figure 3.3: The contributions from Γ(5)
pt , and Γ(5)

int + Γ(5)
SD to the integrated decay rate Γ(xk, xk′ > xcut

k ) are
shown for the decay channel K+ → µ+νµµ

+µ−, as a function of the common lower cut, xcut
k , on the values

of xk and x′
k.

Since for this decay channel there is no experimental measurement available, our result can only
be compared with the lattice determination of Ref. [22] and with the ChPT prediction (Tab. 3.3).
As the table shows, our result is in reasonably good agreement with the value predicted by ChPT,
while at this stage the observed discrepancy with the result obtained by Tuo et al. [22], which is of
O(25%) may be attributed to the unknown systematics associated to the missing chiral, continuum
and infinite-volume extrapolations.

3.3.4 K+ → e+ νe e+ e− decay

Finally, for the decay channel K+ → e+νee
+e−, we find again that the point-like contribution is

much suppressed compared to that from the SD terms. This is shown in Fig. 3.4, where we have
plotted, as in the previous case, the contribution from Γ(5)

pt and from Γ(5)
int + Γ(5)

SD to the total decay
rate, as a function of the lower cutoff on the e+e− invariant masses.

Similarly to the case of the decay K+ → µ+νµe
+e−, we find that the dominant contribution to

the rate is given by the term proportional to H2
1 , while the contributions from the form factors H2

and FV are very small.
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BR
[
K+ → e+ νe e

+ e−] for xk > 0.284
This work point-like approximation Tuo et al. [22] ChPT(fπ) ChPT(fK) experiment [9]

1.95(11) × 10−8 2.0 × 10−12 1.77(16) × 10−8 3.34 × 10−8 1.75 × 10−8 2.91(23) × 10−8

Table 3.4: Comparison of our result for the branching ratio BR [K+ → e+ νe e
+ e−] with the one coming

from the point-like approximation, the result from Ref. [22] and with the results for the branching ratio
obtained using the NLO ChPT predictions for the SD form factors (Eq. (2.7)) setting either F = fπ/

√
2 or

F = fK/
√

2 (denoted by ChPT(fπ) and ChPT(fK) respectively). In the last column, we show the
experimental result from the E865 experiment [9], which has been extrapolated from xk > 0.304 to xk > 0.284
using the formula presented in Ref. [9].
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Figure 3.4: The contributions from Γ(5)
pt , and Γ(5)

int + Γ(5)
SD to the integrated decay rate Γ(xk, xk′ > xcut

k ) are
shown for the decay channel K+ → e+νee

+e−, as a function of the common lower cut xcut
k on the values of

xk and x′
k.

Employing the cutoffs xk, x
′
k > 0.284, we obtain the following value for the branching ratio

BR
[
K+ → e+ νe e

+ e−
]

= 1.95 (11) × 10−8 . (3.21)

In Tab. 3.4 we compare our determination with the experimental measurement of Ref. [9], with the
lattice result of Ref. [22], and with the ChPT prediction. Our result appears to be significantly
smaller than the experimental measurement, as in the case of the K+ → µ+νµe

+e− decay, while
being consistent with the updated determination of Ref. [22]. Since the term proportional to H2

1
is also the dominant one in this case, this finding is consistent with possible systematic effects of
about 20% on our lattice value.



Conclusions

In this thesis we have presented a strategy to compute, using Lattice QCD, the amplitudes and
branching ratios for the decays P+ → ℓ+ νℓ ℓ

′ + ℓ′ −, where P+ is a pseudoscalar meson and ℓ and
ℓ′ are charged leptons. In particular, we explain how the four structure-dependent (SD) form
factors can be determined and separated from the point-like ("inner-bremsstrahlung") contribution.
Apart from the leptonic decay constant fP , the point-like contribution to the amplitude can be
calculated in perturbation theory, whereas the SD form factors are non-perturbative and describe
the interaction of the off-shell photon with the internal hadronic structure of the meson. We apply
the formalism developed in Chapter 1 to the four channels of K+ → ℓ+ νℓ ℓ

′ + ℓ′ − decays, where
ℓ and ℓ′ = µ or e, in an exploratory Lattice QCD computation at a single lattice spacing and
unphysical light-quark masses. We demonstrate that all four SD form factors, FV , FA, H1 and H2

can be determined with good precision and used to calculate the corresponding branching ratios.
In spite of the unphysical quark masses used in this simulation (our pion and kaon masses are
about 320 MeV and 530 MeV respectively) it has been interesting and instructive to compare our
results with those from experiment (where available) and from NLO ChPT. As can be seen from
Tabs. 3.1 - 3.4, the results are generally in reasonable semi-quantitative agreement.

The comparison of our results with those from experimental measurements results in an interesting
observation to be investigated further in the future. For the decays K+ → e+νe µ

+µ− and
K+ → e+νe e

+e− the point-like contribution is negligible as a result of the chiral suppression due
to the small electron mass, and the decay rate is dominated by the form factor H1. In both cases
our results are somewhat below the experimental measurement (see Tabs. 3.1 and 3.4) and it would
require an increase of order 20% in the value of H1 to recover consistency. It will be interesting to see
whether such an increase will result after the continuum, chiral and infinite-volume extrapolations
have been performed in the future. It should be also noted, however, the discrepancy in the values
of H1(0, 0) in Refs. [9] and [10] obtained in the E865 experiment from different channels, which is
discussed in Sec. 3.3.1.

A complementary exploratory lattice computation of the branching ratios has been performed by
Tuo et al. [22] on a 243 × 48 lattice, with lattice spacing a = 0.093 fm and with quark masses similar
to our (mπ = 352 MeV and mK = 506 MeV). The lattice action with Wilson-Clover Twisted Mass
Fermions is different from the one we use, which does not include the clover term. The methodology
in Ref. [22] is also different from ours in that the individual form factors are not extracted and the
point-like contribution is not separated from structure dependent terms. The aim of this thesis, on
the other hand, is to determine explicitly the (non-perturbative) structure dependent contributions
to the decay rate. In Tabs. 3.1 - 3.4 we also compare our results with those of Ref. [22], but given the
different systematics, and in particular the finite-volume effects, we do not speculate on the origin
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of any differences.
Having demonstrated the feasibility of the method, our future work will focus on controlling and

reducing the systematic uncertainties and in particular those resulting from the current absence
of continuum, chiral and infinite-volume extrapolations. We will also work to extend the method
to heavier pseudoscalar mesons, for which the analytic continuation to Euclidean space gives
rise to enhanced finite-volume effects due to the presence of internal lighter states. Given the
recent results suggesting the violation of lepton-flavour universality and potential new interactions
involving leptons (see e.g. Ref. [13] for a brief introduction), we believe that reliable non-perturbative,
model-independent theoretical predictions of decays such as those studied here will be very useful
in unraveling the underlying theory beyond the Standard Model. In particular, experimental
measurements of ratios of decay rates of heavy mesons into different final-state leptons, together
with the corresponding lattice calculations, would be a significant contribution to the general
investigation of lepton-flavour universality.



Appendix A

Notations

In this appendix we show the notations and the conventions used in the thesis, the information here
reported can be found in [48, 49].

We use the metric tensor defined as

gµν = gµν =



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


. (A.1)

If not specified, the Greek indices assume the values α = 0, 1, 2, 3 while the Latin ones stand for
i = 1, 2, 3.

A.1 The generators of SU(N)

Every element of the Lie group U(N) can be written in the exponential representation as

U = exp

N2−1∑
a=0

iT aωa

 , (A.2)

where ωa ∈ R, T 0 = 1√
N
I and the others T a are the generators of the Lie group SU(N). The

generators are the basis of the corresponding Lie algebra, which is the space of the Hermitian,
traceless, N ×N matrices. That is, they are N2 − 1 linearly independent matrices which respect
the relations

TrT a = 0 , T a† = T a . (A.3)

As convention, the generators are normalized through the relation

Tr[T aT b] = 1
2δ

ab . (A.4)
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The algebra is closed under the multiplication between matrices, so the commutator, and the
anti-commutator, of two generators can be expressed as a linear combination of the generators, that
is (we use a summation convention over repeated indices)

[T a, T b] = ifabcT c , (A.5)

{T a, T b} = dabcT c + δab

N
I . (A.6)

The structure constants fabc are completely antisymmetric and real, instead dabc are symmetric real
coefficients.

Now we show some actual expressions for the generators T a in the typical cases N = 2 and
N = 3. For SU(2) we have 3 generators

T a = σa

2 , a = 1, 2, 3, (A.7)

where σa are the Pauli matrices

σ1 =

 0 1

1 0

 , σ1 =

 0 −i

i 0

 , σ2 =

 1 0

0 −1

 . (A.8)

By computing the structure constants we found

fabc) = ϵabc, dabc = 0 , (A.9)

where ϵabc is the completely antisymmetric tensor with ϵ123 = 1.
For SU(3) we have

T a = λa

2 , a = 1, 2, ..., 8, (A.10)

where λa are the Gell-Mann matrices

λ1 =


0 1 0

1 0 0

0 0 0

 , λ2 =


0 −i 0

i 0 0

0 0 0

 , λ3 =


1 0 0

0 −1 0

0 0 0

 ,

λ4 =


0 0 1

0 0 0

1 0 0

 , λ5 =


0 0 −i

0 0 0

i 0 0

 , λ6 =


0 0 0

0 0 1

0 1 0

 ,

λ7 =


0 0 0

0 0 −i

0 i 0

 , λ8 = 1√
3


1 0 0

0 1 0

0 0 −2

 , (A.11)
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A.2 Dirac matrices

The four Dirac matrices γµ, µ = 0, ..., 3, are defined in Minkowski space by the anti-commutation
relations

{γµ, γν} = 2gµν , γµ = gµνγ
ν , (A.12)

and they satisfy the Hermiticity conditions

γµ† = γ0γµγ0 . (A.13)

It is possible to define a fifth anti-commuting Dirac matrix, it is defined by

γ5 = iγ0γ1γ2γ3 = i

4!ϵµνρσγ
µγνγργσ , (A.14)

and it obeys the relations

{γµ, γ5} = 0, (γ5)2 = I, γ5† = γ5 . (A.15)

Other important Dirac matrices are given by the commutators of the γ-matrices, which are
denoted by

σµν = i

2[γµ, γν ] , (A.16)

and satisfy

σµν† = γ0σµνγ0 . (A.17)

By using γ5, we can define the projection operators on left- and right-handed chirality as

PL = 1
2(γ5), PR = 1

2(1 + γ5) . (A.18)

Then the left- and right-handed chiral components of the fermion fields ψ, ψ are defined through
the relations

ψL,R = PL,Rψ, ψL,R = ψPR,L . (A.19)

Usually, the explicit representation of the Dirac matrices is given by

γi =

 0 σi

−σi 0

 , (A.20)
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and

γ0 =

 0 1

1 0

 , γ5 =

 −1 0

0 1

 . (A.21)

Until now, we have considered the Dirac matrices in Minkowski space, but sometimes the
theories have to be formulated in Euclidean space. In that case, one has to use the Dirac matrices
in Euclidean space, which are defined by

γE
i = −iγM

i ,

γE
4 = γM

0 ,

γE
5 = −γM

5 = γE
1 γ

E
2 γ

E
3 γ

E
4 . (A.22)

The Euclidean Dirac matrices are Hermitian

γE†
µ = γE

µ , γE†
5 = γE

5 , (A.23)

and they have different anti-commutation relations, which are

{γE
µ , γ

E
ν } = 2σµν , {γE

µ , γ
E
5 } = 0 . (A.24)

A.3 Grassmann algebra

In this section, we collect the basic definitions of the Grassmann Algebra and some useful relations.
Grassmann variables are defined by the condition that they anti-commute among each other. Given
the variables η1, ..., ηN we have

{ηi, ηj} = 0 , i, j = 1, ..., N , (A.25)

and so it follows that

η2
i = 0 . (A.26)

Eq. (A.26) is a fundamental property which implies that any function of Grassmann variables can
be expanded as a power series with only a finite number of terms. An important example is given by

eη = 1 + η , (A.27)
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which can be generalized to the more useful case of 2N -Grassmann variables. Denoting them by
η1, . . . , ηN , η1, . . . , ηN , we have

e
−
∑

i,j
ηiMijηj =

N∏
i,j=1

(1 − ηiMijηj) . (A.28)

To introduce the derivative of a function of the Grassmann variables, it is sufficient the rule

∂

∂ηi
ηi = 1 , (A.29)

since in a generic function f(η), any Grassmann variable can appear only to the first power, at
most.

The relevant property to keep in mind is that the partial derivative of Grassmann variables
anti-commute as well: {

∂

∂ηi
,
∂

∂ηj

}
= 0 . (A.30)

Given a generic function f(η) we indicate the integral on the Grassman variables as

∫ N∏
i=1

dηif(η) , (A.31)

which is defined by the following rules
∫
dηi = 0 ,

∫
dηiηi = 1 , (A.32)

{dηi, dηj} = 0 . (A.33)

Even in this case, the previous rules are sufficient to compute every integral of every function f(η).
A very important integral is

I[M ] =
∫ N∏

n=1
dηndηn exp

−
N∑

i,j=1
ηiMijηj

 . (A.34)

From the applications of the rules in Eqs.(A.32), and from the anti-commuting properties of the
Grassmann variables, it follows that the only term of the exponential which contributes to the
integral is

η1η1η2η2 . . . ηNηN

∑
i1...iN

ϵi1i2...inM1i1M2i2 . . .MNiN
, (A.35)

where ϵi1i2...in is the N -dimensional total antisymmetric tensor.
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Thus, we have

I[M ] =
∫ N∏

n=1
dηndηn exp

−
N∑

i,j=1
ηiMijηj


=

[
N∏

n=1

∫
dηndηnηnηn

]
detM = detM . (A.36)

The previous result represents a typical feature of the Grassmann algebra, since for ordinary,
commuting, variables we would have instead

∫ N∏
n=1

dzndzn exp

−
N∑

i,j=1
ziMijzj

 ∝ (detM)−1 . (A.37)



Appendix B

Introduction to Lattice QCD

Quantum Chromodynamics (QCD) is the non-Abelian gauge field theory describing the strong
interactions of colored quarks and gluons, and it is the SU(3) component of the SU(3) ⊗ SU(2) ⊗
U(1) Standard Model of Particle Physics. The main difference with respect to the Quantum
Electrodynamics (QED) is that the photon is replaced by eight gluons (the gauge fields), that
can interact either with the quarks (the matter fields) and with each other, while the photon can
interact only with matter fields. This is a peculiar characteristic of non-Abelian gauge theories, and
it affects also the trend of the strong coupling αs with the energy.

Indeed, computing the β function, which gives information about the evolution of the coupling
constant with respect to the energy scale, one finds that at high energies, µ ≫ ΛQCD ≃ 0.3 GeV ,
αs < 1 and the theory can be handled perturbatively, this phenomenon is the so-called asymptotic
freedom [50]. On the contrary at low energies αs becomes large, the dynamics of the strong
interactions is non-perturbative, and so the spectrum of the theory cannot be studied in perturbation
theory and can not be expressed in terms of free quark fields. This behavior justifies the confinement
phenomenon due to which quarks don’t exist as free colored particles but are bounded into hadrons
[51].

Since the coupling constant increases at low energy, it is necessary the use of a non-perturbative
approach to determine the infrared properties of QCD, i.e. its mass spectrum and the matrix
elements of generic operators between hadronic states. This is indispensable in order to perform
a reliable study of hadron decays. The quantization of the QCD theory through the generating
functional formalism provides a suitable non-perturbative approach. As in every quantum field
theory, in order to calculate the quantities of interest, we have to introduce a regulator. In the
generating functional formalism, the Lattice arises like a natural regulator of the quantized QCD
theory. This approach lead to lattice gauge theory, as proposed by K. Wilson in 1974 [52]. Since
then much progress have been made and its application is neither straightforward nor unique. In
this appendix, we review the basic concepts of modern lattice QCD [53, 54] and travel through
several issues which will naturally arise.

69
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B.1 The Lagrangian of QCD

QCD is based on the Special Unitary Lie color group, SU(Nc), with Nc = 3 number of colors;
the fundamental degrees of freedom of the theory are quarks and gluons. The quarks are massive
fermions of spin 1/2, which transform as the fundamental representation of SU(3), i.e. the triplet
representation (anti-triplet for anti-quarks). They are described by the Dirac spinors

qα,c
f (x), qα,c

f (x) . (B.1)

These quark fields carry several indices and arguments. The space–time position is denoted by x,
the Dirac index by α = 1, 2, 3, 4, and the color index by c = 1, 2, 3. In general, we will use Greek
letters for Dirac indices and letters a, b, c, ... for color ones. Each field qf (x) thus has 12 independent
components.

In addition, the quarks come in several flavors called up (u), down (d), strange (s), charm (c),
bottom (b) and top (t), which we indicate by a flavor index f = 1, 2, ..., 6. We remark that often
we omit the indices and use matrix/vector notation instead. In the Minkowskian space-time, the
quark and the antiquark fields are related by q = q†γ0, where γ0 is the Dirac matrix associated to
the time-component of a four-vector.

Then there are the gluons, which are massless gauge bosons of spin 1,

Aµ(x)ab . (B.2)

The gluons have the space-time argument x like the quarks, but have also a Lorentz index, µ which
labels the four different directions in space-time. Moreover, they are 3 × 3 traceless hermitian
matrices i.e. they are elements of the algebra of the gauge group, and so they can be expanded in
the basis of the eight generators of SU(3) as

Aµ(x) =
8∑

a=1

λa

2 A
a
µ(x), (B.3)

where we have omitted (as we will usually do in this thesis) the color indices carried by the gluon
field Aµ(x) and by the generators λa/2, while the eight fields Aa

µ(x) don’t carry any color index.
The matrices λa are the Gell-Mann matrices, which are defined in Appendix A together with their
relevant relations.

The Lagrangian of QCD for quark and gluon fields is built requiring its invariance (gauge
symmetry) under the SU(3) gauge transformations, i.e. local rotations among the color indices

Ω(x) = exp
{
i

8∑
a=1

λa

2 θ
a(x)

}
, (B.4)

where θa are the parameters of the transformation (since it is local they depend on x) and λa/2 are
the generators. Therefore, in order to define LQCD, like for any Yang-Mills Lagrangian, one starts
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from the Dirac Lagrangian for the quark fields and requires its invariance under the transformation

q(x) → q′(x) = Ω(x)q(x) ,
q(x) → q′(x) = q(x)Ω†(x) . (B.5)

To achieve gauge invariance it is necessary to replace the partial derivative ∂µ with the covariant
derivative Dµ, which is defined by the property

Dµ(x)q(x) → [Dµ(x)q(x)]′ ≡ Dµ(x)′q(x)′ = Ω(x)Dµ(x)q(x) . (B.6)

Thus, we define

Dµ(x) = ∂µ − igsAµ(x) (B.7)

where gs is the gauge coupling related to αs by g2
s = 4παs.

In order to satisfy Eq. (B.6) we require that the gauge field Aµ(x) transforms as

Aµ(x) → A′
µ(x) = Ω(x)Aµ(x)Ω†(x) − i

gs
(∂µΩ(x))Ω†(x) (B.8)

If we rewrite the field Aµ(x) in terms of the eight gluon scalar fields Aa
µ(x) the transformation

becomes

Aa
µ(x) → Aa

µ
′(x) = Aa

µ(x) + 1
gs
∂µθ

a(x) + fabcAb
µ(x)θc(x) (B.9)

where we omitted the explicit sum over the repeated color indices, and fabc are the structure
constants defined in Appendix A by Eq. (A.5).

Now we have the elements to define the QCD Lagrangian for fermionic fields as1

LF =
∑

f

qf

(
i /D −mf

)
qf (B.10)

where mf is the quark mass and the summation is performed over the possible flavors of the quarks,
f = {u, d, c, s, t, b}. We use the covariant derivative also to write the gluon kinetic term which is
constructed starting from the gluon field strength tensor Gµν , defined as

Gµν = i

gs
[Dµ, Dν ] = ∂µAν − ∂nuAµ − igs [Aµ, Aν ] . (B.11)

Gµν , like Aµ, is a traceless hermitian 3x3 matrix that can be expanded in the basis of generators of
SU(3), that is

∑
a

λa

2 G
a
µν . (B.12)

1From now on we will often omit the space-time dependence of fields and tensors.
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where Ga
µν are scalars on the color space.

Using Eqs. (B.3) and (B.12) in Eq. (B.11) we find that

Ga
µν = ∂µA

a
ν − ∂νA

a
µ + gsf

abcAb
µA

c
ν . (B.13)

From the transformation property (B.8) of Aµ it follows that

Gµν → G′
µν = ΩGµνΩ† , (B.14)

that is Gµν transforms as an element of the adjoint representation of SU(3). The gluon Lagrangian
LG for QCD is then written as

LG = −1
2Tr [GµνGµν ] = −1

4G
µν
a Ga

µν , (B.15)

this is indeed a gauge invariant term due to the unitarity of the transformation Ω and to the cyclic
property of the trace. With respect to the photon field strength tensor, there is an additional term
in Eq. (B.13) that depends on the structure constants. It causes the appearance of extra terms in
LG that represent the self-interactions of three or four gauge fields. Auto-interaction of the gauge
bosons is the substantial difference between Abelian and non-Abelian gauge theories.

The complete QCD Lagrangian is written as

LQCD = LF + LG , (B.16)

where LF and LG are defined respectively in Eqs. (B.10) and (B.15). However, we point out that
Eq. (B.16) is only the classical definition of LQCD, the covariant quantization of a non-Abelian
gauge theory is rather convoluted and other terms have to be included, e.g. the gauge fixing term
and the ghost fields Lagrangian.

The classical, or "continuum", QCD action is written as

SQCD =
∫
d4xLQCD =

∫
d4x

∑
f

qf

(
i /D −mf

)
qf − 1

4G
µν
a Ga

µν

 . (B.17)

B.2 The generating functional

The path-integral approach is an alternative but equivalent method to the Second Quantization,
which allows us to study interacting and relativistic quantum field theories at non-perturbative scales
through the numerical evaluation of functional integrals. For simplicity now we present the path-
integral method for a theory in which there is only one scalar field ϕ(x), it will be straightforward
to extend the definitions to a generic theory.

In order to obtain the physical quantities of a theory, like the S matrix or the mass spectrum, it
is necessary to compute the n-points Green functions, which are the vacuum expectation values of
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the T-products of an arbitrary number of fields,

Gn(x1, ..., xn) = ⟨0|T [ϕ(x1)...ϕ(xn)] |0⟩ , (B.18)

where |0⟩ is the ground state (or vacuum state) of the interacting theory. In the formalism of
functional integrals, the n-points Green functions can be expressed as

⟨0|T [ϕ(x1)...ϕ(xn)] |0⟩ =
∫

D [ϕ]ϕ(x1)...ϕ(xn)eiS[ϕ]∫
D [ϕ] eiS[ϕ] . (B.19)

Now we define the generating functional as

Z [J ] =
∫

D [ϕ] exp
{
iS [ϕ] + i

∫
d4xJ(x)ϕ(x)

}
, (B.20)

It is possible to evaluate the n-points Green functions through the space-time derivatives of the
generating functional

⟨0|T [ϕ(x1)...ϕ(xn)] |0⟩ = 1
Z [J = 0](−i)

n δnZ [J ]
δJ(x1)...δJ(xn)

∣∣∣∣∣
J=0

. (B.21)

We proceeded with formal definitions, but there are two issues that have to be dealt with in order
to be able to actual compute all these quantities, or even just to be sure that they are well-defined,
the issues are:

• The measure D [ϕ] indicates an integration over all the possible configurations of the field ϕ.
Clearly they are infinite, and so we have to perform a ∞-dimension integral.

• Each path is weighted by a complex exponential factor, which potentially can be a very rapidly
oscillating function.

These problems make it necessary to manipulate the path integral and the generating functional in
a way that we obtain well-defined quantities that can be actually computed.

B.2.1 Wick rotation

The Wick rotation allows transforming the oscillating term into an exponentially decreasing term,
which extremely improve the convergence of the path-integral, by rotating the Minkowskian space
into the Euclidean one. With this procedure, we are able to find a solution to a problem in
Minkowskian space from a solution to a related problem in Euclidean space. This procedure consists
in performing the analytical continuation of the Minkowskian time to complex space

x0
M → x0e−iθ , (B.22)
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where a complex phase is given to the time. In particular, if we choose θ = π/2 we see that the
Minkowskian metric turns to the classical Euclidean metric in four dimension

x2
M = (x0

M )2 − x2 → (ix0)2 − x2 = (xE)2 , (B.23)

where we have defined (xE)2 = (x0)2 + x2.
In the clockwise rotation of the time axis towards the imaginary axis, the path-integral cannot

pass through the singularities, i.e. the poles of the Green function. Otherwise, one have to take
the residues of the function at the poles into careful account. Practically, to find how the partition
function transforms under a Wick rotation, it is sufficient to make the following substitutions:

x0
M → ix4

E ,

dx0
M → idx4

E ,

∂0
M → i∂4

E . (B.24)

Now we can rewrite the generating functional in Euclidean space-time

ZE [J ] =
∫

D [ϕ] exp
{

−SE [ϕ] −
∫
d4xJ(x)ϕ(x)

}
, (B.25)

so that

⟨ϕ(x1)...ϕ(xn)⟩ =
∫

D[ϕ]ϕ(x1)...ϕ(xn)eSE [ϕ]∫
D[ϕ]eSE [ϕ] . (B.26)

By ⟨...⟩ we indicate the analytical continuation of the T-product in Euclidean space-time, that is

⟨ϕ(x1)...ϕ(xn)⟩ = ⟨0|TE [ϕ(x1)...ϕ(xn)] |0⟩ . (B.27)

We point out that the Euclidean expectation value of the product of n fields is not equal to the n-
points Green function of the original theory, but they are related through an analytical continuation,
and so we can apply an inverse Wick rotation to obtain the desired solution.

Since the Euclidean action SE is positive definite, and there is no more the imaginary unit "i", in
the Euclidean path-integral we have now a convergence factor which decrease very rapidly. Despite
the fact that the range of the possible configurations is infinite, however, the distribution is very
highly peaked around the configurations that minimize the action. They are called the “importance
sampled” configurations. More generally, the factor eS can be considered as a probability weight
for generating configurations in the path-integral. It is analogous to the Boltzmann factor in the
partition function for statistical mechanics systems, and so we will call Z[J = 0] the partition
function of the quantum theory. Due to this fact, it is possible to implement many typical techniques
of statistical mechanics on the numerical analyses of lattice simulation, as we will see in this chapter
further on.
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B.2.2 Discretization of the path integral and boundary conditions

So far we have not actually defined the measure of integration appearing in Eq. (B.20), we have
only said that the generating functional is an integral over all the possible configurations of the
fields, that is an integration over a continuum infinity of degrees of freedom. Even in the simplest
case of a scalar theory, we have to perform an integral over the variable ϕ(x) for every point x of
the space-time. To solve this problem, the idea is to consider the infinite dimensional integral as
the limit of a finite one.

First we define a regularized theory through the substitution of the continuum space-time with
a finite number of point, that is we introduce a lattice. A very simple choice for the lattice is a
four dimensional hypercube with lattice spacing a and volume V = L3 × T , where L = aNL and
T = aNT . That is we consider the substitution

xµ → xµ
n = anµ , xµ

n ∈ V , (B.28)

often we will indicate the lattice points xµ
n in units of a, i.e. only with the integer valued vector nµ.

For the theory defined on the lattice, the measure of the path-integral is the product of a finite
number of measures for the classical field variables in each lattice site, so we replace

D [ϕ] →
∏

n∈V

δϕ(n) . (B.29)

The original generating functional can be defined as the limit of the discretized one, that is

Z[J ] = lim
a→0

V →∞
Z(a,V )[J ] , (B.30)

where

Z(a,V )[J ] =
∫ ∏

n∈V

δϕ(n) exp
{

−a4∑
n

(L [ϕ(n),∇µ[ϕ(n)]] + J(n)ϕ(n))
}
. (B.31)

With ∇µ[ϕ(n)] we indicate a generic discretized version of the derivative ∂µϕ(x). For example,
the so-called naive discretization consists on the substitution of the ordinary derivative with the
symmetrized difference:

∂µϕ(x) → ∇µ[ϕ(n)] = ϕ(n+ µ̂) − ϕ(n− µ̂)
2a , (B.32)

where µ̂ is the unit vector connecting two next lattice sites in the µ-direction. If we use the Taylor
series expansion of ϕ(x) we can easily see that ∇µ[ϕ] differs from the continuum derivative ∂µϕ by
terms of order O(a2). The naive discretization is only the simplest choice, it is possible to implement
more complicated discretization in order to obtain the so-called improved actions, which differ from
the continuum action by terms which go to zero with higher powers of the lattice spacing, for
example of order O(a4).

A very important feature of the lattice discretization is that it naturally provides an infrared
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and an ultraviolet regulator. More precisely, the infrared regulator comes from the finite volume of
the lattice, while the ultraviolet one comes from the lattice spacing a.

Introducing a lattice, the Poincarè invariance is reduced to a discrete group, since on a hypercubic
lattice only rotations by 90◦ are allowed and translations have to be by at least one lattice unit. For
every function defined on the lattice f(n), the toroidal boundary conditions impose

f(n+ µ̂Nµ) = ei2πθµf(n) , (B.33)

where Nµ is the number of lattice sites in the µ direction, periodic boundary conditions correspond
to θµ = 0 and anti-periodic ones correspond to θµ = 1/2.

In order to obey the boundary conditions (B.33) the allowed momenta values are

pµ = 2π
aNµ

(kµ + θµ) , kµ = −Nµ

2 + 1, ... , Nµ

2 . (B.34)

The boundary conditions of Eq. (B.1boundary), with θ ̸= 0, 1/2, are called twisted boundary
conditions. They are very useful for lattice simulations since they allow shifting the quantized
momentum p = 2π

aN n by a continuum amount. We point out that, on present lattice simulations,
we have typically 2π

aN ∼ 0.4 GeV . By choosing small values of θ it is possible to assign arbitrary
momentum to a specific fermion. Clearly, it is possible to assign different boundary conditions to
different fields. More details about twisted boundary conditions can be found in [35].

We have shown that the boundary conditions associated to the finite volume are responsible for
the discretization of the momenta which provides the infrared regulator. Instead, the finite lattice
spacing a introduce an ultraviolet cut-off, since it restricts all four components of momenta to the
first Brillouin zone [π/a, π/a]. What we have now is a regularized theory in which, for a fixed value
of the lattice spacing a, the Green functions are well-defined quantities. However, the regularized
theory depends on the cut-off 1/a, while in the real physical theory there is no lattice spacing. Thus,
in order to obtain physical results, it is necessary to send the ultraviolet cut-off 1/a to infinity (i.e.
the lattice spacing must go to zero). A naive limit a → 0 would give the original divergences back,
thus the continuum limit has to be performed very carefully, in the context of a renormalization
procedure. We will address this crucial topic in section B.4.

B.2.3 Path-integral formulation of QCD

Before to apply the discretization procedure to QCD, we want to define the relevant quantities for
the path-integral formulation of QCD and obtain some useful results for the generating functional.
We consider now S = SQCD of Eq. (B.17), by performing the Wick rotations as explained in section
B.2.1 we get the substitution

eiSQCD → e−SQCD
E , (B.35)
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with

SQCD
E [q, q, A] =

∫
d4xE

∑
f

qf (γµ
ED

µ +mf ) qf + 1
4G

µν
a Gµν

a

 . (B.36)

γµ
E are the Euclidean Gamma matrices defined in Appendix A. From now on we will omit the

subscript “E” taking for granted that we are working in Euclidean space-time.
To write the generating functional, we have to introduce a source for each field that appears in

the action. So we have

ZQCD[η,η, J ] =
∫

D[A]

∏
f

∫
D[qf ]D[qf ]

×

× exp

−SQCD[q, q, A] −
∫
d4x

∑
f

ηf (x)qf (x) + qf (x)ηf (x) + J(x)A(x)

 .

(B.37)

Fermions must satisfy the Pauli exclusion principle, to do so the n-point Green functions have to be
antisymmetric under the exchange of two fermionic fields:

⟨q(x1)q(x2)⟩ = −⟨q(x2)q(x1)⟩ . (B.38)

To obtain this property in the formalism of the generating functional, even the source η and η have
to anti-commute. So the quark fields and their sources cannot be normal variables in the path
integrals, they are complex anti-commuting variables, such variables are called Grassmann variables.
In Appendix A are collected the relevant results for the Grassmann algebra, which are used in the
following.

The fermionic part of the generating functional of Eq. (B.37) is

ZQCD
F [η,η, A] =

∏
f

∫
D[qf ]D[qf ] exp

{
−
∫
d4x

(
qfKf [A]qf + ηfqf + qfηf

)}
(B.39)

where Kf [A] = /D[A] +mf is the Dirac operator.
To solve this integral we first complete the square at the exponent, that is we rewrite as:

−
∫
d4x

[(
qf + ηfK

−1
f

)
Kf

(
qf +K−1

f ηf

)
− ηfK

−1
f ηf

]
. (B.40)

Now we perform a transformation of variables which leaves the measure invariant:

qf → q′
f = qf +K−1

f ηf , qf → q′
f = qf + ηfK

−1
f , (B.41)
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obtaining

ZQCD
F [η,η, A] = e

−
∫

d4x
∑

f
ηf K−1

f
ηf
∏
f

∫
D[q′

f ]D[q′
f ]e−

∫
d4xq′

f Kf q′
f

= e
−
∫

d4x
∑

f
ηf K−1

f
ηf
∏
f

det [Kf ] . (B.42)

In the previous formula, we have used the results collected in Appendix A for the integration of
Grassmann variables to solve exactly the integral over the quark field configurations.

To give an example of an application of the previous formula we can compute the 2-point quark
Green functions through Eq. (B.42), using Eq. (B.21) we have

Sf (x, y,A) = ⟨qf (y)qf (x)⟩F = 1
Z[0, 0, A]

δ2ZQCD
F [ηf , ηf , A]
δηf (y)ηf (x)

∣∣∣∣∣
ηf =ηf =0

= K−1
f [A] .

(B.43)

This result is a simple case of the Wick’s theorem. The 2-point Green function Sf (x, y,A) propagates
a quark qf from the space-time point x to the point y and for this reason is called Dirac propagator.
It is dependent on A, so it is not a simple function as in the free case, but it is a complicated object
whose solution requires the inversion of the Dirac operator K−1

f [A].
The determinant of an operator can be written as the product of its eigenvalues, thus we can

use the relation

log det[K] = log
(∏

i

ki

)
=
∑

i

log ki = Tr logK . (B.44)

from which it follows that

det[K] = exp {Tr logK} . (B.45)

Using this result, we can write the partition function of QCD in a form more useful for numerical
simulations:

ZQCD[0] =
∫

D[A]e−Seff [A] , (B.46)

where

Seff [A] = −
∫
d4x

1
4G

a
µνG

a
µν + Tr log

(
/D[A] +mf

)
. (B.47)

The trace in the exponent is responsible for the creation of the fermion loops. Indeed, by explicitly
computing the determinant of the Dirac operator Kf [A], one can find that it is equal to the
exponential of the sum of Feynman diagrams containing virtual quarks loops and an arbitrary
number of insertions of the gauge fields. Thus, the functional determinant contains the so-called
sea quark corrections. For this reason, we can say that the functional determinant represent the
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fermionic vacuum, in where pairs of virtual quarks and antiquarks (sea quarks) are created and
annihilated. These contributions are strongly non-local2. Hence, from the computational point of
view, the determination of the expectation values using the action (B.47) would require an enormous
number of operations, making this method possible to be used only for small lattices.

In order to avoid this problem, the quenched approximation was often used in the past. It
consists in eliminating the second term of Eq. (B.47) by setting the determinant of the fermionic
matrix equal to one, so that one can study the gauge fields in absence of the quark contributions3.
The quenched approximation can be considered as the limit in which the mass of the sea quarks is so
heavy that they cannot be generated from the vacuum as particle–antiparticle pairs. A simulation
that include the determinant and therefore allows for the complete dynamical structure of the
fermionic vacuum is called a simulation with dynamical quarks.

Combining Eq. (B.46) with Eq. (B.26) we obtain that the expectation value of a physical
observable O is given by

⟨O⟩ = 1
Z[0]

∫
D[A]O[A] e−Seff [A] , (B.48)

where we have now omitted the superscript "QCD". O is a generic operator expressed in terms of
products of quark and gluon fields.

A very important example are quark bilinear operators, which have the form

OΓ(x) = qf Γqf ′ , (B.49)

where Γ is a generic combination of the Dirac matrices. Typically, these operators are used in
2-point correlation functions, like

Cij(x) = ⟨OΓi(x)OΓj (0)⟩ , (B.50)

to compute the meson mass spectrum and some matrix elements, as we will see further on.
In order to compute the correlator (B.50), we have to reorder the Grassmann variables and to

apply the Wick’s theorem so that we have

Cij(x) = −⟨Tr
[
ΓiSf ′(0, x;A)ΓjSf (x, 0;A)

]
⟩ , (B.51)

where the trace is performed over the Dirac and color indices. We notice that the two bilinear
operators must involve the same two flavor f and f ′ in order to give a non-vanishing result. We will
often omit the dependence of the quark propagator from the gauge configurations.

Later on we will see how these correlators can be actually computed in the simulations and how
to use them to extract physical observable, now instead we address the lattice transcription of the
fields and the action of QCD.

2That is, a link variable (which we define further on when we address the discretization of SQCD) can interact
also with far other ones, not only with the nearest ones.

3Actually, its contribution was partially accounted for in the gauge action by a suitable redefinition of the gauge
couplings.
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B.3 Lattice regularization of QCD

In this section we deal with the transcription of the gauge and fermions degrees of freedom on the
lattice and with the construction of a discretized action. This procedure is characterized by a certain
degree of arbitrariness, indeed the only requirement of the discretized action is to preserve the gauge
symmetry and that it has to recover the continuum action in Eq. (B.17) in the continuum limit
a → 0. Obviously, it is convenient to consider discretized action which share as many symmetries as
possible with the continuum action, but not always. For example, we will see that every discretized
action who benefit of the chiral symmetry (in the limit of massless quarks) involves the introduction
of fictitious particles called doublers. The solution is then adding a so-called Wilson term, which
disappears in the continuum limit but for a ̸= 0 it breaks explicitly the chiral symmetry even in the
massless limit. Finally, we consider the implications and the possible advantages of adding a twisted
mass term.

B.3.1 Discretization of free fermions

The discretization of free fermions is straightforward. The quark fields are represented by anti-
commuting Grassmann variables defined at each site of the lattice, belonging to the fundamental
representation of SU(3). Since the fermion action is linear in q and q, the Grassmann rules for
integration can be used to integrate over them so that the path-integral reduces to the one over the
gauge fields. The continuum action S0

F for a free fermion is given by the expression

S0
F [q, q] =

∫
d4xq(x)(/∂ +m)q(x) . (B.52)

By replacing the continuum derivative with its naive discretization defined in Eq. (B.32) we obtain
the lattice version of the free fermionic action as

S0
F [q, q] = a4 ∑

n∈Λ
q(n)

 4∑
µ=1

γµ
q(n+ µ̂) − q(n− µ̂)

2a +mq(n)

 . (B.53)

B.3.2 Link variables

The gauge fields in the continuum are introduced by requiring the invariance of the action under
local SU(3) color rotation of the fermion fields, as we showed in Section B.1. We can implement on
the lattice the same local transformation by choosing an element Ω(n) of SU(3) for each site n and
transforming the quark fields according to

q(n) → q′(n) = Ω(n)q(n) , (B.54)
q(n) → q′(n) = q(n)Ω†(n) . (B.55)

The mass term of (B.53) is clearly invariant under the transformation (B.54), but this is not true for
the discretized derivative term , since it involves the product of quark fields evaluated in different
sites of the lattice.

In order to build a gauge invariant action, we need to introduce a field Uµ(n) which under color
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rotation transforms as

Uµ(n) → U ′
µ(n) = Ω(n)Uµ(n)Ω†(n+ µ̂) . (B.56)

In the continuum, the gauge fields Aµ(x) are defined as elements of the algebra of SU(3), while on
the lattice the fields Uµ(n) has to be an element of the gauge group SU(3).

These matrix-valued variables are oriented and attached to the links of the lattice, and so they
are commonly referred to as link variables. The link variables connect two nearest lattice points.
Indeed, Uµ(n) lives on the link which connect the point n to the point n+ µ̂. The µ̂ direction of
the link variables can also be negative: U−µ(n) connect n to n− µ̂ and is related to the positively
oriented link variable Uµ(nµ̂) through the relation

U−µ(n) = U †
µ(nµ̂) . (B.57)

In the continuum, a fermion moving from site x to y, along some curve Cxy, in presence of a gauge
field Aµ(x) picks up a phase factor according to

q(y) = Peig
∫

dzµAµ(z)q(x) = G(x, y)q(x) . (B.58)

The operator G(x, y) is a path-ordered exponential which shares the same transformation properties
of Uµ(n), it is called gauge transporter operator. The idea is to interpret the link variable Uµ(n)
as a lattice version of the gauge transporter connecting the points n and n + µ̂, i.e. we wish to
establish Uµ(n) = G(n, n+ µ̂) +O(a). Thus, we introduce Aµ(n) as the lattice version of the gauge
field, and we write

Uµ(n) = eigaAµ(n) = I + igaAµ(n) +O(a2) . (B.59)

Therefore, we approximate the integral along the path Cn,n+µ̂ with the length a of the path times
the value of the field Aµ(n) at the starting point. This is an approximation of the gauge transporter
at order O(a) and at this order the path-ordering is not necessary.

When we perform a gauge transformation Ω(n), the link and quark variables transform according
to (B.56) and (B.54) respectively. Using these two transformation properties we are able to construct
two kinds of gauge invariant objects:

• A string, which is a product of the link variables along a path of links connecting two lattice
sites, capped by a quark and an anti-quark:

q(n)Uµ(n)Uν(n+ µ̂)...Uρ(m− ρ̂)q(m) . (B.60)

This object is clearly the lattice version of the continuum gauge transporter G(x, y).

• A Wilson loop, which is the trace over the color indices of the product of link variables along
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Figure B.1: The two gauge invariants objects on the lattice. a) An ordered string. b) A 3 × 4 closed Wilson
loop. (a= 1)

a closed path of links. The simplest example is the plaquette, which is the 1 × 1 loop

W 1×1
µν = Tr

{
Uµ(n)Uν(n+ µ̂)U †

µ(n+ ν̂)U †
ν (n)

}
. (B.61)

For SU(N ≥ 3), the trace of any Wilson loop in the fundamental representation is in general
complex, with the two possible path-orderings giving complex conjugate values.

In Fig. (B.1) we show a bidimensional example of these two objects, clearly they can have arbitrary
sizes and shapes. In the next sections, we will see how these two types of gauge invariant terms
can be used to build a gauge invariant action. The only limitation to follow is that the discretized
action must approach the continuum action when the limit a → 0 is performed.

B.3.3 Gauge action

The closed loops can be used to write a discretized gauge action. Starting from the definition of the
plaquette (B.61), and by using the definition of the link variables (B.59), we have

W 1×1
µν = Tr

{
Uµ(n)Uν(n+ µ̂)U †

µ(n+ ν̂)U †
ν (n)

}
= eigaAµ(n)eigaAν(n+µ)e−igaAµ(n+ν)e−igaAν(n) . (B.62)

The link variables are non-commuting SU(3) matrices and so now we use the Baker-Campbell-
Ausdorff formula for non-commuting matrices

eAeB = eA+B+ 1
2 [A,B]+... . (B.63)

We also expand around the point n in which the plaquette starts,

Aµ(n+ ν) = Aµ(n) + a∂νAµ(n) +O(a2) . (B.64)
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By combining Eqs. (B.63) and (B.64) we obtain

W 1×1
µν = exp

{
ia2g (∂µAν − ∂νAµ + ig[Aµ, Anu] + ...)

}
= I + ia2gGµν − a4g2

2 (Gµν)2 +O(a6) . (B.65)

From the previous formula, we point out that the plaquette is indeed connected to the gluon field
strength tensor Gµν and that the Wilson loop is indeed a complex object.

The real and the imaginary parts of the loop give

Re
[
I −W 1×1

µν

]
= a4g2

2 (Gµν)2 + ... (B.66)

Im
[
W 1×1

µν

]
= a2gGµν + ... . (B.67)

Now we have the results necessary to present the Wilson gauge action:

SW
G [U ] = β

∑
n

∑
ν<µ

1
NC

Re
[
Tr
(
I −W 1×1

µν

)]
. (B.68)

The sum is performed over all the lattice points at which the plaquettes are located, being counted
with only one orientation (at each site there are 6 distinct positively oriented plaquettes, µ < ν). It
is possible to properly choose the constant β in order to obtain the continuum gauge action starting
with the Wilson action (B.68) and performing the limit a → 0, V → ∞. Indeed, by using the result
in (B.66), and setting β = 2NC

g2 we have

SW
G [U ] = β

g2

2NC
a4∑

n

∑
ν<µ

Tr
[
G2

µν

]
= β

g2

4NC
a4∑

n

∑
ν,µ

Tr
[
G2

µν

]
→ 1

2

∫
d4xTr [GµνG

µν ] . (B.69)

Traditionally, the lattice calculations are presented in terms of the lattice coupling β, rather than
the coupling constant g. It is important to underline that, in making the Taylor expansion, all terms
containing derivatives at odd orders cancel out. As a consequence of this fact, the first correction to
the Wilson gauge action is of O(a2).

In choosing a suitable action, it is fundamental that it approaches the right continuum limit and
highly desirable that its discretization errors are as small as possible. We have already pointed out
that there are infinity different way to discretize the action on the lattice, as long as the continuum
action is obtained in the continuum limit. In particular, the gauge action can be expressed in
terms of others gauge invariant objects, which are made by generic closed paths of links. A relevant
example is the Iwasaki action [55], made by the loops represented in Fig.(B.2),

SI
G = 1

g2

[
c0
∑

Tr(plaquette loops) + c1
∑

Tr(rectangle loops)
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Figure B.2: Four types of Wilson loops in the action: (a) simple plaquette loop; (b) rectangle loop; (c)
chair-type loop; (d) three-dimensional loop.

+c2
∑

Tr(chair-type loops) + c3
∑

Tr(three-dimensional loops)
]
.

(B.70)

By requiring that in the continuum limit the action B.70 approaches the continuum gauge action,
we obtain the condition

c0 + 8c1 + 16c2 + 8c3 = 1 . (B.71)

The improved Iwasaki action is obtained by choosing properly the coefficients in order to reduce
the cut-off effects. Namely, the choice is c1 = 0.331 and c2 = c3 = 0 and thus the Iwasaki action
explicitly reads

SI
G = β

3

 ∑
n,ν>µ

(1 − 8c1)W 1×1
µν + c1

∑
n,µ ̸=ν

W 1×2
µν

 , (B.72)

where W 1×1
µν is the usual plaquette term and W 1×2

µν represents the rectangle loops. Another possible
choice for the gluon action is the tree-level Symanzik improved action proposed by Weisz [56], which
differs from the Iwasaki action for the values of the Symanzik coefficients ci. In this case c1 = 1/12,
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c2 = c3 = 0.

B.3.4 Quark action

Naive action

In Sec. B.3.1 we have found the lattice version of the free fermion action. When we consider the
presence of an external gauge field U it comes natural to write the naive fermion action as

SN
F [q, q, U ] = a4∑

n

q(n)
(
DN [U ] +m

)
q(n) , (B.73)

with

DN [U ] = 1
2
∑

µ

γµ(∇µ + ∇∗
µ) . (B.74)

∇µ and ∇∗
µ are the forward and backward discretized versions of the covariant derivatives. They

are defined as

∇µq(n) = Uµ(n)q(n+ µ̂) − q(n)
a

, ∇∗
µq(n) = q(n) − U−µ(n)q(n− µ̂)

a
. (B.75)

As for the continuum action, the introduction of the gauge links is necessary to maintain the gauge
invariance of the action.

One can verify that the action (B.73) reduces correctly to the Dirac action in the continuum
limit. For the mass term this is trivial, and for the derivative part DN [U ] this is achieved by
considering the Taylor expansion of Uµ(n) and q(n+ µ̂) in powers of the lattice spacing a. Keeping
only the leading term in a the two strings become

q(n)γµUµ(n)q(n+ µ̂) = q(n)γµ(1 + iagAµ(n))(q(n) + a∂µq(n)) + ...

= q(n)γµ[q(n) + a(∂mu+ igAµ)q(n)] + ... , (B.76)
q(n)γµU−µ(n)q(n− µ̂) = q(n)γµ(1 − iagAµ(n))(q(n) − a∂µq(n)) + ...

= q(n)γµ[q(n) − a(∂mu+ igAµ)q(n)] + ... . (B.77)

With these results and with the definition of the lattice covariant derivatives, we find

a4∑
n

q(n)DN [U ]q(n) = a4∑
n

q(n)
[
γµ
Uµ(n)q(n+ µ̂) − U−µ(n)q(n− µ̂)

2a

]
−−−−→

a→0
V →∞

∫
d4xq(x)γµ[∂µ + igAµ(x)]q(x) =

∫
d4xq(x) /Dq(x) . (B.78)

Even in this case, the discretization errors are of order O(a2).
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A more compact and useful way to write the naive action is the following:

SN
F [q, q, U ] = a4 ∑

n,m

q(n)KN
nm[U ]q(m) , (B.79)

where the naive Dirac matrix KN [U ] is

KN
nm[U ] = 1

2a
∑

µ

[γµUµ(n)δn+µ̂,m − γµU−µ(n)δn−µ̂,m] +mδn,m . (B.80)

However, the naive discretization gives rise to a serious problem called the fermion doubling problem.

The doubling problem

To illustrate this problem, it is sufficient to consider the case of free fermions, so we set all Uµ(n) = I.
We are going to show that the naive discretization of the Dirac action in the massless limit m → 0
gives rise to 2d = 16 fermion species instead of one. To do so we consider the propagator, obtained
computing the Fourier Transform of the lattice Dirac operator, we have

K̃N (p | q) = 1
| Λ |

∑
n,m∈Λ

e−ip·naKN
nme

iq·ma =

= 1
| Λ |

∑
n∈Λ

e−i(p−q)·na

(∑
µ

1
2aγµ[eiqµa − e−iqµa] +mI

)
= δ(p− q)K̃N (p) .

(B.81)

Thus the free propagator in Fourier space is

S(p) = (K̃N (p))−1 =
(
i

a

∑
µ

γµ sin(apµ) +mI
)−1

= mI − ia−1Σµγµ sin(pµa)
m2 + a−2Σµ sin(pµa)2 . (B.82)

In the continuum and in the chiral limit m → 0, the momentum space propagator has a pole in
pµ = 0. However, in the discretized propagator we find a pole both for p = 0 and for all the possible
combinations of pµ = 0 and pµ = π/a. The momentum space of the lattice theory is a d-dimensional
Brillouin zone B = (−π/a, π/a]d with periodic boundary conditions, thus the naive lattice Dirac
propagator, in the chiral limit, has 16 poles (the zeros of Eq. (B.82)) at

p = (0, 0, 0, 0),
(
π

a
, 0, 0, 0

)
,

(
0, π
a
, 0, 0

)
, ...,

(
π

a
,
π

a
,
π

a
,
π

a

)
. (B.83)

Except for the physical pole pµ = (0, 0, 0, 0), the others are 15 unwanted poles, the so-called doublers.
The inclusion of gauge fields in the action does not solve the doubling problem. It is in fact a

manifestation of a deep fundamental problem of lattice regularized fermionic theories which respect
the chiral symmetry and the axial anomaly [57]. Indeed, the naive action is invariant under the
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following vector global transformation

q → eiαq, q → qe−iα , (B.84)

and also, in the chiral limit, under the axial global transformation

q → eiαγ5q, q → qeiαγ5 . (B.85)

The chiral symmetry follows from the anticommuting property

{
γ5, K

N |m=0
}

= 0 , (B.86)

valid in the chiral limit.
The problem is that in the regularized theory anomalies cannot occur, while the physical theory

(the one in the continuum) is characterized by chiral anomaly. Indeed, by studying the properties
of these extra poles under chiral transformations, in the limit of vanishing quark mass one can
find that the 16 fermion species breaks up into two sets of 8 with chiral charge ±1, and render
the theory anomaly-free. This fact is an inevitable consequence of a no-go theorem established by
Nielsen-Ninomiya [58] which states that it is not possible to define a local, translationally invariant
hermitian lattice action that preserves chiral symmetry and does not have doublers. While it would
be desirable to preserve chiral symmetry even at finite a, in order to exploit Ward Identities (WI)
that provide relations between matrix elements, one cannot solve the fermion doubling problem
without breaking chiral symmetry for vanishing fermion masses. This suggests that one may get rid
of the doubling problem at the price of breaking chiral symmetry explicitly on the lattice.

A possible way to solve the problem is to implement a lattice version of chiral symmetry which
may be preserved on the lattice at finite a, without introducing doublers. This is the so-called
Ginsparg-Wilson formulation [59].

Circumventing the Nielsen-Ninomiya theorem, the anomaly originates from the non-invariance
of the fermion integration measure under the Ginsparg-Wilson chiral transformation. Ginsparg and
Wilson proposed to replace the anti-commuting expression (B.86) with

{γ5,K |m=0} = aKγ5K . (B.87)

In this way it is possible to define a modified chiral rotation which leaves the chiral lattice action
invariant, this rotation is defined by

q → exp
{
iαγ5

(
I − a

2K
)}

q , q → q exp
{
iα

(
I − a

2K
)
γ5

}
. (B.88)

For a → 0 this transformation reduces to the ordinary chiral one and the axial symmetry is then
restored in the continuum limit such that it reproduces the right anomaly. Circumventing the
Nielsen-Ninomiya theorem, the anomaly originates from the non-invariance of the fermion integration
measure under the Ginsparg-Wilson chiral transformation.

Instead, we follow a different proposal originally made by Wilson [52], who introduced an explicit
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chiral symmetry breaking term in the action by hand. This term reproduces correctly the axial
anomaly in the continuum limit [60].

Wilson action

The lattice action is not unique and one has the freedom to add an arbitrary number of operators
to the action, provided that they vanish in the continuum limit a → 0. The Wilson solution to the
doublers problem consists in including an additional term proportional to the discretized Laplace
operator, the so-called Wilson term:

−ar

2 ∇µ∇∗
µ , (B.89)

where r is called the Wilson Parameter. According to Eq. (B.75) the discretized Laplace operator is
explicitly written as

∇µ∇∗
µq(n) = Uµ(n)q(n+ µ̂) + U−µ(n)q(n− µ̂) − 2q(n)

2a . (B.90)

By adding the Wilson term to the naive action we obtain the Wilson action, given by

SW
F [q, q, U ] = a4∑

n

q(n)
(
DW [U ] +m

)
q(n) , (B.91)

where

DW [U ] = 1
2γµ(∇µ + ∇∗

µ) − ar

2 ∇µ∇∗
µ . (B.92)

We can expand all the covariant derivatives finding the following explicit form

SW
F [q, q, U ] = a4 ∑

n,m

q(n)KW
nm[U ]q(m) , (B.93)

where the Wilson Dirac matrix KW
nm[U ] is defined as

KW
nm[U ] =

(
m+ 4r

a

)
σnm

+
∑

µ

1
2a [(γµ − r)Uµ(n)σn+µ̂,m − (γµ + r)U−µ(n)δn−µ̂,m] . (B.94)

The additional terms, proportional to r, make the Dirac matrix such that in the chiral limit the
anti-commuting property with the γ5 is not satisfied,

{
γ5, K

W |m=0
}

̸= 0 . (B.95)

As a consequence, the Wilson fermion action is no more invariant under the axial transformation in
Eq. (B.85) and the explicit breaking of chiral symmetry is a hard breaking of O(a). It is easy to prove
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[54] that the Wilson action has the following discrete symmetries on the lattice: charge conjugation,
parity, Euclidean reflections, time reflection and γ5–hermiticity, that is

(
KW

)†
= γ5K

Wγ5.
Now we show how the Wilson action solves the doubling problem. To do so, we compute the

Fourier transform of the action (B.93) with all Uµ(n) = I and obtain

S−1(p) = K̃W (p) = m+ i

a

∑
µ

γµ sin(apµ) + r

a

∑
µ

(1 − cos(apµ)) . (B.96)

We can see that only the 15 doublers get an additional mass term 2rn
a , even in the chiral limit, where

n is the number of momentum components with pµ = π/a. Thus, when a → 0 the doublers become
very heavy and decouple from the theory. In conclusion, the lattice Wilson QCD action is given by

SW [q, q, U ] = SW
G [U ] + SW

F [q, q, U ] , (B.97)

with SW
G [U ] and SW

F [q, q, U ] given in Eqs. (B.68) and (B.93) respectively. Usually in the simulations,
the hopping parameter representation of the Wilson lattice action is used. It consists of rescaling
the fermionic fields as

q →
√
κq , q →

√
κq , (B.98)

where κ is called hopping parameter and it is defined by

κ = 1
2am0 + 8r . (B.99)

In this parametrization, the Dirac operator now reads

aKW
nm[U ] = δn,m + κ

∑
µ

[(γµ − r)Uµ(n)δn+µ̂,m − (γµ + r)U−µ(n)δn−µ̂,m] . (B.100)

However, despite it solves the doublers’ problem, the explicit breaking of chiral symmetry in the
Wilson action, at finite lattice spacing, has also unintended serious consequences. All relations
based on the axial Ward Identity now have corrections at order O(ra) beyond tree level and involve
mixing with wrong chirality operators that usually would be absent. Moreover, the quark mass
term goes now under additive renormalization, that is the renormalized quark mass is of the form
mR = Zm(m0 −mcr), where the critical mass is linearly divergent, i.e. mcr ∝ 1/a. Thus, the quark
mass gets both additive and multiplicative renormalization.

Finally, we want to point out that the leading cutoff effects with Wilson fermions start at order
O(a), due to the Wilson term, rather than O(a2). In the following section, we are going to see the
twisted mass formulation, which can be used to gain an O(a) improvement with respect to ordinary
Wilson formulation.
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B.3.5 Twisted mass QCD

In this section, we introduce the twisted mass QCD (tmQCD) [61, 38]. In this formulation the
theory involves a doublet of two light mass-degenerate quark flavors, u and d, and is characterized
by an additional mass term with a non-trivial isospin structure, which is called the twisted mass
term and is given by

iµqγ5τ3 , (B.101)

where τ3 is the third Pauli matrix acting in flavor space and µq is called the twisted mass.
The twisted mass term breaks both parity and flavor symmetry, but can be very useful for two

reasons. The first is that it provides a cure for the problem of the so-called exceptional configurations,
which are certain fluctuations of the gauge fields U that lead to small eigenvalues of the Dirac
operator K[U ]. In these configurations the numerical inversion of the Dirac operator, necessary to
compute the propagators, can be very problematic, and the twisted mass term provides an infrared
regulator to those small eigenvalues. This was in fact one of the original motivations for introducing
a twisted mass description.

In addition, the second useful property of this formulation is that it allows, by tuning only one
parameter, to obtain an automatic O(a)–improvement of the physical correlation functions, without
introducing therefore the several coefficients required for other improvement programs [62, 63].

Continuum twisted mass QCD for degenerate quarks

We first consider the continuum limit of the twisted mass QCD for Nf = 2 light degenerate flavors,
we denote by χ and χ the quark field flavor doublets, with

χ =

 χu

χd


The set of fermion fields {χ, χ} is called twisted basis. In this basis, the tmQCD action is given by

Stm
F [χ, χ,A] =

∫
d4xχ(x)

(
D +mq + iµqγ5τ

3
)
χ(x) . (B.102)

With mq we have indicated the untwisted mass of the quark and is obtained in terms of the quark
bare mass and the critical mass by the relation mq = m−mcr, i.e. the untwisted mass vanishes when
m assume the critical value mcr. The tmQCD action (B.102) is just a rewriting of the standard
QCD action in a different basis. We can see that by applying the quark field transformation

χ(x) → q(x) = eiωγ5
τ3
2 χ(x), χ(x) → q(x) = χ(x)eiωγ5

τ3
2 , (B.103)

which changes the expression of the action only in the mass terms, through

m′
q = mq cosω + µq sinω µ′

q = −mq sinω + µq cosω . (B.104)
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Now we can see that the standard QCD action is obtained if µ′
q = 0, and so if the twisted angle ω

satisfies the relation

tanω = µq

mq
. (B.105)

The physical basis {q, q} is the one in which the continuum QCD action takes the standard form.
The two basis are related by the rotation (B.103) with ω satisfying Eq. (B.105).

We point out that the chiral rotation (B.103) leaves invariant the combination

M =
√
m2

q + µ2
q , (B.106)

and so it is convenient to use polar mass coordinates

 mq = M cosω

µq = M sinω
, (B.107)

where M is called polar mass.
When ω = π/2 we have mq = 0 and µq = M . This case is referred as full or maximal twist and

we want to show that this choice implies an automatic O(a)-improvement, but first we need to check
how the twist reflects in expectation values. The standard and the twisted mass QCD are related
by a change of variables in the path integral. The transformation (B.103) is non-anomalous and so
the integration measure remains invariant, that is we can write D[q, q] = D[χ, χ]. This means we
can state that

⟨O[q, q, A]⟩(M,0) = ⟨O[χ, χ,A]⟩(mq ,µq) , (B.108)

where the l.h.s refers to the ordinary QCD while the r.h.s to the twisted mass QCD.
Thus, standard QCD correlation functions can be expressed as linear combinations of correlators

in tmQCD. This equivalence remains valid at finite lattice spacing for Wilson fermions up to
discretization errors, if the theory is correctly renormalized in a mass independent scheme [38]. So
the expectation values in the twisted mass formulation assume the form

⟨Otm⟩tm = 1
Ztm

∫
D[χ, χ,A]e−Stm

F [χ,χ,A]−SG[A]Otm[χ, χ,A] , (B.109)

and we have to relate the operators O[q, q, A] in the physical basis with their counterparts O[χ, χ,A]
in the twisted basis. Moreover, standard QCD and tmQCD actions share all the symmetries since
the symmetry transformations in the twisted basis are simply obtained by using Eq. (B.103) on
the standard symmetry transformations. For example, we can re-express the Ward Identities in
the twisted basis, finding respectively the partially conserved axial current (PCAC) and partially
conserved vector current (PCVC) equations:

∂µA
a
µ = 2mqP

a + iµqδ
3aS0 , (B.110)
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∂µV
a

µ = −2µqϵ
3abP b , (B.111)

where we have considered the axial and vector currents and the scalar and pseudoscalar densities
defined respectively as

Aa
µ = χγµγ5

τa

2 χ, V a
µ = χγµ

τa

2 χ

P a = χγ5
τa

2 χ, S0 = χχ . (B.112)

Continuum twisted mass QCD for non-degenerate quarks

Now we want to generalize the strategy presented above for the study of theories characterized by a
doublet of non-degenerate quarks [43]. One possibility, known as flavor off-diagonal splitting, is to
modify the action in the following way

Stm
F =

∫
d4xχ(x)

(
/D +mq + iµqγ5τ

3 + ϵqτ
1
)
χ , (B.113)

with µq, ϵq > 0 . This approach preserves all the good properties of the twisted mass QCD at
maximal twist. The physical basis is obtained by performing two transformations: an isovector
rotation with ω2 = π/2 followed by an axial rotation, that is

χ′ = eiω2τ2/2χ |ω2= π
2
= 1√

2
(1 + iτ2)χ ,

χ′ = χe−iω2τ2/2 |ω2= π
2
= χ

1√
2

(1 + iτ2) , (B.114)

followed by

q = e−iω1γ5τ1/2χ′ ,

q = qe−iω1γ5τ1/2 . (B.115)

If we set ω1 according to Eq. (B.105) we find the action of the physical basis

SF =
∫
d4xq

(
/D +M + ϵqτ

3
)
q . (B.116)

A different way to consider non-degenerate quarks is to consider the untwisted and the twisted
masses present in the action as diagonal matrices. In this case, we have that the mass terms remain
flavor diagonal, but the disadvantage of this method is that one has to take in account a large
number of parameters that need to be fixed. In this way we notice that it is sufficient only a rotation
to obtain the physical basis, the action so found will present the polar mass as a matrix just like
the twisted and the untwisted mass.
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Lattice twisted mass QCD

For Wilson quarks, the lattice tmQCD action is given by

Stm
F [χ, χ, U ] = a4∑

n

χ
(
DW [U ] +m+ iµqγ5τ

3
)
χ(n) , (B.117)

where DW [U ] is the Dirac operator given in Eq. (B.92), m and µq are respectively the bare untwisted
and twisted quark masses. As we have already pointed out, the Wilson term in DW [U ] breaks
explicitly the axial symmetry. This implies that the twisted mass term cannot be rotated away by
a chiral transformation, and the exact equivalence between the Wilson action with vanishing and
non-vanishing twisted mass is lost. This means that Wilson and Wilson twisted mass are different
lattice regularizations of QCD, the exact equivalence being recovered only in the continuum limit.
This lattice feature is of great utility since we have the freedom to choose the Wilson term and the
mass term to point in different relative “directions” in the Dirac and flavor space. This freedom is
the key to constrain the form of the cutoff effects induced by the Wilson term, as we will discuss
now.

Maximal twist

With the introduction of the twisted mass term, we now have two parameters, mq and µq, which
define the physics we want to describe. The relative size of the two mass parameters is given by the
twist angle ω. For each value of the angle we have a different theory that, however, is equivalent in
the continuum limit to the original one.

Among all the possible values of ω, the most interesting one is the case of

ω = π

2 , (B.118)

called maximal twist. In this case, we have that mq = 0, thus m = mcr, and only the twisted mass
term µq survives in the continuum action (B.102). The special role of ω = π/2 can already be
seen in the free case. In fact, the quark propagator in momentum space, given by inverting the
Wilson twisted mass Dirac operator, gives rise to a dispersion relation in which O(a) corrections
come with a factor of cosω [54]. This allows to turn off the O(a) term by choosing maximal twist,
i.e. ω = π/2. This happens because at maximal twist the Wilson term and the mass term are
orthogonal in isospin space, thus a mixed term, which is of order O(a), cannot emerge [61]. The
O(a)–improvement can also be established for the full interactive tmQCD. This problem can be
solved by performing the Symanzik improvement program.

In order to have maximal twist in the renormalized theory, we need a vanishing renormalized
quark mass parameter mR. Setting m = mcr implies for the renormalized quark mass parameter,
mR = 0, as needed for maximal twist. In order to have the bare standard mass parameter m tuned
to its critical value, m = mcr, we can impose a vanishing PCAC quark mass, where the PCAC
quark mass is defined, according to the Ward identities in Eq. (B.110), as

mP CAC = ⟨∂0A
a
0(x)P a(0)⟩

2⟨P a(x)P a(0)⟩ . (B.119)
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The automatic O(a)-improvement of the physical correlators can be demonstrated in many different
ways, just comparing the symmetries of the continuum action and of the lattice action. The detailed
proofs can be seen in [61, 43].

Finally, we write the explicit expression for the twisted Wilson Dirac action at maximal twist in
the physical basis:

SW tm
F [q, q, U ] |ω= π

2
= a4∑

n

q(n)
(
γ∇̃ + iγ5τ

3rWcr + µq

)
q(n) , (B.120)

where we have defined

γ∇̃ = 1
2
∑

µ

γµ(∇µ + ∇∗
µ) , Wcr = a

2
∑

µ

∇µ∇∗
µ −mcr . (B.121)

The automatic O(a) improvement and the technical advantages in the removal of exceptional
configurations make tmQCD a very popular lattice formulation.

Obviously, there are disadvantages related to the breaking of the isospin flavor symmetry, causing
for example a splitting between the neutral and charged pion masses caused by cutoff effects. This
is a discretization effect of O(a2) for improved actions, which vanishes in the continuum limit.
Moreover, in the spectral analysis of hadronic two–point correlation functions, all excited states with
the same lattice quantum numbers may contribute. Even though the states violating continuum
symmetries are multiplied by coefficients proportional to a2, these states have to be taken into
account when working at fixed lattice spacing. A very complex case is the neutral pion, since it
has the same quantum numbers of the vacuum, and this may require a multistate analysis just
to identify and subtract states which are pure lattice artifacts. For a recent study about these
problems and how to overcome them, one can see for example [64].

B.4 Renormalization

When one tries to use a quantum field theory to make a physical prediction, one typically find
divergent quantities. In order to obtain finite values for these quantities, one has to regularize
the theory, and there are many ways to do it. Usually, it is preferable to choose a regularization
which preserve as many symmetries as possible of the original action. There are a lot of different
regularizations to choose from. Until now, we have studied lattice QCD as a regularization of QCD,
defining it in terms of bare quantities.

In the regularized theory, at fixed cut-off, it is possible to compute all quantities of interest
using the bare parameters and to obtain finite results, however the results we obtain in this way
are unphysically dependent on the cut-off. Indeed, after we have regularized a theory, we have
to remove the cut-off, in lattice regularization this consists in performing the continuum limit
a → 0. Obviously, this limit must be performed very carefully, because a naive limit would give
back the divergences we had before the regularization. The only way to remove the cutoff properly
is through the introduction of the Renormalization Constants (RC) that are constructed to absorb
the divergences in the continuum limit.

On the lattice, renormalization can be performed using both perturbative and non-perturbative
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methods. A very used perturbative scheme is the modified Minimal Subtraction, MS, scheme, which
makes use of dimensional regularization at a given renormalization scale which is usually set to
µ = 2GeV . It is possible to implement the MS scheme on the lattice, but lattice perturbation
theory is more complicated as respect to the continuum, moreover its convergence is typically poor
and one prefers the use of non-perturbative schemes.

We will consider the RI-MOM (Regularization Independent at subtracted MOMentum) renor-
malization scheme, whose renormalization constants can be "converted" to those of the MS through
relations like

ZMS
i (µ) = Ri(µ)ZRI

i (µ) (B.122)

where the calculation of the matching coefficient Ri(µ) requires continuum perturbation theory only.
For scheme independent quantities, this connection is not even required.

B.4.1 RI-MOM scheme

In the RI-MOM scheme one imposes renormalization conditions non-perturbatively, directly on
Green functions, computed in the chiral limit in a fixed gauge, with given off-shell external states,
with large virtualities [65]. This idea is typically used also in perturbation theory, the renormalization
conditions of a certain operator are fixed by imposing that suitable Green functions coincide with
their tree level values. The Green functions are computed in the chiral limit, since in this way we
have that the RI-MOM scheme is a mass-independent scheme and the operator renormalization
constants depend only on the subtraction scale µ and on the coupling constant.

This method works properly if one can fix the virtuality of the external states µ within the
conditions

ΛQCD ≪ µ ≪ 1
a
. (B.123)

Indeed, in this window we can use continuum perturbation theory to connect different schemes,
since µ is much larger than the QCD scale. Due to the fact that the renormalization scale µ is small
compared to the inverse of the lattice spacing, we are able to neglect the discretization effects.

Now we are going to study the renormalization of bilinear quark operators

OΓ = qf Γqf ′ , (B.124)

where Γ is any combinations of the Dirac matrices. So we start from the bare (unrenormalized)
expectation value

OΓ(x, a, g(a)) ≡ ⟨OΓ(x)⟩a = ⟨qf (x)Γqf ′(x)⟩a . (B.125)

Now we introduce the renormalization constant ZΓ in order to define the renormalized operator
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ORΓ through the relation

ORΓ(x,µ,g(µ)) = ZΓ(µa, g(a))OΓ(x, a, g(a)) . (B.126)

ZΓ is defined by the requirement that ORΓ keeps finite even in the limit a → 0, and the renormal-
ization scale µ is chosen such that it satisfies the condition (B.123).

To found the RC ZΓ in the RI-MOM scheme, we impose the conditions on the Green function

GΓ(x, y) = ⟨qf (x)OΓ(0)qf ′(y)⟩a , (B.127)

which is built from the operator OΓ(0) with the insertion of two external quark fields. Now we
project the Green function on the off-shell quark states of momentum p through

GΓ(ap) = 1
V

∑
x,y

e−ip(x−y)⟨qf (x)OΓ(0)qf ′(y)⟩a . (B.128)

Then we define the amputated Green function ΛΓ(ap) as

ΛΓ(ap) = S−1
f (ap)GΓ(ap)S−1

f ′ (ap) , (B.129)

where Sf (ap) is the Landau gauge quark propagator in momentum space

Sf (ap) = 1
V

∑
x

e−ipx⟨qf (x)qf (0)⟩a . (B.130)

Since the amputated Green function ΛΓ is a matrix in Dirac and color space it is convenient to
saturate the indices taking the trace, with a normalization factor 1/12 (4 Dirac indices and 3 color
indices), so we define

ΓΓ(ap) = 1
12Tr[PΓΛΓ(ap)] . (B.131)

PΓ is a suitable projector which respects the property

1
12Tr[PΓΓ] = 1 , (B.132)

that is, the projector is defined by requiring that the projected Green function at tree level is equal
to 1. For example for Γ = {I, γ5, γµ, γµγ5} we have PΓ = {I, γ5,

1
4γµ,−1

4γµγ5}.
Finally, we can express the RI-MOM conditions requiring that the projected amputated Green
functions in momentum space computed at a scale p2 = µ2 and in the chiral limit, between off-shell
quark states, coincide with their tree level value. That is, we impose

ΓR
Γ (ap, µ, g(µ)) |p2=µ2= ZΓ(µa, g(a))

Zq(µa, g(a)) ΓΓ(ap, a, g(a))


p2=µ2
= 1 . (B.133)
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In the previous formula we have introduced the RC of the quark fields
√
Zq, which in the RI-MOM

scheme is defined as

Zq(µa, g(a)) = − i

12Tr
[
∂S−1

f (ap)
∂/p

]
p2=µ2

. (B.134)

Another scheme typically used is the RI’-MOM scheme, whose only difference is the definition of
Zq, instead of Eq. (B.134) we have

Zq(µa, g(a)) = − i

12Tr
[
/pS

−1
f (ap)
p2

]
p2=µ2

. (B.135)

Usually it is preferred the RI’-MOM scheme, because it does not require any derivative calculation
in Zq.

So the RI’-MOM renormalization conditions are given from the two Eqs. (B.133) and (B.135),
then the determination of the RCs of bilinear quark operators requires the computation of two
Green functions: the quark propagator Sq(ap) and the amputated ΛΓ(ap) . We remark that this
is a mass-independent scheme, since it is defined in the chiral limit, and that for this reason, in
order to compute the RCs, the ensembles generated to compute physical observables can not be
used. Instead, there are dedicated lattice simulations which use a sequence of progressively smaller
dynamical quark mass values in order to extrapolate to the chiral limit [66, 67].

B.5 Numerical simulations

In section B.2.3, we have seen that, using the integration rules for Grassmann variables, it is always
possible to integrate over the fermion fields, and that the expectation value of a physical observable
O is given by a path-integral over the gauge configurations only, according to

⟨O⟩ =
∫

D[U ]O[U ] e−Seff [U ]∫
D[U ]e−Seff [U ] , (B.136)

where

Seff [A] = SG[U ] +
∑

f

Tr logKf [U ] . (B.137)

The number of integration involved in the expectation value however is accessible from the actual
computation power only for very small lattice.

The relevant observation that makes lattice QCD simulation workable is that each gauge field
configuration is weighted by the factor e−Seff [U ]. This means that only a small fraction of them gives
a significant contribution, being the distribution highly peaked on those that are close to minimize
the action. Thus, in order to evaluate expectation values in any simulation only a representative
sample of gauge configurations is used, which is generated with a method called importance sampling.

Being more specific, the strategy consists in replacing the path-integral by an average made
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on the representative set of gauge configurations which are generated according to a probability
distribution given by the Boltzmann factor e−Seff . Practically, we want to generate an importance
sample field configurations according to the probability distribution

P (U) = e−See[U ]

Z
. (B.138)

To generate the importance sample, one uses Markov chain Monte Carlo algorithm like the Metropolis
algorithm [54].

Once one has generated an appropriate set of N configurations {Ui}, we can approximate the
expectation value of Eq. (B.136) with the average

⟨O⟩ ∼ Ô = 1
N

N∑
i=1

O(Ui) , (B.139)

where the equivalence is true in the limit N → ∞.
We have already pointed out that the computational cost of including sea quarks is very high,

and so for a very long time lattice simulations were performed in the quenched approximation.
However, the effects of this simplification are not negligible, indeed the estimates of the quenched
errors are in the range 10 − 15%. Present day techniques allows dynamical simulations which include
in the sea quark the light flavors u, d, taken as mass degenerate, and also the heavier flavors s and
c, making use of the hybrid Monte Carlo algorithm [68].

B.5.1 Autocorrelation

We have said that in order to generate the importance sample, a Markov chain is used. This means
that each configuration Ui+1 is calculated from the previous one Ui through an appropriate transition
probability. Thus, consecutive configurations are correlated, and we have to use configurations
which are well spaced out in order to consider them statistically independent.

To study the correlation between the value of an observable computed on two successive
configurations, Oi+t = O[Ui+t] and Oi = O[Ui], we use the autocorrelation function

CO(Oi,Oi+t) = ⟨OiOi+t⟩ − ⟨Oi⟩⟨Oi+t⟩ . (B.140)

For a Markov chain in equilibrium, the autocorrelation function depends only on the computational
time separation t4 and so we can write

CO(t) = CO(Oi,Oi+t) . (B.141)

For large t, the leading contribution to the normalized correlation function ΓO is typically a

4In this case t represents the number of steps of Markov chain between one "measurement" of the observable and
another.
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decreasing exponential

ΓO(t) = CO(t)
CO(0) ∼ e

− t
τO , (B.142)

where we have defined τO the exponential autocorrelation time for O. This parameter gives us an
information on how much subsequent measurements are correlated. If the computer time between
subsequent measurements is t we can expect a systematic error of order O(exp(−t/τO)) due to
autocorrelation.

For a set of correlated configurations, it can be shown [54] that the uncertainty associated to
the corresponding average Ô is given by

σO =
√

1
N

2τintσ̂2
O , (B.143)

where

σ̂2
O = 1

N − 1

N∑
i=1

(Oi − Ô)2 , (B.144)

and τint is the integrated correlation time given by

τint = 1
2 +

N∑
t=1

ΓO(t) . (B.145)

Usually the autocorrelation time requires a computational cost which is too expensive, and so one
relies on others statistical techniques which allows a more accessible analysis. One example is the
data blocking methods, which consists in dividing the set of data into smaller sub-blocks of size
K. Then one computes the averages on the sub-block and considers them as new variables O′

i.
Assuming that the original variables were independent, the variance of these blocked O′

i should
decrease as 1/K. So it is necessary to repeat this procedure for different values of K and when
the 1/K behavior is observed one may consider these block variables as statistically independent.
Once the block variables can be considered independent, it is possible to determine the expectation
values of the observable and their errors. However, this usually happens when K is large, and so
the number of usable data becomes very small. Moreover, the total number of data is often too
small to get a reliable estimate of the variance of the computed expectation values. To deal with
these problems, we show now two very practical techniques, known as the Jacknife and Bootstrap
resampling methods. Both assume that the data are not correlated, and so they are usually combined
with data blocking methods. The main usefulness of these techniques is that they allow an unbiased
estimate of the statistical error for non-trivial estimators.

B.5.2 Resampling Methods

Resampling methods are a set of statistical techniques that involve repeatedly sampling from a
given data set in order to estimate population parameters, quantify the uncertainty in a statistic,
and perform hypothesis tests. They are particularly useful in situations where the distribution of
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the population or the underlying statistical assumptions are unknown or difficult to estimate. In
this section, we are going to present two of the most commonly used ones, which are the jackknife
and the bootstrap resampling techniques. Before going into the details of the two methods, we
first explain better which is the practical need for resampling methods when dealing with lattice
simulations.

We start by considering a set of N independent and identically distributed random variables
x1, . . . , xN , for example a sample of N appropriate configurations, which are uncorrelated. Suppose
now that we are interested in estimating, from this sample, the exact average

⟨x⟩ =
∫
dxxP (x) ,

with P (x) being the probability distribution of x from which the sample is drawn, and to estimate
the uncertainty on our estimate as well. An unbiased estimate of the exact mean is then given by
the sample mean

x =
N∑

i=1
xi , (B.146)

while an unbiased estimate of the variance of the sample mean is given by

(δx)2 =
σ2

samp

N − 1 , (B.147)

with σ2
samp = x2 − x2 being the variance of the sample5. The meaning of unbiased estimate can

be understood in the following way: imagine performing many repetitions of our experiment, or
simulation; then the average of x and (δx)2 over the different samples will tend to the exact mean
and to the exact variance of the sample mean. In other words, the bias can be defined as the
difference between the exact average of an estimator and the real value of the quantity we want to
estimate. In the end, what matters is that unbiased estimates will become more and more accurate
as the number of data points is increased, while a biased estimate do not continue to improve with
increasing N once the corresponding error is smaller than the bias. Hence, we should work with
unbiased estimators.

So far everything works fine, Eqs. (B.146)-(B.147) provide an unbiased estimate of the exact
average for x and of the corresponding uncertainty for that estimate, by only employing data from
the drawn sample. However, suppose now that we are not interested in computing the average of
x itself, but to compute a certain function of that average, that is f(⟨x⟩). If f(x) is a non-linear
function, then f(x), that is the average over the sample of the quantity f(xi), would be a poor
estimator for f(⟨x⟩), since it would actually represent an estimate for ⟨f(x)⟩. Using f(x) as an
estimator for f(⟨x⟩) would produce a bias equal to

⟨f(x)⟩ − f(⟨x⟩) =
∫
P (x) (f(x) − f(⟨x⟩)) dx

= f ′(⟨x⟩)
∫
P (x) (x− x⟩) dx+ 1

2f
′′(⟨x⟩)

∫
P (x) (x− x⟩)2 dx+ . . .

5Usually N is large, and the difference between N and N − 1 is negligible.
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= 1
2f

′′(⟨x⟩)
[
⟨x2⟩ − ⟨x⟩2

]
+ . . .

= 1
2f

′′(⟨x⟩)σ2 + . . . , (B.148)

with σ2 being the variance of the x distributions and with the neglected terms involving higher
moments of the (x− ⟨x⟩) distribution together with higher derivatives of f(⟨x⟩)6. This difference
would persist even if averaging the result over infinite repetitions of the simulation, or if sending N
to infinity. A better, less biased estimator, is instead f(x), for which

⟨f(x)⟩ − f(⟨x⟩) =
∫
P (x) (f(x) − f(⟨x⟩)) dx

= 1
2f

′′(⟨x⟩)
[
⟨x2⟩ − ⟨x⟩2

]
+ . . .

= 1
2N f ′′(⟨x⟩)σ2 + . . . , (B.149)

where we used that the variance of the sample mean σ2
x is related to the variance σ2 of the x

distribution as

σ2
x =

[
⟨x2⟩ − ⟨x⟩2

]
= σ2

N
. (B.150)

Eq. (B.149) shows that the bias in using f(x) as an estimator for f(⟨x⟩) is of order 1/N , which for
large N is much smaller than the statistical error associated to the estimator, that instead is of
order 1/

√
N , and so the bias can be safely neglected.

We showed that a satisfactory estimate for f(⟨x⟩) is given by f(x). However, the problem now
is how to estimate the uncertainty in this estimate. Resampling methods, as the jackknife and the
bootstrap, which we now discuss, offer a very simple and practical solution to this issue.

Jackknife

The jackknife resampling method involves systematically omitting one observation at a time from
the original sample to create a set of "leave-one-out" samples. Each of these samples is then used to
calculate the statistic of interest. The average of these statistics is then used to estimate the bias
of the statistic, while the variance is estimated by calculating the sum of the squared differences
between each of the "leave-one-out" statistics and the full sample statistic. Let’s see how the method
works in practice.

We start defining the jackknife averages xJ
i as the average over all the x values with the exception

of xi, that is

xJ
i ≡ 1

N − 1
∑
j ̸=i

xj . (B.151)

6As expected, if f is a linear function all the derivatives beyond the first one are zero and so only in that case
⟨f(x)⟩ constitutes an unbiased estimate of f(⟨x⟩).
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Now we similarly define fJ
i as

fJ
i ≡ f(xJ

i ) . (B.152)

We now state that the jackknife estimate of f(⟨x⟩) is the average of the fJ
i , that is

f(⟨x⟩) ≃ fJ ≡ 1
N

N∑
i

fJ
i , (B.153)

and the uncertainty on this estimate is given by

σf(x) =
√
N − 1σfJ , (B.154)

where

σ2
fJ ≡ (fJ)2 −

(
fJ
)2

. (B.155)

It can be shown that fJ , as an estimator for f(⟨x⟩), gives rise to a bias which is of order of 1/N ,
and so that goes to zero as N → ∞. In particular, we have

⟨fJ⟩ − f(⟨x⟩) = 1
2(N − 1)f

′′(⟨x⟩)σ2 + . . . , (B.156)

with the dots representing terms suppressed by higher powers of N . This is essentially the same
bias as for f(x) and so we can employ this result to eliminate the leading, O(1/N), contribution to
the bias and estimate f(⟨x⟩) as

f(⟨x⟩) ≃ Nf(x) − (N − 1)fJ , (B.157)

with the resulting bias being of order 1/N2. However, since the statistical error is of order 1/
√
N ,

and N is typically large, this 1/N correction turns out to be negligible.
The most important advantage of using the jackknife method is that it allows an estimate of the

uncertainty for the f(⟨x⟩) estimator without the need of explicitly performing some complicated
error propagation, which could be very tedious when we are considering non-trivial estimators.

Bootstrap

The bootstrap, like the jackknife, is a resampling of the N data points xi. While before we considered
N new data sets, each of them containing all the original data points except for one, bootstrap
uses Nboot data sets, each containing N points obtained by random (Monte Carlo) sampling of the
original set of N points. Notice that each drawing is made from the entire data set, so a simulated
data set is likely to miss some points and have duplicates or triplicates of others. In other words,
the probability that a data point is picked is 1/N irrespective of whether it has been picked before,
and for this reason this process is also called picking from a set “with replacement”. Thus, a given
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data point xi will, on average, appear once in each Monte Carlo-generated data set, but may appear
not at all, or twice, and so on. We shall use the term “bootstrap” data sets to denote the Monte
Carlo-generated data sets.

Similarly, as what we did before for the jackknife method, we define xB
α , for α = 1, . . . , Nboot, as

the average of the x variable over a given bootstrap data set, that is

xB
α = 1

N

N∑
i=1

nα
i xi , (B.158)

where nα
i is the number of times that xi appears in the α-th bootstrap data set.

We now use the xB
α to define the corresponding fB

α quantities as

fB
α = f(xB

α ) . (B.159)

The final bootstrap estimate for f(⟨x⟩) is then the average of these, namely

fB = 1
Nboot

Nboot∑
α=1

fB
α , (B.160)

while the corresponding uncertainty can be estimated as

σf(x) =
√

N

N − 1σfB , (B.161)

with

σ2
fB = (fB)2 −

(
fB
)2

. (B.162)

Similarly to what happens for the jackknife method, the bias in the fB estimator is of order
1/N , which can be improved, eliminating the O(1/N) contribution to the bias, by defining

f(⟨x⟩) ≃ 2f(x) − fB , (B.163)

for which the bias starts at order 1/N2. As we said before, this improvement is typically negligible
with respect to the O(1/

√
N) statistical error on the estimate.

B.5.3 Systematic errors

Until now, we have seen some methods to deal with statistical errors, but there are other sources
of uncertainty given by the several approximations which have been made. Obviously systematic
errors arise since we have formulated the theory on the lattice, consequently measured quantities
depends not only on the input parameters (quark masses and coupling constants) but also on both
the lattice spacing a and the lattice size L.

But these are not the only sources of systematic errors, which now we briefly present.
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• QUENCHING: We have already discussed how it is expensive to take in account the full
fermionic determinant in the path-integral, so the final uncertainty it will be influenced by
the number of dynamical quark flavors Nf implemented in the simulation.

• SETTING PARAMETERS: In order to extract physical values from data simulations (and this
operation require several interpolations and extrapolations) the first step is to establish the
value of several parameters, like the quark masses, the lattice spacing, and the renormalization
constants. All these values have their own uncertainties which affect any physical value which
is then extracted.

• DISCRETIZATION: Obviously there are terms of order O(a) (or of higher order in a for
improved actions) which disappear only in the continuum limit a → 0. This limit is reached
by performing several simulations at different values of a and then by extrapolating a → 0.
However, the extrapolation itself implies systematic errors.

• FINITE VOLUME: In the simulations the real infinite system is represented by a finite lattice,
with boundary conditions, and this gives rise to finite volume corrections. In the simplest
case, these errors are due to the contributions of the so-called mirror states, originated by the
boundary conditions. It can be shown that these corrections decay exponentially as e−ML

where M is the mass of the state. The pion is the lightest physical state which has to be
taken in account in lattice QCD simulations, and so to make these contributions small it is
necessary to require MπL ≫ 1.

• LIGHT EXTRAPOLATION: For the real masses of the light quarks u and d the numerical
computation of the quark propagator becomes very expensive. Moreover, the condition
MπL ≫ 1 becomes more difficult to satisfy. For these reasons, lattice simulations used to
be performed with larger values of mu,d than the physical ones, and then extrapolates the
results to the physical limit. As every extrapolation, this procedure implies other systematic
errors which have to be estimated. However, thanks to the increasing computational power,
nowadays lattice simulations are often performed at physical quark mass values.

• EXCITED STATES: As we will see in the next sections, in order to extrapolate the physical
observables of interest from the correlation functions one has to isolate the fundamental state,
and neglect other excited states, which however contribute to the correlation functions. Thus,
the contribution of the excited states becomes systematic error, we will show that these errors
are of order O(e−∆E t), where ∆E is the difference in energy between the fundamental state
and the first excited state. In order to make these errors small, it is necessary the requirement
of a lattice time extent T big enough to allow values of t for which we have ∆E t ≫ 1.

B.6 Lattice correlators

In this section, we deal with the extraction of the physical quantities of interest from correlation
functions, which are the objects that are actually computed in lattice simulations.
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Figure B.3: Quantum numbers of the most commonly used meson interpolators. The classification with
respect to C is for the flavor neutral interpolators only.

B.6.1 Two-point correlation function

The simplest quantities involving fermions that one can compute on the lattice are the masses of
hadrons e and some simple matrix elements between an hadronic state and the vacuum. This is a
very significant test for the correctness of lattice QCD, since the hadronic spectrum is determined
from the low energy dynamics of QCD and so it can not be computed within a perturbative approach.
The extraction of the hadron masses requires the analysis of two-point Green functions, which we
study in this section.

The first thing one has to do is to identify the composite operators O, known as hadron
interpolators, such that the corresponding Hilbert space operators Ô and Ô† annihilate and create
from the vacuum the states we want to analyze. For this reason, Ô and Ô† are called sink and
source interpolators. On the lattice the hadron interpolator is a functional of the lattice fields with
the quantum numbers of the state we are interested in. The aim of this thesis concerns only mesons,
and so we now focus our attention on meson interpolators.

In the case of a meson with quantum numbers JP C it is usually used a local operator of the form

OΓ(x) = qf (x)Γqf ′(x) , (B.164)

where the index f and f ′ denote the flavors of the valence quarks and Γ is a generic combination of
Dirac matrices, which has to reproduce the other quantum numbers JP C ; on the lattice x = an. In
Fig.B.3 are shown some typical examples.

Meson masses and the matrix elements associated to the transitions between the one particle
states of the theory and the vacuum can be extracted from the study of the two-point Green
functions

G(x) = ⟨0|T{ÔΓ(x)Ô†
Γ(0)}|0⟩ . (B.165)

Usually we are interested in states with definite spatial momentum q and thus we perform a Fourier
transformation on the spatial position x, obtaining

C(t, q) =
∑

x

G(x)e−iq·x =
∑

x

⟨0|T{ÔΓ(x)Ô†
Γ(0)}|0⟩e−iq·x . (B.166)

Now it is necessary to insert a complete set of energy eigenstates |Em⟩ which are covariantly
normalized according to

⟨Em|En⟩ = L32Enδn,m (B.167)
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and satisfy the completeness relation

I = |0⟩⟨0| +
∑

n

1
L32En

|En⟩⟨En| . (B.168)

Moreover, due to the spatial and temporal translational invariance, we can use the Minkowski
space-time translation operator e−ip̂x = e−i(Et−p·x) to write

ÔΓ(x) = eip̂xÔΓ(0)e−ip̂x . (B.169)

Now we assume that t > 0 and that the meson interpolator OΓ does not have the quantum numbers
of the vacuum, thus we can ignore the |0⟩⟨0| term within the intermediate sum, and we find

C(t, q) =
∑

n

∑
x

1
2L3En

⟨0|ÔΓ(0)|En⟩ ⟨En|Ô†
Γ(0)|0⟩ e−iEntei(pn−q)·x

=
∑

n

1
2En

| ⟨0|ÔΓ(0)|En⟩ |2 e−iEnt δpnq

=
∑

n:pn=q

1
2En

| ⟨0|ÔΓ(0)|En⟩ |2 e−iEnt , (B.170)

where now all the states |En⟩ in the sum have spatial momentum pn = q.
It is sufficient to project only one of the two interpolators of a correlation function to definite

momentum, while the other can remain placed in a single point of the lattice and usually is placed
at the origin. Indeed, by writing the real space operator as a sum of its Fourier components and
using the fact that states with different momenta are orthogonal between each other, one sees that
only the correct momentum term survives7.

The lattice simulations are performed in Euclidean space-time, and so we have to perform a
Wick rotation in order to obtain the Euclidean correlation function, in which the oscillating term is
transformed into an exponentially decreasing one. So, by applying the transformation t → −it we
obtain

C(t, q) =
∑

n:pn=q

1
2En(q)ZΓe

−Ent , (B.171)

where we have defined the matrix element as

√
Zn

Γ = ⟨0|ÔΓ(0)|En⟩ , (B.172)

which quantifies the overlap beetween the interpolator ÔΓ and state |En⟩.
In the limit of large t the leading term of C(t, q) is the contribution given by the fundamental

state, that is the lightest state excited from the vacuum by the interpolator ÔΓ, with energy E0.

7Note, however, that this is strictly correct only for the exact expectation values, whereas it is only approximate
for a sum over a finite number of configurations.
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All the other states, with En > E0 are called excited states. So, for large t, we have

C(t, q) = ZΓ
2E0

e−E0t

1 +
∑
n̸=0

O(e−(En−E0)t)


∼ ZΓ

2E0
e−E0t , (B.173)

where
√

ZΓ = ⟨0|ÔΓ(0)|E0⟩ and E0 =
√
M2

0 + q2, with M0 denoting the mass of the lightest stable
particle with the same quantum numbers of the interpolator Ô.

To extract the mass of the lightest state, one considers the case q = 0 and uses the condition

C(t) −−→
t≫0

ZΓ
2M0

e−M0t , (B.174)

to define the effective mass as

meff (t) = log C(t)
C(t+ 1) . (B.175)

The effective mass becomes constant only at large t, where it exhibits a plateau meff = M0.
In real simulations we have to take in account the reflected wave coming from the boundaries

of the lattice and traveling in the opposite direction with respect to the signal, due to which the
correlation function becomes

C(t) ≃ ZΓ
2meff

[
e−meff t + e−meff (T −t)

]
= ZΓ

2meff
e−meff

T
2 cosh[meff (t− T/2)]

. (B.176)

Now we have

C(t)
C(t+ 1) = cosh[meff (t− T/2)]

cosh[meff (t+ 1 − T/2)] . (B.177)

Though it is more complicated than before, it is possible to plot meff (t) solving Eq. (B.177) for
every t. Then one identifies the plateau, and performs a constant fit on it in order to extract the
value M0.

It is very important to choose carefully an appropriate interval [tmin, tmax] for the fit. Indeed,
the interval must be far enough from 0 and T so that the contributions from the excited states
can be safely neglected. Nevertheless, the interval can not become too small since the ratio of
signal and noise becomes weaker as time increase and in the region of t around T/2 there are strong
fluctuations. For these reasons, a poor choice of tmin and tmax can introduce large systematic errors
in the evaluation of the spectrum.

Once the mass M0 has been estimated it is possible to use the correlation function to extract
the matrix element ZΓ, from which the meson decay constants fP can be obtained, which enclose
all the non-perturbative strong dynamics entering the leptonic decays of pseudoscalar mesons (in
absence of QED corrections). Indeed, it is sufficient to choose for the pseudoscalar meson P , with
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valence flavors f and f ′, the hadron interpolator

O = qfγ0γ5qf ′ , (B.178)

so we have

Z = ⟨0|qfγ0γ5qf ′ |P (q = 0)⟩ = iMP fP . (B.179)

We conclude this section about two-point correlation functions, remarking that in order to compute
C(t) for mesons which are not flavor singlet, it is necessary to calculate on the lattice only the
quark propagators starting from the origin at fixed gauge configuration. Indeed, Eq. (B.164) can be
rewritten on the lattice as

C(x) = 1
Z

∫ ∏
l

dUl

∏
f,n

dqfdqf OΓ(x)O†
Γ(0)e−SG+SF

= 1
Z

∫ ∏
l

dUl

{
− Tr[Sf ′(x, 0)ΓSf (0, x)Γ] +

+δf,f ′Tr[Sf (x, x)Γ]Tr[Sf (0, 0)Γ]
}
e−Seff [U ] . (B.180)

For f ̸= f ′ only the first trace contributes, and we can employ the useful property

S = γ5S
†γ5 (B.181)

to express the correlator only in terms of propagators which start from the origin.

B.6.2 Three-point correlation function

The correlators we study in this thesis, for the extraction of the form factors, belongs to the class
of the three-point correlation functions, so now we are going to show some of their characteristics.
Generally, three-point Green functions can be used to obtain the matrix element of an operator O
between two hadronic states A and B.

Let OA and OB be the hadronic interpolators for the states A and B, respectively. Then we
consider the following three-point correlator, in spatial momentum space:

C(tx, ty) =
∑
x,y

⟨0|T [OA(y)O(x)OB]|0⟩ e−ip·x−iq·y . (B.182)

Now we assume ty > tx > 0 and insert two sums on a complete basis of energy eigenstates, obtaining

C(tx, ty) =
∑
i,j

⟨0|OA|Ai⟩ ⟨Ai|O(0)|Bi⟩ ⟨Bi|OB|0⟩ e
−EAi

(ty−tx)−EBj
tx

4EAiEBi

. (B.183)
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with

EAi =
√
M2

Ai
+ q2 , EBj =

√
M2

Bj
+ |q + p|2 , (B.184)

where MAi and MBj are the masses of the states |Ai⟩ and |Bj⟩8. As before every term in the sum
is exponentially suppressed as time increases, if we denote with |A⟩ and |B⟩ the lightest hadronic
states with the appropriate quantum numbers, we can write

C(tx, ty) −−→
t≫0

√
ZAZB

4EAEB
⟨A|O|B⟩ e−EA(ty−tx)−EBtx . (B.185)

Once the two points functions have been studied, and the parameters ZA, ZB, EA and EB have
been obtained, the previous expression can be used to obtain the desired matrix element ⟨A|O|B⟩.

To compute on the lattice the three-point Green functions it is not sufficient the calculation of
the propagators which start from the origin, as we now show. As a realistic example let’s assume
that A is a pseudoscalar meson, and O is a flavor changing operator which transforms |B⟩ in |A⟩,
thus

OA = q1γ5q2 , O = q2Γq3 , OB = q3ΓBq1 . (B.186)

By using these operators, instead of Eq. (B.180) we have

C(tx, ty) = − 1
Z

∫ ∏
l

d[Ul]e−SG[U ]∑
x,y

e−i(q·x+p·y)Tr[Sq1(0, y)γ5Sq2(y, x)ΓSq3(x, 0)ΓB] .

(B.187)

Usually one rewrites the previous expression in terms of the generalized propagator, which is defined
as

Sgen
q1,q2(x, 0, ty,p) =

∑
y

Sq1(x, y)γ5Sq2(y, 0)e−ip·y . (B.188)

Just like the ordinary propagator, the generalized propagator is a matrix in Dirac and color space.
Using Eq. (B.188) we write

C(tx, ty) = − 1
Z

∫ ∏
l

d[Ul]e−SG[U ]∑
x

e−iq·xTr[Sgen
q1,q2(0, x)ΓSq3(x, 0)ΓB] . (B.189)

The generalized propagator satisfies the equation

Sgen(0, x) = γ5S
†
gen(x, 0)γ5 , (B.190)

which is analogous to Eq. (B.181) for the ordinary propagator. Due to this property, it is possible
to compute the three-point correlators with the calculation of only the ordinary and generalized

8They are not necessarily single particle states, M is the invariant mass of a generic state.
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propagators which start from the origin.



Appendix C

Decay rates formulae for ℓ ̸= ℓ′

In this appendix we collect the expressions of the several functions entering the differential decay
rate we computed in section 3.1, with different charged leptons in the final state, i.e. for ℓ ̸= ℓ′.

We start by defining the following quantity:

∆log(xk, xq) = log
(

1 + 2A(xk, xq)
)
, (C.1)

with

A(xk, xq) =

x2
q

√
x4

k − 2x2
k(x2

q + 1) + (x2
q − 1)2 − rℓ

√
−2(x2

k + 1)x2
q + (x2

k − 1)2 + x4
q

−x2
q

√
x4

k − 2x2
k(x2

q + 1) + (x2
q − 1)2 + rℓ

√
−2(x2

k + 1)x2
q + (x2

k − 1)2 + x4
q + rℓ(x2

k − 1) + x2
q(−x2

k + x2
q + rℓ − 1)

,

(C.2)

where xk and xq are defined in Eq. (2.1) and rℓ is defined in Eq. (3.7).
The point-like contribution to the decay rate of Eq. (3.11) is given by

Γ′′
pt(xk, xq) = f2

K rℓ xq

24π3m3
K xk

√
1 − 4rℓ′

x2
k

(
2rℓ′

x2
k

+ 1
)

×

(
2

x2
q − 1

(
−x2

kx
2
q + x2

k + x4
q − 2x2

qrℓ − 2(rℓ − 1)rℓ + 1
)

∆log(xk, xq) +
√

(x2
k − x2

q + 1)2 − 4x2
k (x2

q − rℓ)

×
(x2

k x
2
q − x2

k rℓ − 2x4
q + 4x2

q rℓ − 2
(x2

q − 1)2 x2
q

+ 2 (rℓ − 1) (x2
k + 2rℓ)

(x2
q − 1)2 rℓ − x2

k (rℓ − 1) (x2
q − rℓ)

))
, (C.3)

where rℓ′ is also defined in Eq. (3.7).
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The interference contribution to the decay rate of Eq. (3.11) can be expressed in the form

Γ′′
int(xk, xq) =

[
gV (xk, xq)FV (xk, xq) + gA(xk, xq)FA(xk, xq)

+ g1(xk, xq)H1(xk, xq) + g2(xk, xq)H2(xk, xq)
]
, (C.4)

where the kernels are

gV (xk, xq) = fKrℓ xq

12π3mKxk

√
1 − 4rℓ′

x2
k

(
2rℓ′

x2
k

+ 1
){(

x2
k(x2

q − 2rℓ + 1) − (x2
q − 1)2

)
∆log(xk, xq)

+
(x2

k + x2
q − 1)(x2

q − rℓ)
√

(x2
k − x2

q + 1)2 − 4x2
k

x2
q

}
,

gA(xk, xq) = fKrℓ xq

12π3mKxk(x2
q − 1)

√
1 − 4rℓ′

x2
k

(
2rℓ′

x2
k

+ 1
){

(x2
q − 1)2(−x2

k − x2
q − 2rℓ + 1)∆log(xk, xq)

+
(x2

q − 1)(x2
q − rℓ)(x2

k + 2x2
q + rℓ − 1)

√
−2(x2

k + 1)x2
q + (x2

k − 1)2 + x4
q

x2
q

}
,

g1(xk, xq) = fKrℓ xk xq

24π3mK

√
1 − 4rℓ′

x2
k

(
2rℓ′

x2
k

+ 1
){

4(x2
q + rℓ − 2)∆log(xk, xq)

−
(x2

q − rℓ)
(
rℓ(−x2

k + 3x2
q + 1) + x2

q(x2
k + 5x2

q − 9)
)√

−2(x2
k + 1)x2

q + (x2
k − 1)2 + x4

q

(x2
q − 1)x4
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}
,

g2(xk, xq) = fKrℓ xk xq

24π3mK(x2
q − 1)2

√
1 − 4rℓ′

x2
k

(
2rℓ′

x2
k

+ 1
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2(x2
q − 1)(x2

q − r2
ℓ )∆log(xk, xq)

−
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q(−x2
k + x2

q + 3)
)√

(x2
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q + 1)2 − 4x2
k

x2
q

}
. (C.5)

Finally, the SD contribution to the decay rate of Eq. (3.11) can be expressed in the form

Γ′′
SD(xk, xq) = gV V (xk, xq)F 2

V (xk, xq) + gAA(xk, xq)F 2
A(xk, xq) + g11(xk, xq)H2

1 (xk, xq)

+ g22(xk, xq)H2
2 (xk, xq) + gA1(xk, xq)FA(xk, xq)H1(xk, xq)

+ g12(xk, xq)H1(xk, xq)H2(xk, xq) , (C.6)

where

gV V (xk, xq) = 1
24π3xk xq

√
1 − 4rℓ′

x2
k

(
2rℓ′

x2
k

+ 1
)(

(x2
k − x2

q + 1)2 − 4x2
k

)3/2
(x2

q − rℓ)2 ,
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gAA(xk, xq) = 1
144π3xk x3

q

√
1 − 4rℓ′

x2
k

(
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x2
k

+ 1
)(

x4
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