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Summary

This thesis is divided in two parts. In the first part we consider spin systems in the
d-dimensional lattice Zd satisfying the so-called strong spatial mixing condition
(SSM ), a standard condition corresponding to exponential decay of correlations
with distance between spins on the lattice. We show that the relative entropy
functional of the corresponding Gibbs measure satisfies a family of inequalities
which control the entropy on a given region V ⊂ Zd in terms of a weighted sum
of the entropies on blocks A ⊂ V when each A is given an arbitrary nonnegative
weight αA. These inequalities generalize the well known logarithmic Sobolev in-
equality for the Glauber dynamics. Moreover, they provide a natural extension of
the classical Shearer inequality satisfied by the Shannon entropy. Finally, they im-
ply a family of modified logarithmic Sobolev inequalities which give tight bounds
on the mixing time of arbitrary weighted block dynamics of heat bath type. Then,
we show that the tools involved in the analysis of the block dynamics can be
adapted to the study of the mixing time of the Swendsen-Wang dynamics for the
ferromagnetic Ising and Potts models on the integer lattice Zd. This dynamics is
a widely used Markov chain that has largely resisted sharp analysis because it
is non-local, i.e., it changes the entire configuration in one step. In particular we
prove that, whenever SSM holds, the mixing time on any n-vertex cube in Zd is
O(log n), and we prove this is tight by establishing a matching lower bound on
the mixing time. The previous best known bound was O(n). The proof of this
fact utilizes a new factorization of the entropy in the joint probability space over
spins and edges that underlies the Swendsen-Wang dynamics, which extends to
general bipartite graphs of bounded degree. Our result then follows from the fact
that this factorization implies the modified log-Sobolev inequality. This factoriza-
tion also leads to several additional results, including mixing time bounds for a
number of natural local and non-local Markov chains on the joint space, as well
as for the standard random-cluster dynamics.

We finally extend our analysis to spin systems on an arbitrary graph G =

(V,E) with finite spin space, in which case we prove that a contractive cou-



pling for an arbitrary local Markov chain implies optimal bounds on the mixing
time and the modified log-Sobolev constant for a large class of Markov chains
including the Glauber dynamics, arbitrary heat-bath block dynamics, and the
Swendsen-Wang dynamics. This reveals a novel connection between probabilis-
tic techniques for bounding the convergence to stationarity and analytic tools for
analyzing the decay of relative entropy. As a corollary of our general results, we
obtain O(n log n) mixing time and Ω(1/n) modified log-Sobolev constant of the
Glauber dynamics for sampling random q-colorings of an n-vertex graph with
constant maximum degree ∆ when q > (11/6 − ϵ0)∆ for some fixed ϵ0 > 0.
We also obtain O(log n) mixing time and Ω(1) modified log-Sobolev constant of
the Swendsen-Wang dynamics for the ferromagnetic Ising model on an n-vertex
graph of constant maximum degree when the parameters of the system lie in the
tree uniqueness region. At the heart of our results are new techniques for estab-
lishing spectral independence of the spin system and block factorization of the
relative entropy. Roughly speaking, a distribution is spectrally independent if
the maximum eigenvalues of the influence matrices associated to the distribution
and its conditional distributions are upper bounded. On one hand we prove that
a contractive coupling of any local Markov chain implies spectral independence
of the Gibbs distribution. On the other hand we show that spectral independence
implies factorization of entropy for arbitrary blocks, establishing optimal bounds
on the modified log-Sobolev constant of the corresponding block dynamics.

The second part is devoted to the study of a nonlinear recombination model
from population genetics as a combinatorial version of the Kac-Boltzmann equa-
tion from kinetic theory. Following Kac’s approach, the nonlinear model is ap-
proximated by a mean field linear evolution with a large number of particles. In
our setting, the latter takes the form of a generalized random transposition dy-
namics. Our main results establish a uniform in time propagation of chaos with
quantitative bounds, and a tight entropy production estimate for the generalized
random transpositions, which holds uniformly in the number of particles. As a
byproduct of our analysis we obtain sharp estimates on the speed of convergence
to stationarity for the nonlinear equation, both in terms of relative entropy and
total variation norm.

The first part of this thesis is based on [27, 12, 11], while the second part is
based on [28].
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Chapter 1
Introduction

1.1 Spin systems and Gibbs samplers

1.1.1 Spin systems

Spin systems arise in many scientific fields such as statistical physics and theoret-
ical computer science. Given a graph G = (V,E) and a fixed integer q ≥ 2, a spin
system on the graph G is a Gibbs distribution µ on the space of configurations
Ω = SV , which contains terms that depend on the spin values at each vertex and
at each pair of adjacent vertices. S is the set of spins, and a spin configuration
σ ∈ Ω is an assignment of spins σ : V → S to each vertex of G. When A ⊂ V, σA

is the projection σA : A → S defined as σA(x) = σ(x) ∀x ∈ A. When S is finite it
is often indicated as S := [q], where we define [q] := {1, . . . , q}, q ≥ 2. A boundary
condition (or pinning) τ for the spin system is a fixed assignment of spins to the
boundary of V. We write µτ to denote the Gibbs distribution µ with boundary
condition τ. We refer to section 2.1 for formal definitions.

The Potts model is one of the most common and widely studied example of
spin system. It is defined by the following distribution

µ(σ) =
exp(βM(σ))

Z(G, β)
,

where M(σ) =
∑

xy∈E 1(σx = σy) is the set of monochromatic edges, Z(G, β)
is the partition function and β ∈ R is the model parameter, which captures the
strength of interactions between the spins; in mechanical statistics β is associated
to the inverse temperature of the model. When β ≥ 0 the model is said to be
ferromagnetic, if β < 0 it is called antiferromagnetic. When q = 2 this spin system
is known as the Ising model.

Other well known examples of spin systems are the q-colorings model, de-



1.1. SPIN SYSTEMS AND GIBBS SAMPLERS

fined by

µ(σ) =
1(σ ∈ ΩG,q)

|ΩG,q|
,

where ΩG,q := {σ ∈ Ω : σ is a proper coloring of G}, and, for q = 2, the hardcore
model, which is defined by

µ(σ) =
λ|σ|1(σ ∈ I)
Z(G, λ)

,

where I = {independent sets of G} and the parameter λ > 0 is called the fugac-
ity of the model.

One of the main tasks regarding the study of spin systems is to address the
problem of sampling from the Gibbs distribution. As an example of this, let us
consider the Hardcore model with fugacity 1 µ(σ) = 1

|I|1(σ ∈ I),where I is the set
of all independent sets of G; in this case directly sampling from this distribution
would mean computing |I|, which is a very hard problem to solve since |I| can
be exponential in the number of vertices of the graph.

A classical and much simpler way to address the problem of sampling is to
introduce sophisticated algorithms such that after a certain amount of time they
approximately generate samples of the Gibbs distribution.

Monte Carlo Markov chains (MCMC) are standard and widely used Markov
chains for sampling. Namely in every step of these algorithms, the current con-
figuration will be randomly updated under appropriate rules, such that the dis-
tribution will eventually converge to its stationary measure, namely the measure
preserved by the chain. The number of steps required to be sufficiently close to
the stationary measure is called the mixing time of the chain, see Eq. (2.3.1), and
the goal is to understand how the mixing time grows as the size of the graph
increases.

1.1.2 Gibbs samplers: Block dynamics and Swendsen-Wang dy-

namics

In this thesis we are mostly interested in a particular class of MCMC, the Gibbs
samplers. One of the main Gibbs sampler we consider is the block dynamics, that
we define as follows. Let us fix a probability measure α = {αA, A ⊂ V } over 2V

(i.e. the set of all subsets of V ) and consider the Markov chains that at each step
picks a A ⊂ V with a probability αA and update its spins σA according to the

13
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conditional distribution µσAc

A = µ(·|σAc). The transition matrix is

Pα(σ, σ
′) =

∑
A⊂V

αA1(σAc = σ′
Ac)µ

σAc

A (σ′
A) ∀σ, σ′ ∈ Ω, (1.1.1)

and it is not hard to see that it is ergodic (i.e. aperiodic and irreducible), reversible
with respect to µ (which in turn implies that µ is its stationary distribution) and
that the Dirichlet form is defined as

Dα(f, g) = ⟨f, (1− Pα)g⟩µ =
∑
A⊂V

αAµ [CovA(f, g)] ∀f, g ∈ L2(µ), (1.1.2)

where CovA(f, g) := µA[fg] − µA[f ]µA[g] denotes the covariance of f, g with re-
spect to µA. This Markov chain is called the α− weighted (heat bath) block dy-
namics, and one of our main contributions is to provide tight mixing time bounds
for this chain when the spin system satisfies some decay of correlations proper-
ties.

When G ⊂ Zd we will require that the spin systems satisfy a decay of correla-
tion property that belongs to the family of strong spatial mixing conditions, and we
will refer to it as SSM . In the case of finite spins it is one of many equivalent con-
ditions introduced by Dobrushin and Shlosman [49] to characterize the so-called
complete analyticity regime. This property, roughly speaking, expresses the fact
that the correlation between spins at different vertices decreases exponentially
with the distance between them. More precisely, given V ⊂ Zd and a pair of fixed
configurations ψ and ψx on the boundary of V such that ψ and ψx differ only in
the spin of the vertex x, we say that the property C(V,K, a) is satisfied with con-
stants K, a > 0 if the effect on the conditional distribution at a set B ⊂ V decays
asK exp(−ad(x,B)).We then say that the spin system satisfies SSM(K, a) if there
exists K, a > 0 such that the property C(V,K, a) holds for any V ⊂ Zd. As we will
see it is important to consider a relaxed spatial mixing condition that requires the
decay to hold only for all sufficiently “fat" sets, in which case we denote the cor-
responding spatial mixing property as SSML(K, a). It is important to remark that
the latter definition is weaker than SSM , in the sense that there are spin systems
that do not satisfy the condition SSM(K, a) but for which the relaxed condition
SSML(K, a) holds if L is a suitably large constant, see remark 2.2.4. We refer to
section 2.2.1 for a formal definition of SSM .

When G is an arbitrary graph with maximum degree ∆ independent on |V |
and S = [q], we will assume that the spin systems satisfy spectral independence,
a powerful new approach for proving fast convergence of Markov chain Monte
Carlo (MCMC) algorithms. A distribution µ is said to be η−spectrally indepen-
dent if the maximum eigenvalue of the influence matrix J is less or equal than η

14
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for all possible pinnings, where J is the V × [q]× V × [q] matrix defined as

J(x, a; y, b) := µ(σy = b|σx = a)− µ(σy = b), x ̸= y.

The spectral independence approach has been quite powerful as it led to rapid
mixing results for the hard-core model in the tree uniqueness region [4], for any
2-spin antiferromagnetic spin system in the tree uniqueness region [41], and for
colorings [40, 132] it matched the best known parameter bounds using other algo-
rithmic approaches. Moreover, recent work of Chen et al. [42] shows that spectral
independence implies optimal mixing of the Glauber dynamics in all of these
cases. We refer to section 2.2.2 for a formal definition of spectral independence.

One of the most known and extensively studied Gibbs sampler for the dis-
tribution µ is the Glauber dynamics. Note that this chain is a particular case of
the more general block dynamics since it corresponds to the case where αA =
1
|V |1(|A| = 1). Despite the vast literature concerning the study of mixing time of
the Glauber dynamics, very few results have been proved for the more general
α− weighted block dynamics. One of the main motivations for its study is to go
beyond the locality of the Glauber dynamics, and thus being also able to provide
optimal bounds for non-local Markov chains, i.e. chains that at each step updates
the spins of large subsets of V, which may mix faster than local dynamics. An
example of non local block dynamics is the following. If the graph has maximum
degree ∆, then it is not hard to see that it is k−partite with k ≤ ∆ + 1, so there
exist k independent sets V1, . . . , Vk ⊂ V such that

⊔k
i=1 Vi = V. The k−partite block

dynamics is then defined by the weights αA = 1
k
1(A = Vj,∃ j ∈ [k]). If the graph

is bipartite, then this chain is called the even-odd block dynamics.
Another popular Markov chain for sampling is the Swendsen-Wang (SW) dy-

namics [124], which utilizes the random-cluster representation of the Potts model
to derive a sophisticated non-local Markov chain in which every vertex can up-
date its spin in each step. From the current spin configuration σ(t) ∈ Ω, the SW
dynamics generates σ(t+ 1) ∈ Ω as follows:

1. Let M(σ(t)) = E \ D(σ(t)) = {{v, w} ∈ E : σv(t) = σw(t)} be the set of
monochromatic edges of G in σ(t).

2. Independently for each edge e ∈ M(σ(t)), retain e with probability 1 −
exp(−β) and delete it otherwise, resulting in the subset A(t) ⊆ M(σ(t)).
(This is equivalent to performing bond percolation with probability 1 −
exp(−β) on the subgraph (V,M(σ(t)))).

3. For each connected component C in the subgraph (V,A(t)), independently
choose a spin sC uniformly at random from [q] and assign sC to all vertices

15



1.2. FUNCTIONAL INEQUALITIES

in C, yielding σ(t+ 1) ∈ Ω.

The Swendsen-Wang dynamics is ergodic, and has the Gibbs distribution as its
stationary distribution; see [56] for a proof. This non-local dynamics has the abil-
ity to flip large regions of spins in one step and was thus originally proposed as an
alternative algorithm for overcoming the slow convergence at low temperatures
of the Glauber dynamics. We will show that the techniques and tools involved in
the analysis of the mixing time of the block dynamics can be effectively extended
and applied to the analysis of the mixing time of the SW dynamics.

1.2 Functional inequalities

Functional inequalities such as the Poincaré and the logarithmic Sobolev inequal-
ity have long played a key role in the analysis of convergence to equilibrium for
spin systems. In particular, the so-called modified log-Sobolev inequality is often
a powerful analytic tool in establishing tight bounds on the mixing time, while
the weaker Poincaré inequality provides control on the spectral gap; see, e.g.,
[46, 95, 17].

For the Glauber dynamics associated to a lattice Gibbs measures in the high
temperature regime, rather conclusive results were obtained around thirty years
ago [78, 134, 123, 122, 90, 97]. Broadly speaking, the main results of these works
can be summarized with the statement that for finite or compact spin space, if the
spin system satisfies a spatial mixing condition, then the relative entropy functional
of the Gibbs measure µV describing the system on any region V ⊂ Zd, satisfies an
approximate tensorization of the form

EntV f ≤ C
∑
x∈V

µV [Entxf ] , (1.2.1)

where C ≥ 1 is a constant, f is a nonnegative function, and EntV f is the relative
entropy

EntV f = µV [f log (f/µV f)] ,

with Entxf denoting the local entropy at x, a function of all spins except for the
spin at vertex x. The key feature of this inequality is its dimensionless character,
namely the fact that the constant C ≥ 1 is independent of both the region V , and
the boundary condition fixed in Zd \ V , which we have omitted from our nota-
tion for simplicity. The value C = 1 is attained in the trivial case of independent
spins. The papers mentioned above formulate their results in terms of logarithmic
Sobolev inequalities, but we find it natural to restate them in terms of the tensoriza-
tion inequality (1.2.1), which seems to have a more fundamental character in our
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setting. Anyhow, if the spin space is finite, the statement (1.2.1) is equivalent to
the standard logarithmic Sobolev inequality for the single site heat bath Markov
chain, see e.g. [26, 101].

The proof of these results was obtained through refined recursive techniques,
which exploit the spatial mixing assumption to establish some form of factor-
ization of the entropy functional. We refer to the surveys [95, 70] for systematic
expositions of these techniques. A particularly simple and effective approach
was later developed in [36] and [45], who independently showed that the spatial
mixing condition implies a factorization estimate of the form

EntV f ≤ (1 + ε)µV [EntAf + EntBf ] , (1.2.2)

where A,B are e.g. two overlapping rectangular regions in Zd, with V = A ∪ B,
and ε > 0 is a constant that can be made suitably small provided the overlap
between A and B is sufficiently thick. Here EntAf denotes the relative entropy
of f with respect to the Gibbs measure µA and it is thus a function of all spins
outside of the region A. If the inequality (1.2.2) is available, then a relatively
simple recursion leads to the desired conclusion (1.2.1).

While the inequality (1.2.1) is well suited for the analysis of the single site heat
bath Markov chain, it is not very helpful in the analysis of more general block
dynamics. With that motivation in mind, we address the question of the validity
of a version of the inequality (1.2.1) where single sites x ∈ V are replaced by
arbitrary blocks A ⊂ V . Let α = (αB)B⊂V be an arbitrary probability distribution
over subsets of V, and define the minimum “coverage probability” of a vertex by

δ(α) = min
x∈V

∑
B:B∋x

αB. (1.2.3)

General block factorization of entropy holds with constant C if for all weights α,
for all f : Ω → R+:

δ(α) EntV f ≤ C
∑
B⊂V

αB µ[EntB f ]. (1.2.4)

Approximate entropy tensorization (1.2.1) is the special case when αB = 1/n for
every block of size 1 and αB = 0 for larger blocks. The choice of the constant δ(α)
in this inequality is motivated by the fact that when µ is a product measure then
(1.2.4) holds with C = 1, in which case it is known as the Shearer inequality; see
lemma 2.4.4.

In this thesis we will show that (1.2.4) holds with a constant independent on
|V |. However, what we generally aim for is the best constant such that general
block factorization holds, which is independent of |V | in the cases we consider,
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but it may not be in other cases, see [20] for a recent interesting result for permu-
tations where the constant C is explicitly calculated when αA =

(|V |
l

)−1
1(|A| = l)

and it is optimally dependent on |V |.
Important progress was obtained recently in [13] concerning the linearized

version of (1.2.4). Namely, if we replace the entropy functional EntV f by the
variance functional

VarV f = µV
[
(f − µV f)

2
]
,

then (1.2.4) becomes the Poincaré inequality

δ(α)VarV f ≤ C
∑
A⊂V

αA µV [VarAf ] , (1.2.5)

which we may refer to as the block factorization of variance. Notice that the inequal-
ity (1.2.5) provides the lower bound δ(α)/C on the spectral gap of the α-weighted
block dynamics.

One of the main results of [13] shows that, if the system satisfies the strong
spatial mixing assumption, then it must satisfy the special case of (1.2.5) where
the weights α are all either zero or one, but otherwise arbitrary, and where δ(α)
is replaced by the indicator 1δ(α)>0, see [13, Theorem 1.2]. The proofs in [13] how-
ever rely crucially on coupling arguments as in [55], which do not seem to apply
directly to prove the stronger statement (1.2.4).

The block factorization of entropy is a statement concerning the equilibrium
distribution µ which has deep consequences for several natural sampling algo-
rithms. In particular, it implies optimal mixing and optimal entropy decay for
arbitrary block dynamics (see Lemma 2.4.6) and constitutes a key concept in the
proof of the theorems below.

1.3 Main results for spin systems in Zd

We establish the block factorization of entropy, namely the full statement (1.2.4),
for nearest neighbour spin systems satisfying the strong spatial mixing assump-
tion. For instance, it will follow that the block factorization of entropy holds
throughout the whole one phase region for the ferromagnetic Ising/Potts models
in two dimensions, provided V in (1.2.4) is a sufficiently regular set in the sense
of [96], see Section 2.2.1.

As a corollary, we obtain estimates on the speed of convergence to equilibrium
of any block dynamics. Indeed, Jensen’s inequality shows that, for any A ⊂ V ⊂
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Zd,

EntAf ≤ CovA(f, log f),

and therefore (1.2.4) implies the following modified logarithmic Sobolev inequality
for any α-weighted block dynamics:

δ(α) EntV f ≤ C DV,α(f, log f). (1.3.1)

In particular, the block factorization of entropy implies the exponential decay in
time of the relative entropy, with rate at least δ(α)/C, for any α-weighted block
dynamics, see remark 2.3.4. Moreover, if the spin state is finite the bound (1.3.1)
implies the upper bound

Tmix(V, α) ≤ D δ(α)−1 log |V |, (1.3.2)

where |V | is the cardinality of the set V , D is some new absolute constant and
Tmix(V, α) denotes the total variation mixing time of the α-weighted block dynam-
ics, see Lemma 2.4.6. We remark that (1.3.2) provides tight bounds on the mixing
time for a large class of non-local Markov chains, for which previously known
estimates were only polynomial in the size of V . A particularly interesting exam-
ple, that is often used in the Monte Carlo Markov Chain practice, is the case of
the even/odd chain. In this case (1.3.2) gives a tight O(log |V |) bound whereas
the best previously known estimate was of order |V |, see [13].

If the spin state is finite it is also possible to use (1.2.4) to derive a standard
logarithmic Sobolev inequality for the α-weighted block dynamics in the form

EntV f ≤ s(α) DV,α

(√
f,
√
f
)
, (1.3.3)

with the constant
s(α) = D δ(α)−1 max

A:αA>0
log(1/µA,∗),

where D is an absolute constant and µA,∗ is the minimum value attained by the
probability measure µA, minimized over the choice of the implicit boundary con-
dition in Zd \ A. We note that (1.3.3) contains as a special case the well known
logarithmic Sobolev inequality for the single site heat bath Markov chain.

Theorem 1.3.1. Suppose that the spin system satisfies SSM(K, a) for some constants
K, a > 0, and let F be the set of all subsets of Zd. Then there exists a constant C > 0

such that for all V ∈ F, τ ∈ ΩV c , for all nonnegative weights α = {αA, A ⊂ V }, for all
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f : ΩV 7→ R+ with f log+f ∈ L1(µτV ),

δ(α) EntτV f ≤ C
∑
A⊂V

αA µ
τ
V [EntAf ] , (1.3.4)

where δ(α) = minx∈V
∑

A:A∋x αA. If instead the spin system satisfies SSML(K, a) for
some constants K, a > 0, L ∈ N, then the conclusion (1.3.4) continues to hold, provided
we require that V ∈ F(L), where F(L) is the set of all subsets of Zd that are finite unions
of lattice cubes of side L.

Note that we are not assuming the spin space to be finite here. Theorem 1.3.1
has the following corollary for the α-weighted block dynamics defined by (1.1.1).
Below, Dτ

V,α(f, g) denotes the Dirichlet form (1.1.2) evaluated at a given boundary
condition τ ∈ ΩV c .

Corollary 1.3.2. If the spin system satisfies SSM(K, a) for some constants K, a > 0,
then the following modified logarithmic Sobolev inequalities hold: for all V ∈ F, all
τ ∈ ΩV c , for all weights α, for all f : ΩV 7→ R+ with f log+f ∈ L1(µτV ),

δ(α) EntτV f ≤ C Dτ
V,α(f, log f), (1.3.5)

where δ(α) and C are the same constants appearing in (1.3.4). In particular, if the spin
state S is finite, then there exists a constant D > 0 such that for all V ∈ F, τ ∈ ΩV c , for
all weights α, the mixing time T τmix(V, α) of the Markov chain with Dirichlet form Dτ

V,α

satisfies

T τmix(V, α) ≤ D δ(α)−1 log |V |. (1.3.6)

Moreover, if the spin state is finite, then SSM(K, a) implies the following logarithmic
Sobolev inequalities: there exists a constant D > 0 such that for all V ∈ F, all τ ∈ ΩV c ,
for all weights α, all f ≥ 0,

EntτV f ≤ s(α) Dτ
V,α

(√
f,
√
f
)
, (1.3.7)

s(α) = D δ(α)−1 max
A:αA>0

log(1/µA,∗),

where
µA,∗ = min

τ∈ΩAc
min

σA∈ΩA:µτA(σA)>0
µτA(σA) .

Finally, all statements above continue to hold if we only assume SSML(K, a) for some
constants K, a > 0 and L ∈ N, provided we restrict to V ∈ F(L).

Corollary 1.3.2 is a straightforward consequence of Theorem 1.3.1. Indeed,
the modified log-Sobolev inequality (1.3.5) follows from the block factorization

20



1.3. MAIN RESULTS FOR SPIN SYSTEMS IN Zd

(1.3.4) via Jensen’s inequality. Moreover, the bound (1.3.6) is a standard conse-
quence of (1.3.5), see e.g. [46, 17] and Lemma 2.4.6. Finally, (1.3.7) follows im-
mediately from (1.3.4) and a well known bound comparing EntAf to VarA

√
f , see

[46, Corollary A.4].
The analysis of the block dynamics provide tools and techniques useful to pro-

vide interesting results for the SW dynamics. The most important result shows
that the mixing time of the SW dynamics is O(log |V |) whenever SSM holds, and
this is tight. The notion of SSM used for the results concerning the SW dynamics
is restricted to n− vertex cubes, even though it is possible to generalize it to more
general regions of Zd, for example our results for the SW dynamics holds if we
assume SSML, as pointed out in remark 4.1.5.

Theorem 1.3.3. In an n-vertex cube of Zd, for all integer q ≥ 2, SSM implies that for
all boundary conditions Tmix(SW ) = Θ(log n).

In the presence of a boundary condition, we consider the Gibbs distribution
on V conditional on the assignment τ on the boundary of V . The case where there
is no boundary condition is known as the free boundary case and is also covered
by our results.

Therefore, we obtain the following immediate corollary of Theorem 1.3.3.

Corollary 1.3.4. In an n-vertex square region of Z2, for all q ≥ 2, all β < βc(q) and all
boundary conditions, we have Tmix(SW ) = Θ(log n).

The best previous bound in the setting of Corollary 1.3.4 was Tmix(SW ) =

O(n) and follows from the results in [13]. Nam and Sly [110] recently proved an
O(log n) mixing time bound (as well as the cutoff phenomenon) for the periodic
boundary condition for sufficiently high temperatures (β ≪ βc(q)), a stronger as-
sumption than SSM . In higher dimensions d ≥ 3, SSM is not known to hold up
to the corresponding uniqueness threshold (it is only known for sufficiently small
β; see [95]), but we expect the SW dynamics to be rapidly mixing throughout the
high temperature regime for all d ≥ 3.

The key to our improved mixing time analysis is a novel factorization of entropy
based on the joint probability space of spins and edges that underlies the SW
dynamics, see section 4.1.1 for a precise definition. This factorization implies that
the relative entropy decays at a constant rate, which in turn implies a tight bound
on the mixing time via a modified log-Sobolev inequality. In contrast, previous
bounds for the SW dynamics [127, 16, 71, 13, 14] have used the spectral gap, which
inherently loses a factor of O(n) when transferred to mixing time bounds and
cannot deliver a tight result.

A priori the correct order of the mixing time of the SW dynamics is unclear.
In some settings, such as on the complete graph (the mean-field Potts model) for
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all β below the uniqueness threshold, the dynamics mixes in Θ(1) steps [89, 63].
To complement our main result of an O(log n) upper bound, we also establish a
lower bound of Ω(log n) for all boundary conditions whenever SSM holds.

Our methods also provide new results for the low-temperature regime β >

βc(q) in Z2 for specific boundary conditions. We say that a boundary condition τ is
monochromatic if τ fixes the spin of every boundary vertex to the same color. One
of the most fundamental open problems in the study of the Glauber dynamics for
the Ising and Potts model concerns the mixing time at low temperatures with a
monochromatic boundary [99, 91]. We provide new bounds for the mixing time
of the SW dynamics in this setting.

Theorem 1.3.5. In an n-vertex square region of Z2, for all q ≥ 2 and all β > βc(q) we
have Tmix(SW ) = O(n log n) for the free or monochromatic boundary condition.

The best previously known bound for the mixing time of the SW dynamics
in an n-vertex square region of Z2 when β > βc(q) was O(n2 log2 n), which fol-
lows from the results in [16, 127]; see also [94] for better (sub-linear) bounds for
the mixing time when q = 2 and β ≫ βc(q). The bound in Theorem 1.3.5 is
likely not tight, and establishing that the SW dynamics mixes in O(log n) steps in
Z2 throughout the low-temperature regime remains an important open problem.
Furthermore, our result for low temperature with a monochromatic boundary
does not extend to higher dimensions d ≥ 3, since it crucially uses the self-duality
for the associated random-cluster distribution on Z2. For the Ising model with
d ≥ 3, the state of the art seems to be the results from [94] for β ≫ βc(q).

1.4 Main results for spin system on a general graph

We now present our main results for general spin systems. On one side, we show
that spectral independence implies optimal mixing time bounds and modified
log-Sobolev constants for a broad class of chains, including all possible heat-bath
block dynamics and the Swendsen-Wang dynamics. Our proof utilizes tools from
the previous results. On the other side, we show that a contractive coupling for
any local Markov chain implies spectral independence. This immediately yields
stronger than state of the art mixing time bounds for a variety of chains. In
addition, it provides an intriguing conceptual connection between the coupling
method and modified log-Sobolev inequalities.

There are two broad approaches for establishing fast convergence of MCMC
algorithms: probabilistic or analytic techniques. Probabilistic techniques primar-
ily utilize the coupling method; a popular example is the path coupling method
which has become a fundamental tool in theoretical computer science [21]. In
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contrast, analytic techniques establish decay to equilibrium by means of func-
tional inequalities such as Poincaré or log-Sobolev inequalities, which correspond
to decay of variance and relative entropy respectively.

These two approaches—probabilistic or analytic—appeared disparate. While
coupling techniques have been used to prove Poincaré inequalities, there are no
clear relations between the probabilistic approach and log-Sobolev inequalities.
Here we establish a strong connection by proving that coupling inequalities in
the form of bounds on the Ollivier-Ricci curvature of the Markov chain imply en-
tropy decay, and hence the associated modified log-Sobolev inequality holds. In
the context of spin systems on bounded-degree graphs, this confirms a remark-
able (and more general) conjecture of Peres and Tetali (see Conjecture 3.1 in [58]
and Remark 1.4.7). We refer to [23, 60, 44, 119] for further relevant works on the
relations between curvature and entropy in Markov chains.

1.4.1 Consequences of spectral independence

Now we state the main implications of spectral independence for spin systems
defined on an arbitrary n−vertex graph G with maximum degree ∆. In this set-
ting, we also require that the spin system is b−marginally bounded, that is the
marginal probability for any vertex is lower bounded by a constant b, see defini-
tion 2.2.7.

Theorem 1.4.1. For an arbitrary spin system on a graph of maximum degree ∆, if the
system is η-spectrally independent and b-marginally bounded, then general block factor-
ization of entropy (1.2.4) holds with constant C = C(b, η,∆). Moreover, all heat-bath
block dynamics have optimal mixing and optimal entropy decay. The constant C satisfies

C =
(
2
b

)O(∆(1+ η
b
)).

Recall, for the Glauber dynamics δ(α) = 1/n, and hence, using the simple facts
recalled in Lemma 2.4.6, one recovers Theorem 1.9 in [42] as a special case of the
above result. As another example, for a bipartite graph, Theorem 1.4.1 implies
O(log n) mixing time of the even-odd dynamics.

When α is the uniform distribution over all subsets of a given size ℓ, we refer
to (1.2.4) as the ℓ-uniform block factorization of entropy or ℓ-UBF for short. In [42],
an important step in the proof of Theorem 1.9 is establishing ℓ-UBF with ℓ ∼ θn

for some θ ∈ (0, 1). To prove Theorem 1.4.1 for arbitrary blocks we establish
that ℓ-UBF implies general block factorization of entropy; see Theorem 5.1.2 for a
detailed statement.

Following the approach presented in the previous section and using our gen-
eral result in Theorem 1.4.1, we prove optimal mixing time of the Swendsen-
Wang dynamics when spectral independence holds on arbitrary bounded-degree

23



1.4. MAIN RESULTS FOR SPIN SYSTEM ON A GENERAL GRAPH

graphs. This can be formalized in the following statement, which is a key ingre-
dient in the proof of Theorem 1.4.9 below.

Theorem 1.4.2. For the ferromagnetic Ising and Potts models on a graph of maximum
degree ∆, if the system is η-spectrally independent and b-marginally bounded, then there
exists a constant C = C(b, η,∆) such that the mixing time of the Swendsen-Wang dy-
namics is at most C log n and the modified log-Sobolev constant is at least C−1. The

constant C satisfies C =
(
2
b

)O(∆(1+ η
b
)).

1.4.2 Establishing spectral independence

The above results show the power of spectral independence as it implies optimal
mixing time bounds for a wide variety of Markov chains. We next address when
spectral independence holds and how it relates to classical conditions that imply
fast mixing. The next series of results prove in a general context that when there
exists a contractive coupling then spectral independence holds.

Let d denote an arbitrary metric on Ω. A simple example is the Hamming
metric, which for configurations σ, τ ∈ Ω is defined to be dH (σ, τ) = |{x ∈ V : σx ̸=
τx}|. There are two types of more general metrics that we will consider: those
within a constant factor of the Hamming metric and vertex-weighted Hamming
metric for arbitrary weights. For γ ≥ 1, a metric d on Ω is said to be γ-equivalent
to the Hamming metric (or γ-equivalent for simplicity) if for all σ, τ ∈ Ω,

1

γ
dH (σ, τ) ≤ d(σ, τ) ≤ γdH (σ, τ) ;

that is, a γ-equivalent metric is an arbitrary metric where every distance is within
a factor γ of the Hamming distance. In contrast, we can generalize the Hamming
distance by considering arbitrary weights for the vertices. Let w : V → R+ be an
arbitrary positive weight function. The w-weighted Hamming metric between two
configurations σ, τ ∈ Ω is defined to be

dw(σ, τ) =
∑
x∈V

w(x)1{σx ̸= τx}.

In particular, if wx = 1 for all x then dw is just the usual Hamming metric. Note
there are no constraints on the weights except that they are positive; in particular,
the weights can be a function of n.

We will often consider a class P = {P τ : τ ∈ T } of Markov chains associated
with µ, where each P τ is a Markov chain with stationary distribution µτ and
τ ∈ T is a pinning; for example, P can be the family of Glauber dynamics for all
µτ ’s. In coupling proofs, the goal is to design a coupling so that for an arbitrary
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pair of states the chains contract with respect to some distance metric after the
coupled transition. Roughly speaking, for κ ∈ (0, 1), we say that µ is κ-contractive
with respect to (w.r.t.) a collection P of Markov chains and a metric d if one step
of every chain P τ contracts the distance by a factor κ in expectation, see section
5.3.1 for a formal definition.

The following result shows that spectral independence holds if the Glauber
dynamics has a contractive coupling.

Theorem 1.4.3.

(1) If µ is κ-contractive w.r.t. the Glauber dynamics and an arbitraryw-weighted Ham-
ming metric, then µ is spectrally independent with constant η = 2

(1−κ)n . In partic-
ular, if κ ≤ 1− ϵ

n
, then η ≤ 2

ϵ
.

(2) If the metric in (1) is not a weighted Hamming metric but instead an arbitrary
γ-equivalent metric, then η = 2γ2

(1−κ)n . In particular, if κ ≤ 1− ϵ
n

, then η ≤ 2γ2

ϵ
.

Note a κ-contractive coupling for the Hamming distance immediately im-
plies O(n log n) mixing time of the Glauber dynamics (see, e.g., [21, 86]). But the
above theorem offers two additional features. First, it allows arbitrary weights
w and the resulting bound on the mixing time does not depend on the ratio of
maxxw(x)/minxw(x), whereas a coupling argument, such as the one utilized in
path coupling [21], yields a mixing time bound which depends on this ratio. Sec-
ond, as discussed in the previous theorems, spectral independence (together with
the marginal boundedness) implies optimal bounds on the mixing time and en-
tropy decay rate for arbitrary heat-bath block dynamics.

We can extend Theorem 1.4.3 by replacing the Glauber dynamics with arbi-
trary Markov chains. In particular, we consider a general class of Markov chains
which we call the select-update dynamics. In each step, the select-update dynamics
picks a block B ∈ B randomly (with a distribution that may depend on the cur-
rent configuration), and updates all vertices in B using the current configuration
(and the pinning if there is one). Note that no assumptions are made on how to
pick or update the blocks; the only requirement is that the dynamics converges
to the correct stationary distribution. If the chain selects a block B from a fixed
distribution over B and updates B using the conditional marginal distribution
on B (under the pinning if applicable), then this is the standard heat-bath block
dynamics that we introduced earlier; hence, the select-update dynamics is much
more general than the weighted heat-bath block dynamics. Another example of
the select-update dynamics is the flip dynamics for sampling random colorings
of a graph; see Section 5.3.3.

We define M = maxB∈B |B| to be the maximum block size and D to be the
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maximum probability of a vertex being selected in any step of the chain; see (5.3.8)
for the precise definition of D.

Theorem 1.4.4. If µ is κ-contractive w.r.t. arbitrary select-update dynamics and an ar-
bitrary γ-equivalent metric, then µ is spectrally independent with constant η = 2γ2DM

1−κ .

Remark 1.4.5. An important and rather straightforward consequence of Theo-
rem 1.4.4 is that it shows a connection between SSM and spectral independence.
Namely, if G ⊂ Zd and the spin system is finite, then SSM implies spectral in-
dependence with η = O(1), so that all the results regarding the block dynamics
and the SW dynamics in Zd stated in section 1.3 are a particular case of Theorems
1.4.1 and 1.4.9. This follows because SSM implies the existence of a contractive
coupling for the select-update dynamics known as the tiled bath block dynamics,
see [13] and lemma 3.1 therein.

Theorem 1.4.4 generalizes Theorem 1.4.3(2) since M = 1 and D = 1/n for
the Glauber dynamics. If we further assume that the select-update dynamics up-
dates each connected component of a block independently, then the maximum
block size M can be replaced by the maximum component size of a block; see Re-
mark 5.3.11. See also Theorem 5.3.9 for a stronger statement involving arbitrary
Markov chains, whereDM is replaced by the maximum expected distance of two
chains when pinning a single vertex. This more general statement potentially ap-
plies to chains with unbounded block sizes, including the Swendsen-Wang dy-
namics.

It is worth remarking that, as a corollary of Theorem 1.4.4 we obtain that a
coupling argument for the select-update dynamics where the maximum block
size is constant (and D/(1 − κ) = O(1)) implies O(n log n) mixing time of the
Glauber dynamics, together with the optimal mixing and optimal entropy decay
for arbitrary heat-bath block dynamics.

Moreover, as a corollary of Theorem 1.4.3 we obtain that the Dobrushin unique-
ness condition implies spectral independence. The Dobrushin uniqueness condi-
tion is a classical condition in statistical physics which holds if the maximum
column of the sum of the Dobrushin dependency matrix

R(x, y) = max {dTV (µy(· | σ), µy(· | τ)) : (σ, τ) ∈ Sx,y} for x ̸= y

is at most 1 − ϵ for some ϵ > 0, where Sx,y is the set of all pairs of configurations
on V \ {y} that can differ only at x.

R(x, y) considers the worst case pair of configurations on the entire neighbor-
hood of y which differ at x. If x is not a neighbor of y then R(x, y) = 0. Hence,
the Dobrushin uniqueness condition states that for all y,

∑
x∈N(y)R(x, y) < 1. In
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contrast, the ALO influence matrix considers the influence of a disagreement at x
on a vertex y (which is not necessarily a neighbor) and no other vertices are fixed,
although one needs to consider all pinnings to establish spectral independence,
so the notions are incomparable at first glance.

Using Theorem 1.4.3 we prove that the Dobrushin uniqueness condition im-
plies spectral independence. Moreover, our result holds under generalizations of
the Dobrushin uniqueness condition. Hayes [76] generalized it to the following
spectral condition: if ∥R∥2 ≤ 1 − ϵ for some ϵ > 0, then the mixing time of the
Glauber dynamics is O(n log n). This was further generalized by Dyer et al. [54]
to arbitrary matrix norms. We prove spectral independence when the spectral ra-
dius ϱ(R) < 1, which is the strongest statement of this type as the spectral radius
is no larger than any matrix norm; see Remark 5.3.5 for a more detailed discus-
sion.

Theorem 1.4.6. If the Dobrushin dependency matrix R satisfies ϱ(R) ≤ 1− ϵ for some
ϵ > 0, then µ is spectrally independent with constant η = 2/ϵ.

Previously, Marton [102] (see also [67, 121]) showed that the spectral condition
in Theorem 1.4.6 implies approximate tensorization of entropy and thus optimal
bounds on the modified log-Sobolev constant for the Glauber dynamics. How-
ever, the approach in these works does not imply block factorization of entropy
as in our case.

Remark 1.4.7. Our definition of κ-contraction is equivalent to the statement that
the Markov chain has coarse Ollivier-Ricci curvature at least 1−κ > 0 with respect
to the metric d [111]. Combining Theorem 1.4.3 with Theorem 1.4.1 we obtain a
proof of the following version of the Peres-Tetali conjecture: if the Glauber dy-
namics has Ollivier-Ricci curvature at least ϵ/n > 0 then the Glauber dynamics
has a modified log-Sobolev constant at least c/n and any α-weighted heat-bath
block dynamics has a modified log-Sobolev constant at least c δ(α), for some con-
stant c = c(ϵ, b,∆) > 0, where δ(α) is defined in (1.2.3). Replacing Theorem 1.4.3
with its generalization Theorem 1.4.4 we obtain the same conclusion under the
much milder assumption that there exists some κ-contractive select-update dy-
namics satisfying DM/(1− κ) = O(1). The original Peres-Tetali conjecture in the
setting of random walks on graphs is that if there exists a graph metric d such
that the random walk has Ollivier-Ricci curvature at least λ > 0 with respect to
d then the random walk has modified log-Sobolev constant at least cλ > 0, for
some universal constant c > 0; see Conjecture 3.1 in Eldan et al. [58].
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1.4.3 Applications of the main results

We finally discuss a few examples of applications of our results. We note that all
of these applications follow immediately from previous coupling proofs together
with our new technical contributions.

For q-colorings of graphs with maximum degree ∆, Jerrum [79] proved that
the Glauber dynamics has O(n log n) mixing time when q > 2∆. Jerrum’s result
was improved to q > 11

6
∆ in [129] and further improved to q > (11

6
−ϵ0)∆ for some

small ϵ0 ≈ 10−5 > 0 by Chen et al. [38] by analyzing a Markov chain referred to as
the flip dynamics; this implied O(n2) mixing time of the Glauber dynamics. We
obtain O(n log n) mixing time of the Glauber dynamics, which is asymptotically
optimal [77], and also obtain optimal bounds on the log-Sobolev and modified
log-Sobolev constants.

Theorem 1.4.8. For q-colorings on an n-vertex graph of maximum degree ∆, when
q > (11

6
− ϵ0)∆, where ϵ0 ≈ 10−5 > 0 is a fixed constant, the Glauber dynamics has mix-

ing time O(n log n) and log-Sobolev and modified log-Sobolev constants Ω(1/n). More
generally, under these assumptions all block dynamics have optimal mixing and optimal
entropy decay.

For the ferromagnetic Ising model, Mossel and Sly [108] established optimal
mixing time bounds of O(n log n) for the Glauber dynamics on any graph of max-
imum degree ∆ in the tree uniqueness region; that is, for all β < βc(∆), where
βc(∆) := ln( ∆

∆−2
) is the threshold of the uniqueness/non-uniqueness phase tran-

sition on the ∆-regular tree. Our general results allow us to extend this to ar-
bitrary heat-bath block dynamics and to the Swendsen-Wang dynamics [124].
In [14], it was shown that the mixing time of Swendsen-Wang dynamics on any
graph of maximum degree ∆ in the tree uniqueness region is O(n). Our general
results imply a bound of O(log n) on the mixing time of the Swendsen-Wang dy-
namics and a bound of Ω(1) on the corresponding modified log-Sobolev constant
in the same tree uniqueness region. As shown before for the special case of the
d-dimensional integer lattice Zd, these estimates are optimal up to a multiplica-
tive constant. Our results also yield new optimal bounds on the log-Sobolev and
modified log-Sobolev constants for the Glauber dynamics in the same setting.

We also obtain improved results for the ferromagnetic Potts model. Unlike
the Ising model, for the ferromagnetic Potts model known rapid mixing results
for the Glauber dynamics do not reach the tree uniqueness threshold. The best
known results [76, 128, 19] imply that the Glauber dynamics mixes in O(n log n)

steps when β < β0 where β0 = max
{

2
∆
, 1
∆
ln( q−1

∆
)
}

. In addition, [19] showed
poly(n) mixing of the Glauber dynamics for β < β1 where β1 = (1 − o(1)) ln q

∆−1
,

the o(1) term tends to 0 as q → ∞; see Remark 5.3.17 for more details. These
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results yield polynomial mixing time bounds for the Swendsen-Wang dynamics
in the corresponding regimes of β. Note the critical point for the uniqueness
threshold on the tree was established by Häggström [74] and it behaves as βu =
ln q
∆−1

+ O(1); see [19]. In both regimes, we prove optimal bounds for the mixing
time and (modified) log-Sobolev constant of the Glauber dynamics and also for
the Swendsen-Wang dynamics.

Theorem 1.4.9. For the ferromagnetic Ising model with β < βc(∆) on any n-vertex
graph of maximum degree ∆ ≥ 3, all heat-bath block dynamics have optimal mixing
and optimal entropy decay, and the Swendsen-Wang dynamics has optimal mixing time
O(log n) and optimal modified log-Sobolev constant Ω(1). For the ferromagnetic Potts
model the same results hold when β < max{β0, β1}.

1.5 Organization

The organization of the first part of the thesis goes as follows. In chapter 2 we
give the formal definitions of spin systems and the corresponding decay of corre-
lation properties. We also gather a few well known facts that we use throughout
the thesis. In the next two chapters we prove the results stated in section 1.3. In
particular, in chapter 3 we prove Theorem 1.3.1, while in chapter 4 we prove all
the results concerning SW dynamics, namely Theorems 1.3.3 and 1.3.5 stated in
section 1.3 of the introduction, and we also discuss further results implied by the
spin/edge factorization concerning other dynamics. Chapter 5 is devoted to the
analysis of spin systems under spectral independence and establishing spectral
independence. We sketch the proofs of Theorems 1.4.1 and 1.4.2 stated in section
1.4 of the introduction and their implications. We then turn our analysis to estab-
lishing spectral independence, and we prove all the results in section 1.4.2 of the
introduction. In section 5.4 we also discuss a reformulation of some of the key
facts that were derived in [42] in the setting of spin systems through a recursive
scheme.
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Chapter 2
Preliminaries

2.1 Spin systems and Gibbs distributions

2.1.1 Spin systems with finite spin space

Let q ≥ 2 be an integer and write [q] = {1, . . . , q}. Let G = (V ∪ ∂V,E ∪ ∂E) be an
undirected graph where ∂V denotes the boundary set of the induced subgraph
G′ = (V,E), and ∂E consists of all edges between V and ∂V . A q-spin system
on G with a boundary condition ξ ∈ [q]∂V is parameterized by nonnegative sym-
metric matrices Axy ∈ Rq×q

+ , {x, y} ∈ E ∪ ∂E, representing the nearest neighbor
interactions, and vectors Bx ∈ Rq

+, x ∈ V , representing the external fields. A
configuration σ ∈ [q]V has weight:

w(σ) =
∏

{x,y}∈E

Axy(σx, σy)
∏

{x,y}∈∂E
x∈V, y∈∂V

Axy(σx, ξy)
∏
x∈V

Bx(σx).

Let Ω = {σ ∈ [q]V : w(σ) > 0} denote the collection of all feasible configu-
rations and let ZG =

∑
σ∈Ωw(σ) denote the partition function. We assume that

Ω ̸= ∅; i.e., the boundary condition ξ is feasible. Finally, the Gibbs distribution µ is
given by, for σ ∈ Ω,

µ(σ) = w(σ)/ZG.

For U ⊂ V , we use the notation σU = (σx)x∈U and let ΩU = {τ ∈ [q]U :

∃σ ∈ Ω, σU = τ} be the set of all feasible pinnings on U . Note, for x ∈ V , Ωx

is the set of feasible spin assignments for vertex x. Denote the collection of all
pinnings by T = ∪U⊂VΩU and denote the set of all feasible vertex-spin pairs
by X = {(x, a) : x ∈ V, a ∈ Ωx}. For τ ∈ ΩU , let µτ denote the conditional
Gibbs distribution µ(· |σU = τ). We also write µτΛ = µτ if τ ∈ ΩV \Λ and use the
notation µΛ : ΩV \Λ ∋ τ 7→ µτΛ for the associated mapping. Following a standard
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convention, with slight abuse of notation we sometimes consider µΛ as a map on
the whole set ΩV , that is µΛ : ΩV ∋ σ 7→ µσΛ in such a way that µσΛ = µσ

′
Λ for all

σ, σ′ ∈ ΩV which coincide on V \ Λ.
For a pinning τ ∈ ΩU for U ⊂ V , let Ωτ = {σ ∈ Ω : σU = τ} denote the

corresponding state space; i.e., Ωτ is the support of µτ . We also define Ωτ
W = {φ ∈

[q]W : ∃σ ∈ Ωτ , σW = φ} for W ⊂ V \ U and X τ = {(x, a) : x ∈ V \ U, a ∈ Ωτ
x}. We

say Ωτ is connected if the graph on Ωτ with edges connecting pairs at Hamming
distance 1 is connected. The distribution µ over Ω is said to be totally-connected
if for every τ ∈ T , the set Ωτ is connected. We assume the distribution µ is
totally-connected as this is necessary for the Glauber dynamics to be ergodic for
all conditional measures µτ .

We recall some classical examples of q-spin system.

The Ising/Potts model. The Ising/Potts model at inverse temperature β ∈ R
corresponds to the interactionAxy(a, a′) = exp (β1(a = a′)) andBx(a) = exp (h(a))

where h ∈ Rq is a vector of external fields, with q = 2 for the Ising model and q ≥ 3

for the Potts model.

The Hardcore model. The hard-core (or independent sets) model with param-
eter λ > 0 is obtained with q = 2, Axy(a, a′) = 0 if a = a′ = 1 and Axy(a, a

′) = 1

otherwise, and Bx(a) = λ if a = 1 and Bx(a) = 1 if a = 2.

The q-colorings model. The q-colorings model corresponds toAxy(a, a′) = 1(a ̸=
a′) and Bx(a) = 1. This distribution corresponds to the limit β → −∞ in the Potts
model.

Note that the Ising/Potts models with any β and h, as well as the hard-core
model with any λ > 0, and the q-colorings when q ≥ ∆+ 2 are totally-connected
spin systems.

2.1.2 Spin systems in Zd

In our analysis in Zd it is convenient to use the notations in [27] which include the
case where the spin space is not finite; this is important because we are able to
prove that the block factorization statement in Zd also holds when the spin space
S is not finite. The underlying graph is the d-dimensional integer lattice Zd, with
vertices x = (x1, . . . , xd), and edges E defined as unordered pairs xy of vertices x
and y such that

∑d
i=1 |xi − yi| = 1. We call d(·, ·) the resulting graph distance. For

any set of vertices Λ ⊂ Zd, the exterior boundary is ∂Λ = {y ∈ Λc : d(y,Λ) = 1},
where Λc = Zd \ Λ. We write F for the set of finite subsets Λ ⊂ Zd.
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We take the single spin state to be an arbitrary probability space (S,S , ν).
Given any region Λ ⊂ Zd, the associated configuration space is the product space
(ΩΛ,FΛ) = (SΛ,S Λ), whose elements are denoted by σΛ = {σx, x ∈ Λ} with
σx ∈ S for all x. The apriori measure on ΩΛ is the product measure νΛ = ⊗x∈Λνx.

Given a bounded measurable symmetric function U : S × S 7→ R, the pair
potential, and a bounded measurable functionW : S 7→ R, the single site potential,
for any Λ ∈ F, and τ ∈ ΩΛc , the Hamiltonian Hτ

Λ : ΩΛ 7→ R is defined by

Hτ
Λ(σΛ) = −

∑
xy∈E:
x,y∈Λ

U(σx, σy)−
∑
xy∈E:

x∈Λ,y∈∂Λ

U(σx, τy)−
∑
x∈Λ

W (σx).

The Gibbs measure in the region Λ ∈ F with boundary condition τ ∈ ΩΛc is the
probability measure µτΛ on (ΩΛ,FΛ) defined by

µτΛ(dσΛ) =
1

Zτ
Λ

exp [−Hτ
Λ(σΛ)] νΛ(dσΛ) ,

where Zτ
Λ is the normalizing constant. The spin system is called permissive if for

every Λ ∈ F, for every τ ∈ ΩΛc , there exists σΛ ∈ ΩΛ with positive mass under
µτΛ, that is such that µτΛ(σΛ) > 0. Well known examples of finite permissive spin
systems include the hard-core model with parameter λ, for any λ > 0, and the
uniform distribution over proper q-colorings, for any integer q ≥ 2d+ 1.

A classical continuous spin system is obtained when S is a compact subset of
Rn and ν is the uniform distribution over S. The O(n) model, for n ≥ 2, corre-
sponds to the case where S is the unit sphere in Rn, β ∈ R,

U(s, s′) = β⟨s, s′⟩ , W (s) = β⟨s, v⟩ ,

for some fixed vector v ∈ S, with ⟨·, ·⟩ denoting the standard inner product in Rn.

A permissive spin system is called irreducible if the single site heat bath Markov
chain on Λ with boundary condition τ is irreducible for any choice of Λ ∈ F and
τ ∈ ΩΛc , see [13, Section 2]. Our main results in Zd will apply to permissive
irreducible spin systems.

Remark 2.1.1. The setup introduced above includes unbounded (continuous or
discrete) spins. When S = Z+ for instance it covers the particle systems consid-
ered in [45]. It should be however clear that the boundedness assumptions on the
interaction U rules out many interesting models in the unbounded setting.

Remark 2.1.2. Concerning possible extensions of Theorem 1.3.1 and Corollary
1.3.2 to more general settings, we remark that the definitions given above can
be extended to include spatially non-homogeneous models, with pair potentials
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U and site potentials W replaced by edge dependent functions Uxy and site de-
pendent functions Wx respectively. It is not difficult to check that all results can
be extended to include these cases provided that all the estimates involved in our
assumptions are uniform with respect to the new potentials. Finally, we remark
that our setup is restricted to the case of nearest neighbor interactions, and the
extension of our main results to more general finite range spin systems is not im-
mediate. Indeed, our proof makes explicit use of the nearest neighbor structure
at various places. We believe however that a similar approach can be used, pro-
vided the decomposition into even and odd sites used in our proof is replaced by
more general tilings such as the ones used in [13].

2.1.3 DLR property for spin systems

A fundamental feature of the family of measures {µτΛ, Λ ⊂ V, τ ∈ ΩΛc} is the
so-called DLR property:

µV µΛf = µV f , (2.1.1)

valid for all Λ ⊂ V , and for all bounded measurable function f : ΩV 7→ R.

2.2 Decay of correlations

2.2.1 Strong spatial mixing in Zd

The precise formulation we give here coincides with the one adopted in Cesi’s
paper [36]. For any ∆ ⊂ Λ ∈ F we call µτΛ,∆ the marginal of µτΛ on Ω∆. A version
of the Radon-Nikodym density of µτΛ,∆ with respect to ν∆ is given by the function

ψτΛ,∆(σ∆) :=
1

Zτ
Λ

∫
exp

[
−Hτ

Λ(ηΛ\∆σ∆)
]
νΛ\∆(dηΛ\∆),

where ηΛ\∆σ∆ denotes the configuration ξ ∈ ΩΛ such that ξx = ηx if x ∈ Λ \∆ and
ξx = σx if x ∈ ∆.

Definition 2.2.1. Given constants K, a > 0, and Λ ∈ F we say that condition
C(Λ, K, a) holds if for any ∆ ⊂ Λ, for all x ∈ ∂Λ:

sup
τ,τ ′

∥∥∥∥∥ ψτ
′

Λ,∆

ψτΛ,∆
− 1

∥∥∥∥∥
∞

≤ K e−a d(x,∆), (2.2.1)

where τ, τ ′ ∈ ΩΛc are such that τy = τ ′y for all y ̸= x, and ∥ · ∥∞ denotes the L∞

norm. We say that the spin system satisfies SSM(K, a) if C(Λ, K, a) holds for all
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Λ ∈ F.

As emphasized in [96] it is often important to consider a relaxed spatial mixing
condition that requires C(Λ, K, a) to hold only for all sufficiently “fat" sets Λ. The
latter is defined as follows.

Definition 2.2.2. Given L ∈ N, let QL = [0, L−1]d∩Zd be the lattice cube of side L
located at the origin. For any y ∈ Zd, define the translated cube QL(y) = Ly+QL.
Let F(L) be the set of all Λ ∈ F of the form

Λ =
⋃
y∈Λ′

QL(y)

for some Λ′ ∈ F. The spin system satisfies SSML(K, a) if C(Λ, K, a) holds for all
Λ ∈ F(L).

For systems without hard constraints it is well known that SSM(K, a), for
some K, a, is always satisfied in dimension one, and that for any dimension d > 1

it holds under the assumption of suitably high temperature, see e.g. [95]. It is
important to note that the validity of both SSM(K, a) and SSML(K, a) can be
ensured by checking finite size conditions only [93].

For the results concerning the SW dynamics in section 4, when µ is the Potts
model, it is convenient to consider a spatial mixing condition that requires the
condition C(Λ, K, a) to hold only for lattice cubes, see remark 4.1.5.

Definition 2.2.3. We say that SSM with respect to cubes holds if there exist K, a > 0

such that C(Λ, K, a) holds for every cube Λ ⊂ Zd.

In Z2, SSM is known to hold for all q ≥ 2 and all β < βc(q), where βc(q) =

ln(1 +
√
q) is the uniqueness threshold [9, 1, 98]. Namely, if β < βc(q) then there

isn’t a dominant spin class and there are only local correlations, whereas if β >

βc(q) then there is a dominant spin class that stands out with respect to the others.

Remark 2.2.4. SSM(K, a) can be strictly stronger than SSML(K, a), that is there
are spin systems that do not satisfy the condition SSM(K, a) but for which the
relaxed condition SSML(K, a) holds if L is a suitably large constant. We refer to
[96] for a thorough discussion of this subtle point. As a consequence of results
in [98, 1, 9] it is also known that the two-dimensional ferromagnetic Potts model
satisfies SSML(K, a), for some K, a > 0 and L ∈ N, throughout the whole one
phase region, that is for all values of temperature and external field within the
uniqueness region, there exist constants K, a > 0 and L such that SSML(K, a)

holds.
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Finally, we note that C(Λ, K, a) is too strong a requirement in the case of sys-
tems with hard constraints, since µτ ′Λ,∆ may be not absolutely continuous with re-
spect to µτΛ,∆. However, since (2.2.1) will only be relevant if d(x,∆) is sufficiently
large, in order to have a meaningful assumption for permissive spin systems with
hard constraints, we may rephrase the condition SSML(K, a) by requiring, for all
Λ ∈ F(L), that (2.2.1) holds for all ∆ ⊂ Λ and x ∈ ∂Λ such that d(x,∆) ≥ L/2.

2.2.2 Spectral independence for q−spin systems

Let us consider a spin system with finite state space [q]. The spectral indepen-
dence approach considers the following matrices which capture the pairwise in-
fluence of vertices. For a pair of vertices x, y and a pair of spins a, a′, it is the influ-
ence of the spin a at x on the marginal probability of a′ at y. We recall the defini-
tion of the set X = {(x, a) : x ∈ V, a ∈ Ωx} where Ωx = {τ ∈ [q] : ∃σ ∈ Ω, σx = τ}.

Definition 2.2.5 (ALO influence matrix). The ALO influence matrix J ∈ RX×X is
defined by J(x, a;x, a′) = 0 and

J(x, a; y, a′) = µ(σy = a′ | σx = a)− µ(σy = a′) for x ̸= y.

Moreover, for a pinning τ ∈ T , Jτ denotes the influence matrix with respect to
the conditional measure µτ .

Note that [4] defined the influence matrix only for q = 2 in a slightly different
form and the definition was later generalized to all q ≥ 2 by two independent
works [40, 132] in different ways. Here we use the definition from [40] which
is more suitable for our applications in Section 5.3 for establishing spectral inde-
pendence, but we could also work with the definition from [132] with some ad-
ditional effort. Since J is self-adjoint the eigenvalues of J are real. Let λ1(J) ≥ 0

denote its largest eigenvalue (the eigenvalue zero always exists since all row sums
of J vanish).

Definition 2.2.6 (Spectral independence). We say that a spin system is η-spectrally
independent if for all pinnings τ ∈ T we have λ1(Jτ ) ≤ η.

We point out that SSM implies spectral independence in the case of q−spin
systems, see remark 1.4.5.

2.2.3 Marginal boundedness

There is one additional property of the Gibbs distribution that will be relevant;
namely, that the marginal probability for any vertex is lower bounded by a con-
stant b. This property is typically trivial to satisfy for some constant b = b(∆) > 0.
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We write Ωτ
x for the set of spin values that are allowed at x in the presence of the

pinning τ .

Definition 2.2.7 (Marginal boundedness). A spin system is b-marginally bounded
if for all pinnings τ , all x ∈ V , all a ∈ Ωτ

x we have µτ (σx = a) ≥ b.

2.3 Mixing time and entropy

Here we state some well known general properties of the mixing time and the
entropy. All the proofs of these properties are in the appendix. Let P be the tran-
sition matrix of an ergodic Markov chain with finite state space Ω and stationary
distribution µ. Let P t(X0, ·) denote the distribution of the chain after t steps start-
ing from the initial state X0 ∈ Ω. The mixing time Tmix(P ) of the chain is defined
as

Tmix(P ) = max
X0∈Ω

min
{
t ≥ 0 : ∥P t(X0, ·)− µ∥TV ≤ 1/4

}
, (2.3.1)

where ∥ · ∥TV denotes total variation distance.

We rely on functional inequalities related to entropy to bound the mixing
time. The functionals below can be also defined for an arbitrary space Ω, but
here we consider the finite case for simplicity. For a function f : Ω 7→ R, let
µ[f ] =

∑
σ∈Ω µ(σ)f(σ) and Varµ(f) = µ[f 2] − µ[f ]2 denote its mean and variance

with respect to µ. Likewise, for f : Ω → R+, the entropy of f with respect to µ is
defined as

Entµ(f) = µ

[
f · log

(
f

µ[f ]

)]
= µ[f · log f ]− µ[f ] · log µ[f ].

When f ≥ 0 is such that µ[f ] = 1, then Ent(f) = H(fµ |µ) equals the relative
entropy, or Kullback-Leibler divergence, of the distribution fµ with respect to µ.

A basic property of entropy that we shall use is the variational principle

Entπ(f) = sup {π[fφ] , π[eφ] ≤ 1} , (2.3.2)

valid for any distribution π, and any f ≥ 0, where the supremum ranges over all
functions φ : Ω 7→ R such that π[eφ] ≤ 1, see e.g. Proposition 2.2 in [85].

For real functions f, g on Ω, the Dirichlet form associated to the pair (P, µ) is
defined as

DP (f, g) = ⟨f, (1− P )g⟩µ,
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where ⟨f, g⟩µ = µ[fg] denotes the scalar product in L2(µ). When P is reversible,
i.e., µ(σ)P (σ, τ) = µ(τ)P (τ, σ), one has

DP (f, g) =
1

2

∑
σ,τ∈Ω

µ(σ)P (σ, τ)(f(σ)− f(τ))(g(σ)− g(τ)).

Definition 2.3.1. The pair (P, µ) satisfies the (standard) log-Sobolev inequality (LSI)
with constant s if for all f ≥ 0:

DP (
√
f,
√
f) ≥ sEntµ(f).

It satisfies the modified log-Sobolev inequality (MLSI) with constant ϱ if for all f ≥ 0:

DP (f, log f) ≥ ϱEntµ(f). (2.3.3)

It satisfies the (discrete time) relative entropy decay with rate δ > 0 if for all distri-
butions ν:

H(νP |µ) ≤ (1− δ)H(ν |µ). (2.3.4)

Remark 2.3.2. If ζ has density f with respect to µ (i.e., ζ = fµ), then ζP has density
P ∗f with respect to µ, where P ∗ is the adjoint or time-reversal matrix P ∗(σ, σ′) =
µ(σ′)
µ(σ)

P (σ′, σ). Thus, (2.3.4) is equivalent to

Entµ(P
∗f) ≤ (1− δ)Entµ(f), (2.3.5)

for all f ≥ 0 such that µ[f ] = 1. By homogeneity, this is equivalent to (2.3.5) for
all f ≥ 0. When P is reversible, that is when P = P ∗, (2.3.4) is equivalent to
Entµ(Pf) ≤ (1− δ)Entµ(f) for all f ≥ 0.

Inequality (2.3.4) can be seen as the discrete time analog of the modified log-
Sobolev inequality. We recall some well known facts about its relation to the other
two inequalities and its implications for mixing times.

Lemma 2.3.3. If (P, µ) satisfies the standard LSI with constant s > 0 then it satisfies
the MLSI with constant ϱ = 2s. If it satisfies the discrete time relative entropy decay
with rate δ > 0, then it satisfies the MLSI with constant ϱ = δ. Finally, if Ω is finite then
(P, µ) satisfies the discrete time relative entropy decay with rate δ > 0, then

Tmix(P ) ≤ 1 + δ−1[log(8) + log log(1/µ∗)] ,

where µ∗ = minσ∈Ω µ(σ).

It is well known that the standard LSI with constant s implies entropy decay
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in continuous time with rate δ = 2s, since DP (f, log f) ≥ 2DP (
√
f,

√
f) for all

f ≥ 0, and this can be improved to δ = 4s in the reversible case; see [47, Lemma
2.7].

Remark 2.3.4. The Log-Sobolev inequality is equivalent to the so-called hyper-
contractivity (see [47, Theorem 3.5]), while the modified Log-Sobolev inequality
(2.3.3) is equivalent to exponential decay of the relative entropy with rate δ for
the continuous time kernel Kt = e(P−1)t (see [47, Theorem 3.6]). Note that we are
not assuming reversibility. To see the relation between the MLSI and the entropy
decay in continuous time, note that if Kt = e(P−1)t and f has mean µ[f ] = 1 then
using K∗

t = e(P
∗−1)t one checks that the time derivative of the relative entropy

satisfies

d

dt
H(ζKt |µ) =

d

dt
Ent(K∗

t f) = −DP (K
∗
t f, logK

∗
t f),

where ζ = f · µ. Therefore (2.3.3) implies, for all t ≥ 0:

H(ζKt |µ) ≤ H(ζ |µ)e−δt.

Here we recall a result of Miclo [104] showing in what sense the LSI implies
the discrete time entropy decay.

Lemma 2.3.5. If P is positive semi-definite and the pair (P ∗P, µ) satisfies the standard
LSI with constant s, then the discrete time entropy decay holds for (P, µ) with constant
δ = s. In particular, if P is reversible and (P, µ) satisfies the LSI with constant s, then
for all f ≥ 0:

EntµPf ≤ (1− s)Entµf.

2.4 Some basic properties of entropy

To compute the relative entropy with respect to a pinned measure µτΛ it is conve-
nient to use the notation

EntΛ(f) = µΛ [f log (f/µΛ[f ])] ,

with the understanding that if we evaluate the left hand side at a given pinning
τ on Λc = V \ Λ we then evaluate the expectations in the right hand side with
respect to µτΛ. To emphasize the dependence on the pinning we sometimes write
EntτΛ(f). The expectation µ[EntΛ f ] is obtained by averaging with respect to µ
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over the pinning τ on Λc, and satisfies

µ[EntΛ(f)] =
∑
τ∈ΩΛc

µ(σΛc = τ) EntτΛ(f) = µ [f log (f/µΛ[f ])] .

The following lemma summarizes a standard decomposition of the entropy
functional.

Lemma 2.4.1. For any Λ ⊂ V , for any f : Ω → R+:

Ent(f) = µ [EntΛ(f)] + Ent (µΛ[f ]). (2.4.1)

More generally, for any Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λw ⊂ V , for any f : Ω → R+:

w∑
i=1

µ
[
EntΛi

(µΛi−1
[f ])
]
= µ [EntΛw(µΛ0 [f ])] . (2.4.2)

The following monotonicity property of the entropy functional is an immedi-
ate consequence of the previous lemma.

Lemma 2.4.2. For all A ⊂ B ⊂ V ,

µ[EntA(f)] ≤ µ[EntB(f)] . (2.4.3)

Now we recall the definition of general block factorization of entropy.

Definition 2.4.3. The spin system is said to satisfy the general block factorization
of entropy with constant C if for all f ≥ 0, for all probability distribution α over
subsets of V ,

δ(α) Ent f ≤ C
∑
A⊂V

αA µ[EntA f ], (2.4.4)

where δ(α) = minx∈V
∑

B:B∋x αB.

When µΛ is a product measure µΛ = ⊗x∈Λµx, then (2.4.4) is known as the
Shearer inequality. We have the following lemma.

Lemma 2.4.4. Fix Λ ⊂ V and suppose that µΛ is a product measure µΛ = ⊗x∈Λµx.
Then, for any distribution α over the subsets of Λ, and any f : Ω → R+:

δ(α) EntΛ(f) ≤
∑
A⊂Λ

αA µΛ[EntA(f)] , (2.4.5)

that is µΛ satisfies the general block factorization of entropy with constant C = 1. The
same inequality holds for the variance functional, that is if we replace Ent with Var .

The following properties will also be used.
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Lemma 2.4.5. Let Λ = A ∪ B and assume that µΛ is a product µΛ = µA ⊗ µB. Then,
for all f ≥ 0:

EntΛ(µB(f)) = µΛ[EntA(µB(f))], (2.4.6)

and for all U ⊂ B,

µΛ[EntA(µB(f))] ≤ µΛ[EntA(µU(f))]. (2.4.7)

2.4.1 Implications of block factorization

The following lemma relates the block factorization with the rate of the entropy
decay of the block dynamics.

Lemma 2.4.6. If the spin system is finite and satisfies the general block factorization with
constant C then for all α the Markov chain (Pα, µ) satisfies

1. the modified log-Sobolev inequality with constant ϱ = δ(α)
C

;

2. the discrete time relative entropy decay with rate δ = δ(α)
C

;

3. Tmix(Pα) ≤ 1 + C
δ(α)

[log(8) + log log(1/µ∗)], where µ∗ = minσ∈Ω µ(σ).
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Chapter 3
Block factorization in Zd

In this chapter we prove the block factorization statement of Theorem 1.3.1. We
start with a brief discussion of the main ideas involved in the proof. The proof
starts with an observation already put forward in [13] for the case of the spectral
gap, which allows us to reduce the general factorization problem to the problem
of factorization with two special blocks only: the even sites and the odd sites. The
latter is then analyzed via a recursion similar to that employed in Cesi’s proof
of (1.2.1), see [36]. The main obstacle in implementing the recursion here is the
lack of an additive structure, which generates potentially large error terms when
trying to restore a block from smaller components. To overcome this difficulty
we develop a two-stage recursion, which combines a version of the two-block
factorization estimate (1.2.2) together with a decomposition of the entropy which
allows us to smear out the errors coming from the restoration of large blocks, see
Theorem 3.3.6.

3.1 Some key tools

In this section we collect some key general facts that do not depend on the spatial
mixing assumption. We start by proving a new general tensorization lemma.
Then, we revisit the two-block factorization (1.2.2).

Some remarks on the notation are in order. We fix a region V ∈ F and a bound-
ary condition τ ∈ ΩV c . To avoid heavy notation, we often omit explicit reference
to V, τ . In particular, whenever possible we shall use the following shorthand
notation

µf = µτV f , Entf = EntτV f . (3.1.1)

Moreover, whenever we write µΛ or EntΛ for some Λ ⊂ V , we assume that the
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implicit boundary condition outside Λ has been fixed, and it agrees with τ outside
of V . Unless otherwise stated, f will always denote a nonnegative measurable
function such that f log+ f ∈ L1(µ). To avoid repetitions, we simply write f ≥ 0

throughout. As a convention, we set µ∅f = f and Ent∅f = 0.

3.1.1 A new tensorization lemma

Consider subsets

Ai,j ⊂ V ∈ F , i = 1, . . . , n , j = 1, . . . ,m,

such that ∪i,jAi,j = Λ ⊂ V , and define “row” subsets and “column” subsets:

Ri := ∪mj=1Ai,j , Cj := ∪ni=1Ai,j .

Assume that µΛ is a product measure along the partition {Ri, i = 1 . . . , n} of Λ:

µΛ = ⊗n
i=1µRi

.

Notice that this is the case if {R1, . . . , Rn} are such that d(Ri, Rj) > 1 for all i ̸= j.

Lemma 3.1.1. Let si > 0 be constants such that for each i = 1, . . . , n, for all f ≥ 0,

EntRi
f ≤ si

m∑
j=1

µRi
[EntAi,j

f ]. (3.1.2)

Then

EntΛf ≤ s

m∑
j=1

µΛ[EntCj
f ],

where s = maxi si.

Proof. To simplify the notation, we write µ = µΛ and EntΛf = Entf . Setting
Λk = ∪ki=1Ri, with Λ0 = ∅, from Lemma 2.4.1 we have

Entf =
n∑
k=1

µ
[
EntΛk

µΛk−1
f
]
.

Since µΛk
is a product of µRi

, i = 1, . . . , k, we have

Entf =
n∑
k=1

µ
[
EntRk

µΛk−1
f
]
.
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From the assumption (3.1.2) we estimate

Entf ≤ s
n∑
k=1

m∑
j=1

µ[EntAk,j
µΛk−1

f ].

The proof is complete once we show that for each j,

n∑
k=1

µ[EntAk,j
µΛk−1

f ] ≤ µ[EntCj
f ]. (3.1.3)

Define Λk,j = Λk ∩ Cj . From Lemma 2.4.1 we have

EntCj
f =

n∑
k=1

µCj

[
EntΛk,j

µΛk−1,j
f
]
.

For each j, k fixed, µΛk,j
is a product of µAi,j

, i = 1, . . . , k. Hence,

EntCj
f =

n∑
k=1

µCj

[
EntAk,j

µΛk−1,j
f
]
.

Therefore, (3.1.3) follows if we show that all j, k fixed:

µ[EntAk,j
µΛk−1

f ] ≤ µ
[
EntAk,j

µΛk−1,j
f
]
. (3.1.4)

To prove (3.1.4), notice that

µAk,j
µΛk−1

f = µAk,j
µΛk−1

µΛk−1,j
f = µΛk−1

µAk,j
µΛk−1,j

f,

where the second identity follows from the product structure µΛk
= ⊗k

i=1µRi
.

Therefore,

µ
[
EntAk,j

µΛk−1
f
]
= µ

[
µΛk−1

f log
(
µΛk−1

f/µAk,j
µΛk−1

f
)]

= µ
[
µΛk−1

µΛk−1,j
f log

(
µΛk−1

µΛk−1,j
f/µΛk−1

µAk,j
µΛk−1,j

f
)]

= µ
[
µΛk−1,j

f log
(
µΛk−1

µΛk−1,j
f/µAk,j

µΛk−1
µΛk−1,j

f
)]

≤ µ
[
µAk,j

(
µΛk−1,j

f log
(
µΛk−1,j

f/µAk,j
µΛk−1,j

f
))]

= µ
[
EntAk,j

µΛk−1,j
f
]
,

where the inequality follows from the variational principle (2.3.2).

Here is an example to keep in mind, with n arbitrary and m = 2. Let us con-
sider the following collection of subsets {R1, . . . , Rn} whereRi ∈ F and d(Ri, Rj) >

1 for all i ̸= j. Let Ai,1 = ERi be the even sites in Ri and Ai,2 = ORi be the odd
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sites inRi, where a vertex x ∈ Zd is even or odd according to the parity of
∑d

i=1 xi.
Lemma 3.1.1 says that if we can factorize the even and odd sites on each Ri with
some constant si, then we can also factorize, with the constant maxi si, the even
and odd sites on all Λ = ∪iRi. In this example, one has Ai,j ∩ Ai,k = ∅ if k ̸= j, so
in particular Cj ∩ Ck = ∅ for k ̸= j, but it is interesting to note that this need not
be the case in Lemma 3.1.1, that is each “row” Ri is allowed to be decomposed
into arbitrary, possibly overlapping subsetsAi,j , j = 1, . . . ,m. We refer to Remark
3.2.3 for useful applications of the latter situation.

3.2 Preliminaries: two block factorizations

We shall need the following versions of an inequality of Cesi [36] and Dai Pra,
Paganoni, Posta [45].

Lemma 3.2.1. Take A,B ∈ F and V = A ∪B. Suppose that for some ε ∈ (0, 1):

∥µBµAg − µg∥∞ ≤ ε µ(|g|) (3.2.1)

for all functions g ∈ L1(µ). Then, for all functions f ≥ 0,

Entf ≤ µ[EntAf + EntBf ] + θ(ε) Entf, (3.2.2)

Entf ≤ µ[EntAf + EntBµAf ] + θ(ε) EntµAf, (3.2.3)

where θ(ε) = 84ε(1− ε)−2.

Proof. The inequality (3.2.2) coincides with [36, Eq. (2.10)]. To prove (3.2.3) we
use essentially the same argument. As in the proof of (3.2.2) we may restrict to
the case where f is bounded, and bounded away from zero. Then

Entf = µ [f log (f/µAf)] + µ [f log (µAf/µf)]

= µ[EntAf ] + µ [µAf log (µAf/µf)]

= µ[EntAf ] + µ[EntBµAf ] + µ [µAf log (µBµAf/µf)] .

Cesi’s inequality [36, Eq. (3.2)] says that the assumption (3.2.1) implies

µ [f log (µBµAf/µf)] ≤ θ(ε) Entf , (3.2.4)

for all f ≥ 0, where θ(ε) = 84ε(1− ε)−2. Therefore, the claim (3.2.3) follows from
(3.2.4) applied with µAf in place of f .
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Remark 3.2.2. If µ is a product measure over A,B, that is µ = µBµA, then one
can take ε = 0 in Lemma 3.2.1. In this case (3.2.3) is actually an identity. In this
sense (3.2.3) might be considered to be tighter than (3.2.2), although it is not true
that µ[EntBµAf ] ≤ µ[EntBf ] in the general non-product case: think for instance of
some f which depends only onA\B; in this case µ[EntBf ] = 0 while it is possible
that µ[EntBµAf ] > 0. For our purposes below it will be crucial to use both (3.2.2)
and (3.2.3).

Remark 3.2.3. To appreciate the strength of the tensorization Lemma 3.1.1, con-
sider a case where V = ∪ni=1Ri with Ri = Ai ∪ Bi and suppose that µV is a prod-
uct measure over the Ri’s. If the condition (3.2.1) holds for every pair Ai, Bi,
i = 1, . . . , n, with the same constant ε ∈ (0, 1), the combination of Lemma 3.2.1
and Lemma 3.1.1 shows that (3.2.2) holds uniformly in n, with A = ∪ni=1Ai and
B = ∪ni=1Bi. On the other hand, Lemma 3.2.1 alone seems unable to yield such
a uniform estimate. Indeed, the assumption (3.2.1) does not tensorize: it is not
hard to construct examples where (3.2.1) holds for every pair Ai, Bi, i = 1, . . . , n,
with the same error ε ∈ (0, 1), but one has to take the error proportional to n

in order to have (3.2.1) for A = ∪ni=1Ai and B = ∪ni=1Bi. Here is a toy ex-
ample of this phenomenon. Suppose V = A ∪ B with A = {1, . . . , n} and
B = {n + 1, . . . , 2n} and for all i ∈ {1, . . . , n}, let Ai = {i}, Bi = {n + i}, and
write σi and ηi = σn+i for the spin at i and at n + i respectively. Suppose that
each spin takes values in {−,+} and that the probability measure µ on {−,+}2n

is defined by µ(σ, η) =
∏n

i=1 µi(σi, ηi), where µi(σi, ηi) = 1
4
(1 + εσiηi), for some

fixed ε ∈ (0, 1). For any function g : {−,+}2 7→ R, for all i ∈ {1, . . . , n} one has

µBi
µAi

g − µig =
εσi
4

[(1 + ε)(g(+,+)− g(−,−)) + (1− ε)(g(−,+)− g(+,−))] .

Therefore ∥µBi
µAi

g−µig∥∞ ≤ εµi(|g|). On the other hand, the marginal on η of µ is
the uniform distribution over {−,+}n, so that if we choose f(σ, η) = f(η) = 1η≡+

one has µ(|f |) = µ(f) = 2−n, µAf = f , and µBµAf = 2−n
∏n

i=1(1 + εσi). In
particular, taking σ ≡ + one finds

∥µBµAf − µf∥∞ ≥ 2−n [(1 + ε)n − 1] ≥ εnµ(|f |).

3.3 Proof of the main results

We first reduce the general block factorization problem to the factorization into
even and odd sites only.
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3.3.1 Reduction to even and odd blocks

We partition the vertices of Zd into even sites and odd sites, where x is even if∑d
i=1 xi is an even integer, while x is odd if

∑d
i=1 xi is an odd integer. Given a set

of vertices V ∈ F we write EV for the set of even vertices x ∈ V and OV for the
set of odd vertices x ∈ V . Whenever possible we simply write E for EV and O

for OV . Notice that both µE and µO are product measures.
The reduction to even and odd blocks can be stated as follows. As usual we

assume that a region V ∈ F, and a boundary condition τ ∈ ΩV c have been fixed,
and we use the shorthand notation (3.1.1).

Proposition 3.3.1. Suppose that for some constant C > 0 and some function f ≥ 0,

Entf ≤ C µ [EntEf + EntOf ] .

Then, for the same C and f , for all nonnegative weights α = {αA, A ⊂ V },

δ(α) Entf ≤ 2C
∑
A⊂V

αA µ [EntAf ] , (3.3.1)

where δ(α) = minx∈V
∑

A:A∋x αA.

Proposition 3.3.1 is a direct consequence of the Shearer’s inequality, see Lemma
2.4.4.

Proof of Proposition 3.3.1. For any A ⊂ V , call EA and OA the even and odd sites
in A respectively. Fix a choice of weights α = {αA, A ⊂ V }. Since µE is a product
measure on ΩE , we may apply Lemma 2.4.4 with Λ = E and weights α replaced
by α̂ = {α̂U , U ⊂ E}, with α̂U =

∑
A⊂V αA1EA=U . It follows that∑

A⊂V

αA µE[EntEAf ] ≥ δE(α) EntEf, (3.3.2)

where δE(α) = minx∈E
∑

A:A∋x αA. Similarly,∑
A⊂V

αA µO[EntOAf ] ≥ δO(α) EntOf, (3.3.3)

with δO(α) = minx∈O
∑

A:A∋x αA. Since δE(α) and δO(α) are both at least as large
as δ(α), the inequality (3.3.1) follows by summing (3.3.2) and (3.3.3), taking the
expectation with respect to µ and noting that both µ[EntEAf ] and µ[EntOAf ] are
at most µ[EntAf ].

The rest of this section is concerned with the proof of the factorization into
even and odd blocks. Namely, we prove the following theorem, which together

46



3.3. PROOF OF THE MAIN RESULTS

with Proposition 3.3.1 establishes the main result Theorem 1.3.1.

Theorem 3.3.2. Suppose that the spin system satisfies SSM(K, a) for some constants
K, a > 0. Then there exists a constant C ≥ 1 such that for all V ∈ F, τ ∈ ΩV c , for all
f ≥ 0,

EntτV f ≤ CµτV [EntEf + EntOf ] . (3.3.4)

If instead the spin system satisfies SSML(K, a) for some constants K, a > 0, L ∈ N,
then the same conclusion (3.3.4) holds, provided we require that V ∈ F(L).

Remark 3.3.3. The constantC in (3.3.4) must be larger than 1, since if e.g. f = f(σE)

is a function depending only on the spins at even sites then the right hand side
in (3.3.4) is equal to µτV [EntEf ] ≤ EntτV f . From our proof one can in principle
extract an explicit dependency of C on the various parameters defining the spin
system and on the constants K, a in the strong mixing assumption. While this
dependency is not optimal, one can for instance check, using a high temperature
expansion, that in the limit of infinite temperature one recovers the constant C =

1 corresponding to non interacting spins.

3.3.2 Proof of Theorem 3.3.2

The overall idea is to follow a recursive strategy based on a geometric construc-
tion introduced in [10], see also [36]. However, contrary to the problems studied
in [10, 36], the error terms produced at each step of the iteration are too large in
our setting to obtain directly the desired conclusion, see Theorem 3.3.6, and we
will need an additional recursive argument to finish the proof, see Theorem 3.3.7.
We first carry out the proof under the spatial mixing assumption SSM(K, a), and
then, in the end, consider the relaxed assumption SSML(K, a).

Definition 3.3.4. Set ℓk = (3/2)k/d and let Fk denote the set of all subsets V ∈ F
such that, up to translation and permutation of the coordinates, V is contained in
the rectangle

[0, ℓk+1]× · · · × [0, ℓk+d].

Let δ(k) denote the largest constant δ > 0 such that

δ EntτV f ≤ µτV [EntEf + EntOf ]

holds for all V ∈ Fk, τ ∈ ΩV c , and all f : ΩV 7→ R+.

Note that δ(k) ≤ 1 for any k ∈ N, see Remark 3.3.3. On the other hand, the
next lemma guarantees that it is positive for all k ∈ N.

Lemma 3.3.5. For every k ∈ N, δ(k) > 0.
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Proof. If the spin system has no hard constraints one can use a perturbation ar-
gument from [78], see e.g. [26, Lemma 2.2] for the application to our setting. In
particular, one obtains that there exists a constant C > 0 such that for all k ∈ N:

δ(k) ≥ exp
(
−Cℓdk

)
.

In the presence of hard constraints, in the case of irreducible permissive sys-
tems one can argue as follows. It is known that any probability measure µ satisfies

Entf ≤ C0 log(1/µ∗)Var
(√

f
)
, (3.3.5)

with µ∗ = minσ µ(σ), where the minimum is restricted to σ such that µ(σ) > 0, and
C0 is an absolute constant, see [47, Corollary A.4]. Here Var denotes the variance
functional of µ. For a finite permissive system in a region V one has µ∗ ≥ e−C|V |

for some C > 0 independent of V . Moreover, using the irreducibility assumption,
a crude coupling argument shows that the spectral gap of the even/odd Markov
chain is bounded away from zero in any fixed region V ∈ F, see [13, Lemma 5.1].
In other words, for some constant C1 = C1(k) one has

Var (g) ≤ C1 µ [VarE (g) + VarO (g)] , (3.3.6)

for any function g. Taking g =
√
f , the desired conclusion now follows from

(3.3.5) and (3.3.6) using, for both µE and µO, the well known inequality Var(
√
f) ≤

Entf , which holds for any probability measure, see e.g. [84, Lemma 1].

Lemma 3.3.5 will be used as the base case for our induction.

Theorem 3.3.6. Assume SSM(K, a). There exists a constant k0 ∈ N depending on
K, a, d such that

δ(k) ≥
(
1− 10

ℓkδ(k − 1)

)
δ(k − 1), k ≥ k0. (3.3.7)

Theorem 3.3.6 can only be useful if we know that δ(k) is much larger than
1/ℓk for k large enough, and thus it is not sufficient to prove Theorem 3.3.2. The
next result allows us to have an independent control on δ(k) which, together with
Theorem 3.3.6 implies the desired uniform bound of Theorem 3.3.2.

Theorem 3.3.7. Assume SSM(K, a). For any ε > 0, there exists a constant k0 ∈ N
depending on K, a, d, ε, such that

δ(k) ≥ ℓ−εk , k ≥ k0. (3.3.8)
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Theorem 3.3.6 and Theorem 3.3.7 are more than sufficient for our purpose.
Indeed, using (3.3.8) and (3.3.7), taking for instance ε = 1/2, we see that

ℓkδ(k − 1) ≥ ℓ
1/2
k = (3/2)k/2d ≥ 10(6/5)k/d

if k is large enough, and therefore

δ(k) ≥
(
1− (5/6)k/d

)
δ(k − 1) ≥ δ(k0)

∞∏
j=k0

(1− (5/6)j/d). (3.3.9)

Lemma 3.3.5 and (3.3.9) imply infk∈N δ(k) > 0, which concludes the proof of The-
orem 3.3.2 under the assumption SSM(K, a).

3.3.3 Proof of Theorem 3.3.6

We start with a simple decomposition that will be used in the inductive step.
Recall that EA and OA stand for the even and odd sites respectively in the region
A ⊂ V , and we use the shorthand notation E = EV and O = OV for the whole
region V .

Lemma 3.3.8. For any A,B ∈ F such that V = A ∪B, for any f ≥ 0:

EntEf = µE[EntEAf + EntEBµEAf ],

EntOf = µO[EntOAf + EntOBµOAf ].

Proof. The decomposition in Lemma 2.4.1 shows that

EntEf = µE[EntEAf ] + EntEµEAf.

Another application of that decomposition shows that

EntEµEAf = µE[EntEBµEAf ] + EntEµEBµEAf.

However, the product property of µE implies that µEBµEAf = µEf , and therefore

EntEµEBµEAf = 0.

The same argument applies to the case of odd sites.

Let us give a sketch of the main steps of the proof before entering the details.
Suppose that V = A ∪ B ∈ Fk, and suppose that the assumption of Lemma 3.2.1
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is satisfied. Then

Entf ≤ µ [EntAf + EntBµAf ] + θ(ε) Entf

where we use the fact that EntµAf ≤ Entf . Now suppose furthermore thatA,B ∈
Fk−1. By definition of δ(k) we then have

δ(k − 1)µ[EntAf ] ≤ µ[EntEAf + EntOAf ] ,

δ(k − 1)µ[EntB(µAf)] ≤ µ[EntEBµAf + EntOBµAf ].

Therefore, using Lemma 3.3.8,

δ(k − 1)Entf ≤ µ[EntEf + EntOf ] + θ(ε)δ(k − 1)Entf + (3.3.10)

+ µ[EntEBµAf − EntEBµEAf + EntOBµAf − EntOBµOAf ].

Disregarding the second line in (3.3.10) would allow us to obtain a bound of the
form

δ(k) ≥ (1− θ(ε))δ(k − 1),

provided that an arbitrary set V ∈ Fk can be decomposed into sets A,B ∈ Fk−1

as above. We remark that if µ were a product over A,B then by convexity one
would have

µ[EntEBµAf ] ≤ µ[EntEBµEAf ], (3.3.11)

and the same bound for odd sites. Thus in the product case the second line in
(3.3.10) may be neglected and we recover a factorization statement which is con-
tained already in Lemma 3.1.1. In the case we are interested in however one has
A ∩B ̸= ∅ and we cannot hope for a bound like (3.3.11). For an illustration of the
problem, consider for instance the 1D case, with V = {1, . . . , n}, A = {1, . . . ,m}
and B = {m − ℓ, . . . , n} for some integers 0 < ℓ < m < n. Suppose that m + 1

is even, and suppose that f only depends on σm, the spin at site m. Then, once
all odd sites have been frozen, µEAf is a constant, and therefore EntEBµEAf = 0.
On the other hand, µAf depends on σm+1, since the conditional expectation µA

depends non-trivially on σm+1, and thus we may well have EntEBµAf ̸= 0.

Therefore, the second line of (3.3.10) does produce a nontrivial error term. At
this point a fruitful idea from [95] comes to our rescue. Namely, one can average
over many possible choices of the decomposition V = A ∪ B and hope that the
averaging lowers the size of the overall error. This strategy works very well if the
error terms have an additive structure, such as in the case of [36]. Here there is no
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0 ℓk+1

ℓk+2

1
3
ℓk+2

1
2
ℓk+2
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Figure 3.3.1: The gray area is the volume V . Left: B is the set of green vertices. Right: A1 is
the set of yellow vertices, Γ2 is the set of red vertices, and A2 is the set of yellow and red vertices
together.

simple additive structure to exploit, and we resort to using the martingale-type
decompositions from Lemma 2.4.1 to control the average error term by means of
the global entropy Entf , see Lemma 3.3.11. This will be sufficient to obtain the
recursive estimate (3.3.7). To implement this argument, we use a slightly different
averaging procedure than in [36].

We turn to the actual proof. We start with some geometric considerations, see
Figure 3.3.1 for a two-dimensional representation. Set r := ⌊1

6
ℓk+d⌋, and define

the rectangular sets

Q := [0, ℓk+1]× · · · × [0, ℓk+d−1]× [1
3
ℓk+d, ℓk+d]

Ri := [0, ℓk+1]× · · · × [0, ℓk+d−1]× [0, 1
2
ℓk+d + i] , i = 0, . . . , r + 1.

Suppose that V ⊂ [0, ℓk+1]× · · · × [0, ℓk+d], and define, for i = 1, . . . , r + 1:

B := Q ∩ V , and Ai :=

(Ri ∩ E) ∪ (Ri−1 ∩O) if i is even

(Ri ∩O) ∪ (Ri−1 ∩ E) if i is odd

where, as usual E = EV and O = OV denote the even and the odd sites of V
respectively. Define also

Γi = Ai \ Ai−1 , i = 2, . . . , r + 1.

Lemma 3.3.9. Suppose that V ⊂ [0, ℓk+1]×· · ·× [0, ℓk+d], and that V /∈ Fk−1. Referring
to the above setting, for all i = 1, . . . r:
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1. V \B ̸= ∅ and V \ Ai ̸= ∅;

2. d(V \B, V \ Ai) ≥ 1
4
ℓk;

3. B ∈ Fk−1 and Ai ∈ Fk−1;

4. Γi+1 ⊂ E if i is odd, and Γi+1 ⊂ O if i is even. Moreover Ai and V \ Ai+1 become
independent if we condition on the spins in Γi+1, that is

µV
(
·|σΓi+1

)
= µV \Γi+1

= µAi
µV \Ai+1

= µV \Ai+1
µAi

.

Proof. 1. Suppose that V \B is empty. Then V = B and therefore, up to translation
it is contained in [0, ℓk+1]× · · · × [0, 2

3
ℓk+d]. Since 2

3
ℓk+d = ℓk this would imply that

up to permutation of the coordinates V ∈ [0, ℓk]× [0, ℓk+1]× · · · × [0, ℓk+d−1] which
violates the assumption V /∈ Fk−1. The same argument shows that Ri−1 ∩ V ̸= ∅
for all i and Ai ̸= ∅ follows from Ai ⊃ Ri−1 ∩ V .

2. If x ∈ V \B and y ∈ V \ Ai then yd − xd ≥ 1
2
ℓk+d − 1

3
ℓk+d =

1
6
ℓk+d =

1
4
ℓk.

3. The maximal stretch of B along the d-th coordinate is at most 2
3
ℓk+d = ℓk

and therefore up to translations and permutation of the coordinates B ∈ [0, ℓk]×
[0, ℓk+1] × · · · × [0, ℓk+d−1] which says that B ∈ Fk−1. The same argument shows
that Ai ⊂ Ri ∩ V ∈ Fk−1 for all i.

4. If i ≥ 1 is odd, then

Γi+1 = [(Ri+1 ∩ E) ∪ (Ri ∩O)] \ [(Ri ∩O) ∪ (Ri−1 ∩ E)]

= (Ri+1 ∩ E) \ (Ri−1 ∩ E),

and therefore Γi+1 ⊂ E. Similarly, one has Γi+1 ⊂ O if i is even. Moreover, any
Zd-path inside V connecting Ai with V \Ai+1 must go through Γi+1, and therefore
Ai and V \ Ai+1 become independent if we condition on the spins in Γi+1.

Lemma 3.3.10. Let V , B and Ai be as in Lemma 3.3.9. If SSM(K, a) holds, then

∥µBµAi
g − µg∥∞ ≤ εkµ(|g|) , εk = 5dKℓd−1

k e−aℓk/4 ,

for all i = 1, . . . r, all functions g ∈ L1(µ), and for all k ≥ k0 = k0(K, a, d).

Proof. Since i is fixed, for simplicity we write A instead of Ai. Set h = µAg. Then
h depends only on σ∆, where ∆ = V \ A ⊂ B. We are going to use (2.2.1) with
Λ = B. Let ΩB,τ denote the set of all spin configurations η ∈ ΩBc which agree on
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the set V c with the overall boundary condition τ ∈ ΩV c . For any η ∈ ΩB,τ one has

µηB (µAg)− µg =

∫
µτV,V \B(dη

′)
(
µηB,∆h− µη

′

B,∆h
)

=

∫
µτV,V \B(dη

′)

∫
µη

′

B,∆(dσ)

(
ψηB,∆(σ)

ψη
′

B,∆(σ)
− 1

)
h(σ).

Therefore,

∥µBµAg − µg∥∞ ≤ ε µ(|h|) ≤ ε µ(|g|), (3.3.12)

where

ε := sup
η,η′∈ΩB,τ

∥∥∥∥∥ψ
η
B,∆

ψη
′

B,∆

− 1

∥∥∥∥∥
∞

. (3.3.13)

Since ψηB,∆ depends on η only through the spins in ∂B, the configurations η, η′ ∈
ΩB,τ in (3.3.13) can be assumed to differ only in the set NB = (∂B) ∩ (V \ B).
Notice that NB has at most (ℓk+d−1 + 1)d−1 elements, and that

d(NB,∆) ≥ d(V \B, V \ A) ≥ 1
4
ℓk,

by Lemma 3.3.9(2). Therefore, if η(0) = η, . . . , η(m) = η′, denotes a sequence of
configurations interpolating between η and η′, such that, for all j ∈ {0, . . . ,m−1},
η(j) and η(j+1) differ only at one site xj ∈ NB, withm ≤ (ℓk+d−1+1)d−1, we have

ψηB,∆

ψη
′

B,∆

=
m∏
j=1

ψ
η(j−1)
B,∆

ψ
η(j)
B,∆

.

The definition of SSM(K, a) implies that∥∥∥∥∥ψ
η(j−1)
B,∆

ψ
η(j)
B,∆

− 1

∥∥∥∥∥
∞

≤ ε0 := Ke−aℓk/4.

Expanding the products in (3.3.13), and assuming mε0 ≤ 1, we obtain

ε ≤
m∑
ℓ=1

(
m

ℓ

)
εℓ0 = (1 + ε0)

m − 1 ≤ emε0,

where we use the inequality (1 + x)m ≤ 1 + emx for x > 0 and m > 0 such that
mx ≤ 1. Thus, if k ≥ k0 for some constant k0 depending only on K, a, d, we have
obtained (3.3.12) with ε = K ′ℓd−1

k e−aℓk/4, where K ′ = (3/2)d−1eK ≤ 5dK.
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Lemma 3.3.11. Let V , B and Ai, i = 1, . . . r, be as in Lemma 3.3.9. Then

r∑
i=1

µ [EntEBµAi
f − EntEBµEAi

f ] ≤ Entf ,

r∑
i=1

µ [EntOBµAi
f − EntOBµOAi

f ] ≤ Entf.

Proof. We prove the first inequality. The same argument proves the second one,
with the role of even and odd sites exchanged. Fix i ∈ {1, . . . , r}. Notice that
µAi

f = µAi
µEAi

f . Let us first observe that if i is even then

µ [EntEBµAi
f − EntEBµEAi

f ] ≤ 0. (3.3.14)

Indeed, in this case i+ 1 is odd and Lemma 3.3.9(4) implies

µEBµAi
f = µEBµAi

µEAi
f = µAi

µEBµEAi
f. (3.3.15)

Therefore,

µ [EntEBµAi
f ] = µ [µAi

f log (µAi
f/µEBµAi

f)] (3.3.16)

= µ [µAi
µEAi

f log (µAi
µEAi

f/µAi
µEBµEAi

f)]

= µ [µEAi
f log (µAi

µEAi
f/µAi

µEBµEAi
f)]

= µ [µEB (µEAi
f log (µAi

µEAi
f/µEBµAi

µEAi
f))]

≤ µ [µEB (µEAi
f log (µEAi

f/µEBµEAi
f))]

= µ [EntEBµEAi
f ] ,

where the inequality follows from the variational principle (2.3.2). This settles the
case when i is even.

Next, suppose that i is odd. Here the commutation relation (3.3.15) does not
hold, since the average µAi

depends on the spins in the even sites Γi+1 ⊂ B \ Ai.
Moreover, (3.3.14) is in general false since if e.g. f depends only on σΓi

, then
EntEBµEAi

f = 0 while one can have EntEBµAi
f > 0.

Define g = µEAi
f . From the decomposition in Lemma 2.4.1 we see that

EntEB(µEAi
f) = EntE(g) (3.3.17)

= EntE (µE(g|σi+1)) + µE [EntE (g|σi+1)] ,

where we use the shorthand notation σi+1 for σΓi+1
, EntE (g|σi+1) denotes the en-

tropy of g with respect to the conditional measure µE(·|σi+1) = µE\Γi+1
. Since µE
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is a product measure,

EntE (µE(g|σi+1)) = Ent i+1 (µE(g|σi+1)) , (3.3.18)

where Ent i+1 = EntΓi+1
denotes the entropy with respect to the probability mea-

sure µΓi+1
. Similarly,

EntEB(µAi
f) = EntE(µAi

g) (3.3.19)

= Ent i+1 (µE(µAi
g|σi+1)) + µE [EntE (µAi

g|σi+1)] .

Let us show that

µ [EntE (µAi
g|σi+1)] ≤ µ [EntE (g|σi+1)] . (3.3.20)

Indeed, Lemma 3.3.9(4) implies that

µE(µAi
g|σi+1) = µE(V \Ai+1)µAi

g = µAi
µE(V \Ai+1)g = µAi

µE(g|σi+1), (3.3.21)

where E(V \ Ai+1) are the even sites in V \ Ai+1, and we have used the fact that
Ai and E(V \Ai+1) are conditionally independent given the spins σi+1. Therefore,
reasoning as in (3.3.16):

µ [EntE (µAi
g|σi+1)] = µ [µAi

g log (µAi
g/µE(µAi

g|σi+1))]

= µ [µAi
g log (µAi

g/µAi
µE(g|σi+1))]

= µ [g log (µAi
g/µE(µAi

g|σi+1))]

≤ µ [g log (g/µE(g|σi+1))]

= µ [EntE (g|σi+1)] .

From (3.3.17)-(3.3.18)-(3.3.19)-(3.3.20) we conclude that, when i is odd:

µ [EntEBµAi
f − EntEBµEAi

f ] (3.3.22)

≤ µ[Ent i+1 (µE(µAi
g|σi+1))]− µ[Ent i+1 (µE(g|σi+1))].

As in (3.3.21), we may write

µE(µAi
g|σi+1) = µE(µAi

f |σi+1) = µE(V \Ai+1)µAi
f .
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Therefore

µ[Ent i+1 (µE(µAi
g|σi+1))] = µ

[
Ent i+1

(
µE(V \Ai+1)µAi

f
)]

≤ µ
[
µE(V \Ai+1)Ent i+1µAi

f
]

= µ [Ent i+1µAi
f ] ,

≤ µ
[
EntAi+1

µAi
f
]
,

where the first inequality follows from convexity of entropy and the second from
the monotonicity of A 7→ µ[EntAf ]. Neglecting the last term in (3.3.22), we have
arrived at

µ [EntEBµAi
f − EntEBµEAi

f ] ≤ µ
[
EntAi+1

µAi
f
]
, (3.3.23)

for all i odd. In view of the estimate (3.3.14) we may use the bound (3.3.23) for all
i. Therefore, an application of Lemma 2.4.1 shows that

r∑
i=1

µ [EntEBµAi
f − EntEBµEAi

f ] ≤
r∑
i=1

µ
[
EntAi+1

µAi
f
]

= µ
[
EntAr+1µA1f

]
≤ Entf.

We are now able to conclude the proof of Theorem 3.3.6. To prove the recur-
sive bound (3.3.7) we suppose V ∈ Fk \Fk−1. Then, by translation invariance and
by the invariance under coordinate permutation, we may assume that V is as in
Lemma 3.3.9. Combining Lemma 3.2.1 with Lemma 3.3.10 we obtain, for each
i = 1, . . . , r,

(1− θ(εk)) Entf ≤ µ [EntAi
f + EntBµAi

f ] .

Since Ai, B ∈ Fk−1, by definition of δ(k) we obtain

(1− θ(εk))δ(k − 1) Entf (3.3.24)

≤ µ [EntEAi
f + EntEBµAi

f + EntOAi
f + EntOBµAi

f ] .

From Lemma 3.3.8 we find that the right hand side of (3.3.24) equals

µ [EntEf + EntOf ] + (3.3.25)

+ µ [EntEBµAi
f − EntEBµEAi

f ] + µ [EntOBµAi
f − EntOBµOAi

f ] .
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Averaging over i in (3.3.25) and using Lemma 3.3.11,

(1− θ(εk))δ(k − 1) Entf ≤ µ [EntEf + EntOf ] +
2

r
Entf.

In conclusion, δ(k) ≥ (1− θ(εk))δ(k − 1)− 2
r
, or equivalently

δ(k) ≥
(
1− θ(εk)−

2

rδ(k − 1)

)
δ(k − 1).

Since r ∼ 1
4
ℓk and δ(k−1) ≤ 1, it follows that 1

rδ(k−1)
≫ θ(εk) for all k large enough,

and therefore
δ(k) ≥

(
1− 10

δ(k − 1)ℓk

)
δ(k − 1),

for all k ≥ k0(K, a, d).

3.3.4 Proof of Theorem 3.3.7

The idea is to divide the set V into two sets A = ∪iAi, B = ∪iBi each being the
union of a large number of well separated subsets, to use the factorization from
Lemma 3.2.1 to reduce the problem in the set V to the problem in either A or
B, and then finally to use the Lemma 3.1.1 to tensorize within A and within B,
which allows us to reduce the problem to a single region Ai or Bi only.

Fix a large integer b > 1, define uk = bk/d, and call Gk the set of all subsets
V ⊂ Zd which up to translations and permutation of the coordinates are included
in the rectangle [0, uk+1] × · · · × [0, uk+d]. We partition the interval I = [0, uk+d]

into 2b consecutive non-overlapping intervals I1, . . . , I2b such that Ij have length
tk :=

1
2b
uk+d, that is

Ij = [(j − 1)tk, jtk], j = 1, . . . , 2b.

Define also the enlarged intervals Īj = {s ∈ I : d(s, Ij) ≤ tk/4}, and consider the
collections of intervals

∆A =
2b⋃
j=1

Īj 1j odd, ∆B =
2b⋃
j=1

Īj 1j even.

We remark that both ∆A and ∆B are collections of non-overlapping intervals,
with

d(Ī2j−1, Ī2i−1) ≥
1

2
tk , d(Ī2j, Ī2i) ≥

1

2
tk

for all i ̸= j. On the other hand, ∆A ∩∆B ̸= ∅. We define the rectangular sets in
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Rd:

Qi := [0, uk+1]× · · · × [0, uk+d−1]× Īj , j = 1, . . . , 2b,

and define the Zd subsets

Ai := Q2i−1 ∩ V , Bi = Q2i ∩ V , i = 1, . . . , b.

A =
b⋃
i=1

Ai , B =
b⋃
i=1

Bi .

We refer to Figure 3.3.2 for a two-dimensional representation.

0 tk 2tk 3tk 4tk 5tktk uk+2

uk+1

tk
4

tk
2

V

A1

A2 A3

B1 B2

B3

Figure 3.3.2: An example of A =
⋃
iAi (green blocks) and B =

⋃
iBi (red blocks) for a given

region V in the rectangle [0, uk+1]× [0, uk+2].

We observe that Ai ∈ Gk−1 and Bi ∈ Gk−1 for all i = 1, . . . , b. Indeed, the
stretch of Ai along the d-th coordinate is at most tk + 2tk/4 ≤ 2tk ≤ uk which
together with uk,i = uk−1,i+1, i = 1, . . . , d − 1, implies that Ai ∈ Gk−1. The same
applies to Bi. Observe that with these definitions one has the product property

µA = ⊗b
i=1µAi

, µB = ⊗b
i=1µBi

. (3.3.26)
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Moreover, the geometric construction shows that

d(V \ A, V \B) ≥ 1

2
tk.

Thus, a repetition of the argument in Lemma 3.3.10 shows that the assumption of
Lemma 3.2.1 is satisfied with ε given by

εk = O
(
udk e

−auk/2
)
.

Therefore, by Lemma 3.2.1,

Entf ≤ µ [EntAf + EntBf ] + θ(εk) Entf. (3.3.27)

Next, let ϱ(k) be defined as the largest constant ϱ > 0 such that the inequality

ϱEntτV f ≤ µτV [EntEf + EntOf ]

holds for all V ∈ Gk, τ ∈ ΩV c , and all f ≥ 0. The key observation is that thanks to
the product property (3.3.26), and using the fact that Ai ∈ Gk−1 for all i, Lemma
3.1.1 allows us to estimate

ϱ(k − 1)µ [EntAf ] ≤ µ [EntEAf + EntOAf ] .

Similarly,

ϱ(k − 1)µ [EntBf ] ≤ µ [EntEBf + EntOBf ] .

Thus, (3.3.27) implies

ϱ(k − 1)(1− θ(εk))Entf ≤ µ [EntEAf + EntOAf ] + µ [EntEBf + EntOBf ]

≤ 2µ [EntEf + EntOf ] ,

where we use the monotonicity of Λ 7→ µ [EntΛf ]. Estimating 1− θ(εk) ≥ 1/2 we
have proved that

ϱ(k) ≥ 1

4
ϱ(k − 1).

Iterating, we conclude ϱ(k) ≥ 4−kϱ(k0). To finish the proof, observe that (3/2)k =
bkε where ε = log(3/2)/ log(b), which can be made small by taking b large. There-
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fore,

δ(k) ≥ ϱ(⌊kε⌋+ 1) ≥ 4−kε−1ϱ(k0) ≥ c04
−kε = c0ℓ

−ε′
k ,

where c0 is a constant depending on K, a, d, b, while ε′ = d log(4)/ log(b) can be
as small as we wish provided b is suitably large. This ends the proof of Theorem
3.3.7.

Remark 3.3.12. We point out that the argument given in the proof of Theorem
3.3.7 can be improved if one replaces the parameter tk which is linear in uk by
t′k = C1 log(uk), with C1 a suitably large constant. Since t′k is logarithmic in uk, one
can modify the recursion to obtain a bound of the form δ(k) ≥ δ(C2 log(k))/C2

for some new constant C2, which provides a much better lower bound on δ(k)

than the one stated in Theorem 3.3.7. However, without the companion recursive
estimate from Theorem 3.3.6, this argument alone would not provide the uniform
estimate infk δ(k) > 0.

3.3.5 Proof of Theorem 3.3.2 assuming SSML(K, a)

Theorem 3.3.6 and Theorem 3.3.7 allowed us to establish Theorem 3.3.2 under the
assumption SSM(K, a). We now prove it assuming only SSML(K, a). To this end
we observe that any set V ∈ F(L) is uniquely identified by the set V ′ ∈ F such that

V =
⋃
y∈V ′

QL(y). (3.3.28)

A careful check of the previous proofs then shows that if we work on the rescaled
lattice, that is we replace vertices x with blocks QL(x), then we may repeat all
steps in Theorem 3.3.6 and Theorem 3.3.7 to obtain the following coarse-grained
version of Theorem 3.3.2 assuming only SSML(K, a): for any V ∈ F(L), for all
f ≥ 0,

Entf ≤ C µ [EntEL
f + EntOL

f ] , (3.3.29)

where, if V is given by (3.3.28), then EL = ∪x∈EV ′QL(x), and OL = ∪x∈OV ′QL(x).

Consider now a single cube QL(x). By Lemma 3.3.5 we know that

EntQL(x)f ≤ C1 µQL(x)

[
EntEQL(x)

f + EntOQL(x)f
]
,

for some constant C1 = C1(L). Observe that by construction d(QL(x), QL(y)) > 1

for all x, y ∈ EV ′. Similarly, d(QL(x), QL(y)) > 1 for all x, y ∈ OV ′. Therefore,
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Lemma 3.1.1 implies

EntEL
f ≤ C1 µEL

[EntEEL
f + EntOEL

f ]

EntOL
f ≤ C1 µOL

[EntEOL
f + EntOEL

f ] ,

where EEL denotes the even sites in EL, EOL the even sites in OL, and so on.
Plugging these estimates in (3.3.29) and using the monotonicity of A 7→ µ[EntAf ]

one arrives at

Entf ≤ Dµ [EntEf + EntOf ] ,

with D = 2C × C1. This ends the proof of Theorem 3.3.2.
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Chapter 4
Entropy decay in the Swendsen-Wang
dynamics on Zd

4.1 Introduction and main results

In this chapter we consider the Swendsen-Wang dynamics, and we will prove
Theorems 1.3.3 and 1.3.5 together with some additional results that we state later.
The notion of SSM that we use in this chapter is given in definition 2.2.3. Our
main analytic tool establishes that, on any bounded degree bipartite graph, the
even/odd factorization is sufficient to ensureO(log n) mixing time for the SW dy-
namics. Note that SW is very far from a block dynamics, in that the configurations
of multiple, dynamically changing clusters of spins are updated simultaneously
in each step.

Theorem 4.1.1. For all constant ∆, for any bipartite graph of maximum degree ∆, if the
Gibbs distribution satisfies approximate even/odd factorization with C = O(1) then the
mixing time of the Swendsen-Wang dynamics is O(log n).

We remark that Theorem 4.1.1 holds for arbitrary boundary conditions (or pin-
nings of vertices) of the bipartite graph, and thus the O(log n) bound for the mix-
ing time of the SW dynamics in Theorem 1.3.3 for the lattice Zd follows immedi-
ately from this Theorem and Theorem 3.3.2.

The main technical step in the proof of Theorem 4.1.1 is to show that even/odd
factorization implies a novel spin/edge factorization of entropy (see Definition (4.1.2)
below), which is tailored to the SW dynamics so that it implies O(log n) mixing
fairly directly.



4.1. INTRODUCTION AND MAIN RESULTS

4.1.1 The spin/edge factorization

This new entropy factorization is based on the joint probability space on spins
and edges introduced by Edwards and Sokal [56], that underlies the SW dynam-
ics. In this chapter we will denote the set of edges of the underlying graph as E,
to distinguish it from the set E of the even vertices. Let ΩJ = Ω×{0, 1}E be the set
of joint configurations (σ,A) consisting of a spin assignment to the vertices σ ∈ Ω

and a subset of edges A ⊆ E, where recall that E is the set of edges with both
endpoints in V . The Edwards-Sokal distribution on G with parameters p ∈ [0, 1]

and q ∈ N, and free boundary condition, is the probability measure on ΩJ given
by

ν(σ,A) :=
1

ZJ

p|A|(1− p)|E|−|A|1(σ ∼ A), (4.1.1)

where σ ∼ Ameans thatA ⊆M(σ) (i.e., that every edge inA is monochromatic in
σ) and ZJ is the corresponding normalizing constant or partition function. When
p = 1 − e−β , the “spin marginal” of ν is precisely the Potts distribution µ and
Z = ZJ; the “edge marginal” of ν corresponds to the well-known random-cluster
measure; see [62, 68]. The SW dynamics alternates between spin configurations
and joint spin/edge configurations in a manner consistent with (4.1.1).

We note that a boundary condition on the joint space allows fixing the state
of both spins and edges and thus may introduce more complex dependencies.
While our results in the joint space are stated here only for the free boundary
condition, they actually extend to any spin-only boundary condition. By a “spin-
only” boundary condition we mean any boundary condition that fixes the spins
of a subset of vertices, and fixes no values for the edges. In fact, in Zd, we can
handle a slightly more general class of boundary conditions we call admissible (see
Definition 4.3.1) which will be useful for proving Theorem 1.3.5 and our results
for random-cluster dynamics.

Our entropy factorization for the SW dynamics is defined as follows.

Definition 4.1.2. We say that approximate spin/edge factorization with constant C
holds if for all functions f : ΩJ 7→ R+,

Entν(f) ≤ C (ν [Entν(f |σ)] + ν[Entν(f |A)]) . (4.1.2)

Let us explain the terms in (4.1.2) in more detail. We write ν(· |σ) for the prob-
ability obtained from ν by conditioning the on whole spin configuration being
equal to a given σ ∈ Ω and ν(· |A) for the probability obtained from ν by con-
ditioning on the whole edge configuration being equal to a given A ⊆ E. With
this notation, Entν(f |σ) and Entν(f |A) denote the entropy of f with respect to
the conditional measures ν(· |σ) and ν(· |A), respectively. Therefore, taking their
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expectation with respect to ν one obtains

ν [Entν(f |σ)] = ν[f log(f/ν[f |σ])] ,

ν [Entν(f |A)] = ν[f log(f/ν[f |A])].

The main technical ingredient in proving Theorem 4.1.1 is the following “com-
parison lemma” for entropy factorization.

Lemma 4.1.3. For the Potts model at inverse temperature β on any bipartite graph of
maximum degree ∆, approximate even/odd factorization with constant C implies ap-
proximate spin/edge factorization with constant C ′ = C ′(C,∆, q, β).

To complete the proof of Theorem 4.1.1, we show that the spin/edge factoriza-
tion in (4.1.2) implies relative entropy decay for the SW dynamics, which implies
the modified log-Sobolev inequality which finally implies a bound of O(log n) on
the mixing time of the SW dynamics, see Lemma 2.3.3.

Lemma 4.1.4. For the Potts model on any n-vertex graph, approximate spin/edge fac-
torization with constant C = O(1) implies that inequality (2.3.4) for SW holds with
δ = 1/C and hence Tmix(SW ) = O(log n).

4.1.2 Further results

Our new entropy factorization framework leads to several additional algorithmic
results on Zd that hold under the condition of SSM , which we briefly summarize
here. First, we prove optimal O(log n) mixing time for alternating systematic scan
dynamics, a natural non-local dynamics in which even and odd sides of the bipar-
tition are updated on alternate steps. Systematic scan dynamics, in which updates
are performed in a deterministic rather than random sequence, are widely used in
practice but are non-reversible and typically much harder to analyze. Second, we
are able to show that various versions of the SW dynamics on the joint spin/edge
space mix in O(log n) time, as does the SW dynamics for the random-cluster model.
Finally, we show that a natural local Glauber dynamics in the joint space has op-
timal mixing time Θ(n log n). Formal statements of all these results will be given
later.

Remark 4.1.5. For definiteness, we have stated all of our results for n-vertex d-
dimensional cubes but they extend to more general regions of Zd. In particular,
we can consider regions which are the union of disjoint translates of a given large
enough cube, and thus we can consider definition 2.2.2 of spatial mixing.

We start with Section 4.2, where we prove Lemma 4.1.4 showing that the
spin/edge entropy factorization implies O(log n) mixing for the SW dynamics.
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We then prove Lemma 4.1.3 relating even/odd factorization to spin/edge fac-
torization in Section 4.3, and then combine Lemmas 4.1.3 and 4.1.4 to establish
our main technical tool (Theorem 4.1.1) and our main algorithmic result (Theo-
rem 1.3.3). Our lower bound on the mixing time is proved in Section 4.4. We
discuss further applications in the remaining sections. Section 4.5 proves entropy
decay for non-local and local dynamics in the joint space, and Section 4.6 dis-
cusses the alternating scan dynamics. Finally, we address the random-cluster
dynamics in Section 4.7, concluding with a proof of Theorem 1.3.5.

4.2 Spin/edge factorization implies fast mixing: proof

of Lemma 4.1.4

As mentioned in the introduction, the proof of our main new analytic tool (The-
orem 4.1.1) has two components. We show that approximate even/odd factor-
ization implies spin/edge factorization (Lemma 4.1.3), and then that spin/edge
factorization implies O(log n) mixing for the SW dynamics (Lemma 4.1.4). In this
section, we provide the proof of the latter result, whereas Lemma 4.1.3 is proved
in the subsequent section.

Before starting our analysis, we need the two following identities:

Entν(f) = Entν(ν[f |A]) + ν[Entν(f |A)]; (4.2.1)

Entν(f) = Entν(ν[f |σ]) + ν[Entν(f |σ)]. (4.2.2)

Both statements follow from the general decomposition

Entπ(f) = Entπ(π[f | F ]) + π[Entπ(f | F)],

valid for any distribution π, and any sub σ-algebra F , which follows by adding
and subtracting the term π(f log π[f | F ]) to Entπ(f).

Proof of Lemma 4.1.4. We show that the spin/edge factorization with constant C
implies that for all functions f ≥ 0 with µ[f ] = 1, one has

Entµ(PSWf) ≤ (1− δ)Entµ(f), (4.2.3)

with δ = 1/C. Since the SW dynamics is reversible with respect to µ, we have
PSW = P ∗

SW, and the desired mixing time bound follows from Lemma 2.3.3 and
Remark 2.3.2.
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The transition matrix of the SW dynamics satisfies

PSW(σ, τ) =
∑

A⊆M(σ)

ν(A |σ)ν(τ |A),

where we recall that M(σ) is the set of monochromatic edges in σ. Hence,

PSWf(σ) =
∑
τ∈Ω

PSW(σ, τ)f(τ) =
∑
τ∈Ω

∑
A⊆M(σ)

ν(A |σ)ν(τ |A)f̂(τ, A),

where the function f̂ : ΩJ 7→ R+ is the “lift” of f to the joint space, i.e., f̂(σ,A) =
f(σ) for every (σ,A) ∈ ΩJ. Recalling that we write ν[f ], ν[f |A], ν[f |σ] for the
expectations of f with respect to the measures ν(·), ν(· | A), ν(· | σ), respectively,
we obtain

PSWf(σ) =
∑

A⊆M(σ)

ν(A |σ)ν[f̂ | A] = ν[ν[f̂ |A] |σ] = ν[g |σ],

where for ease of notation we set g := ν[f̂ |A]. Since µ[f ] = 1, we have µ[PSWf ] = 1

and

Entµ(PSWf) = µ[(PSWf) log(PSWf)] = µ [ν [g |σ] log(ν [g |σ])] .

The convexity of the function x · log x and Jensen’s inequality imply

ν [g |σ] log(ν [g |σ]) ≤ ν [g log g | σ] ,

and then, since ν[g] = ν[f̂ ] = µ[f ] = 1, we have

Entµ(PSWf) ≤ µ [ν [g log g | σ]] = ν [g log g] = Entν(g). (4.2.4)

For any function h : ΩJ 7→ R+, we have by (4.2.1) that Entν(h) = Entν(ν[h|A])+
ν[Entν(h|A)]. Hence,

Entν(f̂) = Entν(g) + ν[Entν(f̂ |A)],

which by (4.2.4) gives Entµ(PSWf) ≤ Entν(f̂) − ν[Entν(f̂ |A)]. The function f̂ de-
pends on σ only, so Entν(f̂ |σ) = 0. Therefore,

Entµ(PSWf) ≤ Entν(f̂)− ν
[
Entν(f̂ |A) + Entν(f̂ |σ)

]
.

The assumed spin/edge factorization (4.1.2) then implies that Entµ(PSWf) ≤ (1−
δ)Entν(f̂), with δ = 1/C. Inequality (4.2.3) follows from the fact that Entν(f̂) =

66



4.3. FACTORIZATION OF ENTROPY IN THE JOINT SPACE

Entµ(f).

Remark 4.2.1. We do not assume anything about the underlying graph in the pre-
vious proof, so Lemma 4.1.4 holds for any graph G. In addition, our proof as
stated applies to the Potts measure µ obtained as the marginal on spins of the joint
measure ν. If ν is as in (4.1.1), this yields only the Potts measure on V with the free
boundary condition. However, the proof extends to the Potts measure with any
boundary condition (or pinning of vertices) by choosing a spin-only boundary
condition for ν. In particular, Theorem 1.3.3 holds for arbitrary boundary condi-
tions, as stated in the introduction. For the special case when G is a cube of Zd,
we allow a slightly more general class of boundary conditions, involving both
spin and edges, which we call admissible; see Definition 4.3.1 and the examples
immediately following it.

Remark 4.2.2. The entropy contraction established in (4.2.3) implies a modified
log-Sobolev inequality, and can be viewed as a discrete time version of it, as
pointed out in section 2.3. The classical log-Sobolev constant, however, is not
tight for the SW dynamics. Indeed, the remark in [95, Section 3.7] shows a test
function f such that Varµ(

√
f)/Entµ(f) = O(n−1). Since DPSW(

√
f,

√
f) = ν[Var(

√
f |

A)], it follows from monotonicity of variance functional that DPSW(
√
f,

√
f) ≤

Varµ(
√
f) and so DPSW (

√
f,
√
f)

Entµ(f)
= O(n−1) for this function.

4.3 Factorization of entropy in the joint space

In this section, we prove our main technical result, Lemma 4.1.3, which states
that approximate even/odd factorization implies approximate spin/edge factor-
ization for the Potts measure on bipartite graphs. For clarity of notation, and to
simplify the proofs, we will restrict attention to n-vertex cubes in Zd, but it should
be clear that everything extends to arbitrary bipartite graphs of constant degree
with any spin-only boundary condition. In addition, on Zd we are able to ex-
tend our results to a more general class of boundary conditions in the joint space,
involving both edges and vertices, that we call admissible.

Admissible boundary conditions. Let ∂V be the set of vertices of V with a neigh-
bor in Zd \V . Let ∂E denote the set of edges in E with at least one endpoint in ∂V .
(Recall that E is the set of edges with both endpoints in V .) We consider bound-
ary conditions for the joint space on subsets V0 ⊆ ∂V and E0 ⊆ ∂E. Specifically,
we let ψ : V0 7→ [q] and φ : E0 7→ {0, 1} and define

νψ,φ(σ,A) =
1

Zψ,φ
p|A|(1− p)|E|−|A|1(σ ∼ A)1(σ ∼ ψ)1(A ∼ φ),
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where σ ∼ A means that A ⊆ M(σ), σ ∼ ψ that σ and ψ agree on the spins
in V0, and A ∼ φ that A and φ agree on the edges in E0. As usual, Zψ,φ is the
corresponding partition function.

Definition 4.3.1. We call the boundary condition admissible if E0 ⊂ {{u, v} ∈ ∂E :

u ∈ V0}; that is, if all edges in E0 have at least one endpoint in V0.

Notice that the free boundary condition (V0 = ∅ and E0 = ∅) is admissible, and
all spin-only boundary conditions (V0 ⊂ ∂V and E0 = ∅) are also admissible. In
this case, the marginal on spins is just the Potts measure with ψ as the boundary
condition on ∂V with Uψ = V0. For some additional examples of admissible
boundary conditions see Section 4.7 and Figure 4.7.1; in particular, (4.7.2) captures
the effects an admissible boundary condition may have on the random-cluster
marginal.

The main motivation for introducing the notion of admissible boundary con-
ditions is that it guarantees that the spin marginal of νψ,φ has the desired expo-
nential decay of correlations if the parameters q and β are such that SSM holds.
We shall see that all of our results concerning the joint measure and its dynamics
on Zd extend to the more general class of admissible boundary conditions. We
can therefore restate Lemma 4.1.3 from the introduction for the special case of Zd

allowing arbitrary admissible boundary conditions.

Lemma 4.3.2. Let ν := νψ,φ be the joint distribution with an admissible boundary condi-
tion (ψ, φ). Approximate even/odd factorization with constantC of the spin marginal of ν
implies that approximate spin/edge factorization holds with constant C ′ = C ′(C, d, q, β).

For simplicity, we will continue to write ν for the joint measure νψ,φ and µ for
its marginal on spins. We shall see that our proofs in this section are largely obliv-
ious to the boundary condition or the geometry of Zd (in fact, we only require the
underlying graph to be bipartite). We also remark that, while we could allow a
slightly more general family of boundary conditions than the admissible ones,
some limitations are needed. For instance, arbitrary edge boundary conditions
may cause long-range dependencies; see, e.g., [16, 15]. We proceed next with the
proof of Lemma 4.3.2.

4.3.1 Proof of Lemma 4.3.2

Overview. The following high level observations might be of help before entering
the technical details of the proof. First, notice that the conclusion in the theorem
would trivially hold true with constant C = 1 if ν were a product measure with
respect to the two sets of variables (σ,A). This is a consequence of standard factor-
ization properties of product measures. Thus, the minimal constant C for which

68



4.3. FACTORIZATION OF ENTROPY IN THE JOINT SPACE

that statement holds is a measure of the “cost" for “separating" the two sets of
variables.

When the dependencies between the two sets of variables are very weak, a
factorization statement could be obtained as in [36]. However, in our case the
dependencies are not weak, since the spin variables interact locally with the edge
variable in a strong way. For instance, the presence of the edge xy in A forces
deterministically the condition σx = σy. Thus, the fact that our statement holds
with a constant C independent of n is highly nontrivial.

On the other hand, for every x ∈ V one can separate locally the two variables
(σx, Ax), where Ax denotes the set of edge variables for edges incident to x, by
paying a finite cost C; this is the content of Lemma 4.3.4 below. We can then
lift this local factorization to a global factorization statement for the conditional
measure ν(· | σE), respectively ν(· | σO), obtained by conditioning on the spin
variables of all even vertices E ⊂ V , respectively of all odd vertices O ⊂ V . This
is the content of Lemma 4.3.4.

Lemma 4.3.4 is the heart of the proof and relies crucially on the fact that
ν(· | σE) is a product measure with respect to {(σx, Ax), x ∈ O}, and ν(· | σO)
is a product measure with respect to {(σx, Ax), x ∈ E}. Thus, we reduce the prob-
lem of separating the spin/edge variables (σ,A) to the problem of separating
the even/odd spin variables (σE, σO) for the joint distribution ν. We then con-
clude by showing that even/odd factorization for the Potts measure µ implies
the even/odd factorization for ν. This is the content of Lemma 4.3.5.

We now turn to the actual proof. Let ν(· |σE, A) denote the measure ν con-
ditioned on σE = {σv, v ∈ E} and A ⊆ E. Similarly, ν(· |σO, A) denotes the
measure ν conditioned on σO = {σv, v ∈ O} and A. We use Entν(f |σE, A) and
Entν(f |σO, A) to denote the corresponding conditional entropies and we write
ν [Entν(f |σE, A)], ν [Entν(f |σO, A)] for their expectations with respect to ν. The
next lemma shows that conditioning on the spin configuration of the even or the
odd sub-lattice can only decrease the entropy of a function with respect to ν(· | A).

Lemma 4.3.3. For all functions f : ΩJ 7→ R+ we have

ν [Entν(f |A)] ≥ ν [Entν(f |σE, A)] ; and

ν [Entν(f |A)] ≥ ν [Entν(f |σO, A)] .
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Proof. We can write

ν [Entν(f |A)] = ν

[
f log

(
f

ν[f |A]

)]
= ν

[
f log

(
f

ν[f |σE, A]

)]
+ ν

[
f log

(
ν[f |σE, A]
ν[f |A]

)]
= ν [Entν(f |σE, A)] + ν

[
ν[f |σE, A] log

(
ν[f |σE, A]
ν[f |A]

)]
= ν [Entν(f |σE, A)] + ν [Entν(ν[f |σE, A] |A)]

≥ ν [Entν(f |σE, A)] .

The same argument applies to the odd sites to deduce that

ν [Entν(f |A)] ≥ ν [Entν(f |σO, A)]

The advantage of working with ν(· |σO, A) or ν(· |σE, A) instead of ν(· |A) is
that once we condition on the spins on all odd (resp. even) sites the measure
becomes a product over the even (resp. odd) vertices, and we can exploit ten-
sorization properties of entropy for product measures. The next lemma is a key
step in the proof.

Lemma 4.3.4. There exists a constant δ1 > 0 depending only on d, β, q such that, for all
functions f : ΩJ 7→ R+,

ν [Entν(f |σ)] + ν [Entν(f |σO, A)] ≥ δ1 ν [Entν(f |σO)] , (4.3.1)

ν [Entν(f |σ)] + ν [Entν(f |σE, A)] ≥ δ1 ν [Entν(f |σE)] . (4.3.2)

We defer the proof of Lemma 4.3.4 to later. Adding up (4.3.1) and (4.3.2) and
using Lemma 4.3.3 we obtain the estimate

ν [Entν(f |σ) + Entν(f |A)] ≥
δ1
2
ν [Entν(f |σE) + Entν(f |σO)] . (4.3.3)

We then use a generalization of the entropy factorization to reconstruct, in the
presence of approximate even/odd factorization, the global entropy Entν(f) from
the conditional average entropies ν [Entν(f |σE)] and ν [Entν(f |σO)] on the right
hand side of (4.3.3).

Lemma 4.3.5. Approximate even/odd factorization with consant C implies that for all
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functions f : ΩJ 7→ R+,

ν [Entν(f |σE) + Entν(f |σO)] ≥ δ2Entν(f),

where δ2 = 1/C.

Proof. We need the following observations:

Entν(f |σO) = Entν (ν [f |σ] |σO) + ν [Entν(f |σ) |σO] , (4.3.4)

Entν(f |σE) = Entν (ν [f |σ] |σE) + ν [Entν(f |σ) |σE] . (4.3.5)

Indeed, to establish (4.3.4) note that from the definition of conditional entropy we
get

Entν(f |σO) = ν

[
f log

(
f

ν[f |σO]

) ∣∣∣∣σO]
= ν

[
f log

(
f

ν[f |σE, σO]

) ∣∣∣∣σO]+ ν

[
f log

(
ν[f |σE, σO]
ν[f |σO]

) ∣∣∣∣σO]
= ν

[
f log

(
f

ν[f |σE, σO]

) ∣∣∣∣σO]+ ν

[
ν[f | σ] log

(
ν[f |σ]
ν[f |σO]

) ∣∣∣∣σO]
= ν [Entν(f |σ) |σO] + Entν (ν [f |σ] |σO) ,

where we also use the fact that ν[· |σE, σO] = ν[· |σ]. The same argument applies
to (4.3.5).

Now, since the function ν [f |σ] depends only on the spin configuration σ,

ν [Entν(ν[f |σ] |σE) + Entν(ν[f |σ] |σO)] = µ [Entµ(ν[f |σ] |σE) + Entµ(ν[f |σ] |σO)] ;

and we may apply the approximate even/odd factorization to the function ν [f |σ].
Then, there exists a constant δ2 ∈ (0, 1] such that

µ [Entµ(ν[f |σ] |σE) + Entµ(ν[f |σ] |σO)] ≥ δ2 Entµ (ν [f |σ]) . (4.3.6)

Therefore, observing that

ν [ν [Entν(f |σ) |σO] + ν [Entν(f |σ) |σE]] = 2 ν [Entν(f |σ)] ,

we obtain from (4.3.4), (4.3.5) and (4.3.6)

ν [Entν(f |σE) + Entν(f |σO)] ≥ δ2 Entν (ν [f |σ]) + 2 ν [Entν(f |σ)] .
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Since δ2 ≤ 1, the standard decomposition in (4.2.2) implies

ν [Entν(f |σE) + Entν(f |σO)] ≥ δ2 Entν(f),

as claimed.

4.3.2 Proofs of main results

The proofs of Lemma 4.1.3 and Theorems 1.3.3 and 4.1.1 are now immediate.

Proof of Lemma 4.1.3. We note that inequality (4.3.3) and Lemma 4.3.5 are valid for
any bipartite graph of bounded degree; the result follows by taking C = 2/δ1δ2.

Proof of Theorem 4.1.1. It follows immediately from Lemmas 4.1.3 and 4.1.4.

We now also prove Theorem 1.3.3.

Proof of Theorem 1.3.3. Theorem 3.3.2 implies that the even/odd factorization holds
for any boundary condition whenever SSM holds. Then, from Lemma 4.3.2 we
know that approximate spin/edge factorization holds; the result then follows
from applying Lemmas 4.1.3 and 4.1.4.

It remains for us to provide the proof of Lemma 4.3.4, which we do in the next
subsection.

4.3.3 Proof of Lemma 4.3.4

Before giving the proof of Lemma 4.3.4, we mention several useful facts about
the joint distribution ν. The first key fact is that, for any fixed configuration σO

of spins on the odd sub-lattice, the conditional probability ν(· |σO) is a product
measure. That is,

ν(· |σO) =
⊗
x∈E

νx(· |σO), (4.3.7)

where, for each x ∈ E, νx(· |σO) is the probability measure on {1, . . . , q}×{0, 1}deg(x),
where deg(x) denotes the degree of x, described as follows: pick the spin of site
x according to the Potts measure on x conditioned on the spin of its neighbors in
σO; then, independently for every edge xy ∈ E incident to the vertex x, if σx = σy

set Axy = 1 with probability p and set Axy = 0 otherwise; if σx ̸= σy, set Axy = 0.
(Note that in this section, to simplify notation, we shall use xy to denote the edge
{x, y}, and view the edge configuration A as a vector in {0, 1}E.)
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Consider now the measure ν(· |σO, A) obtained by further conditioning on a
valid configuration of all edge variables A. Here A is valid if it is compatible with
the fixed spins σO. This is again a product measure; namely

ν(· |σO, A) =
⊗
x∈E

νx(· |σO, A),

where νx(· |σO, A) is the probability measure on {1, . . . , q} that is uniform if x has
no incident edges in A, and is concentrated on the unique admissible value given
σO and A otherwise.

Next, we note that ν(· |σ) is a product of Bernoulli(p) random variables over
all monochromatic edges in σ, while it is concentrated on Ae = 0 on all remaining
edges. Therefore we may write

ν(· |σ) =
⊗
x∈E

νx(· |σ),

where νx(· |σ) is the probability measure on {0, 1}deg(x) given by the product of
Bernoulli(p) variables on all edges xy incident to x such that σx = σy and is con-
centrated on Axy = 0 if σx ̸= σy.

We write Entx(· |σO), Entx(· |σO, A), Entx(· |σ) for the entropies with respect to
the distributions νx(· |σO), νx(· |σO, A), νx(· |σ) respectively. The first observation
is that, for every site x, there is a local factorization of entropies in the following
sense.

Lemma 4.3.6. There exists a constant δ1 > 0 such that, for all functions f ≥ 0 and all
x ∈ E,

νx [Entx(f |σ) |σO] + νx [Entx(f |σO, A) |σO] ≥ δ1 Entx(f |σO). (4.3.8)

Proof. For x ∈ V , let Ax be random variable in {0, 1}deg(x) corresponding to the
configuration of the edges incident to x in A. If we replace entropy by variance,
then (4.3.8) is a spectral gap inequality for the Markov chain where the variable
(σx, Ax) ∈ [q]×{0, 1}deg(x) =: S is updated as follows. At each step, with probabil-
ity 1/2 the spin σx is updated with a sample from νx(· |σO, A), and with probabil-
ity 1/2 the edgesAx incident to x are simultaneously updated with a sample from
νx(· |σ). Let Px = Qx+Sx

2
denote the transition matrix of this Markov chain, where

Qx, Sx are the stochastic matrices corresponding to the spin and edge moves at
x, respectively. Let DPx , DQx and DSx denote the corresponding Dirichlet forms.
Observe that, by updating first the edges with an empty configuration and then
the spin, two arbitrary initial configurations can be coupled after two steps with
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probability at least 1
4
(1− p)−2d, and thus for any function f : S 7→ R+

DQx(f, f) +DSx(f, f)

2
= DPx(f, f) ≥ δ0Varx(f |σO),

where δ0 > 0 is a constant depending only on p and d. Using the standard facts
that DQx(f, f) = νx [Varx(f |σ) |σO] and DSx(f, f) = νx [Varx(f |σO, A) |σO], we
arrive at the inequality

νx [Varx(f |σ) |σO] + νx [Varx(f |σO, A) |σO]
2

≥ δ0Varx(f |σO). (4.3.9)

A well known general relation between entropy and variance (see, e.g., Theo-
rem A.1 and Corollary A.4 in [47]) shows that, for all f ≥ 0,

Entx(f |σO) ≤ C1Varx(
√
f |σO), (4.3.10)

where C1 = C1(q, p, d) is a constant independent of n, since we are considering
the conditional measure at the single site x. Thus, applying (4.3.9) to

√
f instead

of f , we obtain

νx
[
Varx(

√
f |σ) |σO

]
+ νx

[
Varx(

√
f |σO, A) |σO

]
2

≥ δ0
C1

Entx(f |σO).

The conclusion (4.3.8) follows by recalling that for any f ≥ 0 the variance of
√
f is at most the entropy of f for any underlying probability measure; see, e.g.,

[84, Lemma 1]. In particular, Varx(
√
f |σ) ≤ Entx(f |σ) and Varx(

√
f |σO, A) ≤

Entx(f |σO, A).

To prove Lemma 4.3.4, we need to lift the inequality of Lemma 4.3.6 to the
product measure ν(· |σO) = ⊗x∈Eνx(· |σO).

Proof of Lemma 4.3.4. We will prove (4.3.1); exactly the same argument applies
to (4.3.2). Let x = 1, . . . , w denote an arbitrary ordering of the even sites x ∈ E.
Let Ax ∈ {0, 1}deg(x) be the random variable corresponding to the state of the
edges incident to x. We write ξx = (σx, Ax) for the pair of variables at x. We first
observe that

Entν(f |σO) =
w∑
x=1

ν [Entx(gx−1 |σO) |σO] , (4.3.11)

where gx = ν [f |σO, ξx+1, . . . , ξw], so that g0 = f and gw = ν [f |σO]. To prove
(4.3.11), we note that since ν(· |σO) = ⊗x∈E νx(· |σO), one has νx[gx−1 |σO] = gx.
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Therefore,

Entν(f |σO) = ν [g0 log (g0/gw) |σO] =
w∑
x=1

ν [g0 log (gx−1/gx) |σO] .

Since the gx are (conditional) expectations, we deduce

Entν(f |σO) =
w∑
x=1

ν [gx−1 log (gx−1/gx) |σO]

=
w∑
x=1

ν [νx [gx−1 log (gx−1/gx) |σO] |σO]

=
w∑
x=1

ν [Entx(gx−1 |σO) |σO] . (4.3.12)

From (4.3.12), using Lemma 4.3.6 we obtain

δ1 Entν(f |σO) ≤
w∑
x=1

ν [νx [Entx(gx−1 |σ) |σO] + νx [Entx(gx−1 |σO, A) |σO] |σO]

=
w∑
x=1

ν [Entx(gx−1 |σ) + Entx(gx−1 |σO, A) |σO] . (4.3.13)

Observe that
∑w

x=1 ν [Entx(gx−1 |σ) | σO] and
∑w

x=1 ν [Entx(gx−1 |σO, A) |σO] are “ten-
sorized” versions of ν [Entν(f |σ) |σO] and ν [Entν(f |σO, A)], respectively, which
are the terms on the right hand side of (4.3.1). Using similar but somewhat more
involved ideas to those used to derive (4.3.12), we can establish the following.

Lemma 4.3.7.

1.
∑w

x=1 ν [Entx(gx−1 |σ) |σO] ≤ ν [Entν(f |σ) |σO]

2.
∑w

x=1 ν [Entx(gx−1 |σO, A) |σO] ≤ ν [Entν(f |σO, A) |σO]

Before providing the proof of this lemma, we finish the proof of Lemma 4.3.4.
Inequality (4.3.13) together with parts 1 and 2 of Lemma 4.3.7 show that

δ1 Entν(f |σO) ≤ ν [Entν(f |σ) |σO] + ν [Entν(f |σO, A) |σO] . (4.3.14)

Taking expectations with respect to ν in (4.3.14) we arrive at (4.3.1) and the proof
is complete.

We finish the proof of Lemma 4.3.4 by providing the proof of Lemma 4.3.7.

Proof of Lemma 4.3.7. We start with part 2. Let hx = ν [f |σO, σx+1, . . . , σw, A], so
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that h0 = f and hw = ν [f |σO, A]. Since ν(· |σO, A) is a product measure,

νx[hx−1 |σO, A] = hx.

Therefore, reasoning as in (4.3.11) we obtain

Entν(f |σO, A) =
w∑
x=1

ν [Entx(hx−1 |σO, A) |σO, A] . (4.3.15)

Taking expectations with respect to ν(· |σO) in (4.3.15) we see that it is sufficient
to show that, for all x,

ν [Entx(gx−1 |σO, A) |σO] ≤ ν [Entx(hx−1 |σO, A) |σO] . (4.3.16)

To prove (4.3.16), we introduce the measures

µk = ⊗k
x=1νx(· |σO)

and
µAk = ⊗k

x=1νx(· |σO, A).

Then we have gx = µx[f ], hx = µAx [f ], and gx = µx[hx]. Also, we simplify the
notation by writing νx(· |σO, A) =: νAx . Now the product structure implies the
commutation relation between expectations

νAx gx−1 = νAx µx−1hx−1 = µx−1ν
A
x hx−1. (4.3.17)

Therefore,

ν [Entx(gx−1 |σO, A) |σO] = ν
[
gx−1 log

(
gx−1/ν

A
x gx−1

)
|σO

]
= ν

[
µx−1hx−1 log

(
µx−1hx−1/µx−1ν

A
x hx−1

)
|σO

]
= ν

[
hx−1 log

(
µx−1hx−1/µx−1ν

A
x hx−1

)
|σO

]
= ν

[
νAx
(
hx−1 log

(
gx−1/ν

A
x gx−1

))
|σO

]
. (4.3.18)

From the variational principle (2.3.2) it follows that

νAx
[
hx−1 log

(
gx−1/ν

A
x [gx−1]

)]
≤ Entx(hx−1 |σO, A), (4.3.19)

which combined with (4.3.18) proves (4.3.16). This completes the proof of part
2. We use a similar argument for part 1. Let ψx = ν (f |σ,Ax+1, . . . , Aw), so that
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ψ0 = f and ψw = ν (f |σ). Notice that νx[ψx−1 |σ] = ψx. Therefore, as in (4.3.11),

Entν(f |σ) =
w∑
x=1

ν [Entx(ψx−1 |σ) |σ] .

Taking expectations with respect to ν(· |σO) we see that it is sufficient to show
that, for all x ∈ E,

ν [Entx(gx−1 |σ) |σO] ≤ ν [Entx(ψx−1 |σ) |σO] . (4.3.20)

Introducing the measures µk = ⊗k
x=1νx(· |σO), µσk = ⊗k

x=1νx(· |σ), and νσx = νx(· |σ),
we have gx = µx[f ], ψx = µσx[f ], and gx = µx[ψx]. As in (4.3.17), we have the com-
mutation relation

νσxgx−1 = νσxµx−1ψx−1 = µx−1ν
σ
xψx−1.

Therefore, as in (4.3.18)-(4.3.19) we obtain

ν [Entx(gx−1 |σ) |σO] = ν [gx−1 log (gx−1/ν
σ
xgx−1) |σO]

= ν [µx−1ψx−1 log (µx−1ψx−1/µx−1ν
σ
xψx−1) |σO]

= ν [ψx−1 log (µx−1ψx−1/µx−1ν
σ
xψx−1) |σO]

= ν [νσx (ψx−1 log (gx−1/ν
σ
xgx−1)) |σO]

≤ ν [Entx(ψx−1 |σ) |σO] .

This proves (4.3.20) and completes the proof of part 1.

4.4 A lower bound for the SW dynamics

In this section we establish an asymptotically tight lower bound for the mixing
time of SW dynamics whenever SSM holds; this result implies the lower bound
in Theorem 1.3.3 from the introduction.

Theorem 4.4.1. In an n-vertex cube of Zd, for all integer q ≥ 2 and all β > 0, SSM
implies that for all boundary conditions Tmix(SW ) = Ω(log n).

The main new ingredient in the proof of this result is a bound on the speed of
propagation of disagreements under a coupling of the steps of the SW dynamics
provided SSM holds. With this new tool, we are able to adapt the lower bound
framework of Hayes and Sinclair [77] for the Glauber dynamics to the SW setting.
We also use a recently established fact about concentration properties of the Potts
measure due to [51].
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SW coupling. Consider two copies of the SW dynamics on the graph G = (V,E),
where V is an n-vertex cube of Zd. Let Xt and Yt be the configurations of these
copies at time t ≥ 0. We can couple the steps of the SW dynamics as follows:

1. Draw |E| independent, uniform random numbers from [0, 1], one for each
edge. Let re(t) ∈ [0, 1] denote the random number corresponding to the
edge e ∈ E.

2. Draw |V | independent, uniform random numbers from {1, ..., q}, one for
each vertex. Let sv(t) ∈ {1, ..., q} denote the random number for v ∈ V .

3. Let AX = {e ∈ M(Xt) : re(t) ≤ p} and AY = {e ∈ M(Yt) : re(t) ≤ p}, where
recall that M(Xt) and M(Yt) denote the set of monochromatic edges in Xt

and Yt, respectively

4. For each connected component C of (V,AX) or (V,AY ), we let sC = sv(t),
where v is the vertex in C with the smallest coordinate sum. (If two or more
vertices in C have the same coordinate sum, we break ties “lexicographi-
cally” using the coordinates.) Then, every vertex of C is assigned the spin
sC .

The key property of the SW coupling is that, after assigning the edges, two
identical connected components in AX and AY will be assigned the same spin
(namely, the spin sv of their common vertex v with smallest coordinate sum). We
show that, under SSM , the SW coupling propagates disagreements slowly for a
suitable starting condition.

To describe our starting condition we introduce the notion of L-shattered con-
figurations.

Definition 4.4.2. Consider the graph G = (V,E), where V is an n-vertex cube of
Zd. For a configuration σ on V , let Aσ ⊆ M(σ) be the configuration that results
from keeping each monochromatic edge in M(σ) independently with probability
p = 1 − exp(−β). We say that σ is L-shattered in V if, with probability at least
1−|V | exp(−γL) where γ > 0 is a fixed constant we choose later, for every v ∈ |V |
at distance at least 2L from the boundary of |V |, the connected component of v in
Aσ does not reach the boundary of the cube Λv(L) centered at v of side length L.

Note that the above defined notion involves a probability that decays expo-
nentially with L, so the dimension of the cube V will not be as significant as long
as log n≪ L≪ n. The following lemma establishes a concentration of the proba-
bility mass on shattered configurations under SSM (for the monochromatic “all
1” boundary condition).
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Lemma 4.4.3. Let S be the set of L-shattered configurations of the n-vertex cube G =

(V,E) of Zd. There exists a constant c > 0 such that for all integers q ≥ 2 and L ≥ 1,
SSM implies that µ1(S) ≥ 1− exp(−cL).

The proof of this lemma, which follows straightforwardly from the results
in [51], will be provided later in Section 4.4.1. We can now describe our starting
condition for the SW dynamics.

A starting condition. We consider a regular pattern of non-overlapping cubes
in Zd of side length ℓ = (log n)3 with a fixed minimal distance between cubes.
Formally, consider the cubes of side length ℓ centered at (ℓ + 3) · h⃗ where h⃗ ∈
Zd. These cubes have volume ℓd and are at distance 4 from each other. We let
B1, B2, . . . BN ⊂ V be the collection of those cubes that are contained in V and at
distance at least 4 from the boundary ∂V ; then, N = Θ(n/ℓd).

Let B =
⋃N
i=1Bi, ∂B =

⋃N
i=1 ∂Bi and let ei be an edge at the center of Bi. For

definiteness, we may assume that ℓ is odd so that there is a unique vertex vi at the
center of each Bi; we take ei = {vi, ui} where ui = vi + (1, 0, . . . , 0) ∈ Zd. Let Ai

be the set of configurations on Bi in which the spins at the endpoints of ei are the
same, and let Si be the set of L-shattered configurations in each Bi. (Later we will
set L = C(log n) with C > 0 a large constant.)

We consider two variants of the SW dynamics, {Xt} and {Yt}, with the same
initial condition X0 = Y0. The chain {Xt} is an instance of the standard SW dy-
namics on (V,E); for the initial state X0 of {Xt} we set the spins of all the vertices
in U = (V \B)∪ ∂B to 1. The configuration in each cube Bi is sampled (indepen-
dently) proportional to µ1

Bi
on Si∩Ai, where µ1

Bi
denotes the Potts measure on Bi

with the “all 1” monochromatic boundary condition.
The other instance we consider, {Yt}, only updates the spins of the vertices in

B \ ∂B. That is, after adding all the monochromatic edges independently with
probability p = 1 − exp(−β), only the connected components fully contained in
B update their spins. (Note that if a component touches the boundary of B, then
it is not updated since the boundary is frozen to the spin 1 by the boundary con-
dition.) We set Y0 = X0 and couple the evolution of Yt and Xt using the SW cou-
pling defined earlier. We can view {Yt} as a dynamics on the configurations on B
whose stationary measure is µ1

B = ⊗N
i=1µ

1
Bi

. We also observe that a step of {Yt} is
equivalent to performing one step of the SW dynamics in each Bi independently.

Note that X0 = Y0, and any disagreements between Xt, Yt at later times t can
arise only from the fact that Yt does not update the spins outside B: i.e., disagree-
ments must propagate into the Bi from their boundaries. The following result,
whose proof we defer until after the proof of Theorem 4.4.1, provides a bound on
the speed of propagation of these disagreements under the SW coupling with the
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specified initial condition. In particular it says that, for t = Ω(log n) steps, Xt, Yt

agree w.h.p. on the spins at the center of every cube Bi.

Theorem 4.4.4. Let C =
⋃N
i=1 ei and set L = C(log n). For any constant A > 0, for a

sufficiently large constant C > 0 SSM implies that

Pr [∀t ≤ A log n : Xt(C) = Yt(C)] = 1− o(1).

A key ingredient in the proof of Theorem 4.4.4 (and also of Theorem 4.4.1)
is the following discrete time version of the completely monotone decreasing
(CMD) property of reversible Markov chains from [77]; the proof of this lemma
is provided in Section 4.4.1.

Lemma 4.4.5. Let {Xt} denote a discrete time Markov chain with finite state space Ω,
reversible with respect to π and with a positive semidefinite transition matrix. Let B ⊂ Ω

denote an event. If X0 is sampled proportional to π on B, then Pr(Xt ∈ B) ≥ π(B) for
all t ≥ 0, and for all t ≥ 1

Pr(Xt ∈ B) ≥ π(B) + (1− π(B))−t+1(Pr(X1 ∈ B)− π(B))t.

We now proceed with the proof of Theorem 4.4.1.

Proof of Theorem 4.4.1. Our goal is to show that at some time T = Θ(log n)

∥XT − µ∥TV >
1

2
,

where with a slight abuse of notation we use XT for the distribution of the chain
{Xt} at time T . This clearly implies that the mixing time of the SW dynamics is
Ω(log n).

Let C =
⋃
ei and let ei = {ai, bi}. Let µ̂C and µ̂1

C be the marginals of µ and µ1
B,

respectively, on C. Then,

∥XT − µ∥TV ≥ ∥XT (C)− µ̂C∥TV

≥ ∥YT (C)− µ̂C∥TV − ∥XT (C)− YT (C)∥TV

≥ ∥YT (C)− µ̂1
C∥TV − ∥µ̂1

C − µ̂C∥TV − ∥XT (C)− YT (C)∥TV. (4.4.1)

We bound each term of (4.4.1) independently. We note first that by Theorem 4.4.4

∥XT (C)− YT (C)∥TV ≤ Pr(XT (C) ̸= YT (C)) = o(1).

We proceed to bound the term ∥µ̂1
C − µ̂C∥TV in (4.4.1), for which we use SSM .

Let Ω(A) be the set of all possible configurations on the set A ⊆ V . For a configu-
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ration ψ on U , let µ̂ψC denote the marginal of µψB on C. Let µ̂1
ei

, µ̂ψei be the marginals
of µ̂1

Bi
, µ̂ψBi

on ei, respectively. Then,

∥µ̂1
C − µ̂C∥TV ≤

∑
ψ∈Ω(U)

µ(ψ)∥µ̂1
C − µ̂ψC ∥TV ≤

∑
ψ∈Ω(U)

N∑
i=1

µ(ψ)∥µ̂1
ei
− µ̂ψei∥TV

≤ N

eκℓ
= o(1),

where the second inequality follows from the fact that µ1
B and µψB are product

measures over the Bi’s, and the last one follows from the SSM property for a
suitable constant κ > 0.

It remains for us to provide a lower bound for the term ∥YT (C)− µ̂1
C∥TV in (4.4.1).

For this, we introduce an auxiliary copy of the chain {Yt}, denoted {Zt}, which is
coupled with {Yt} but with a slightly different starting condition. Namely, Z0 is
sampled proportional to µ1

Bi
on the set Ai, independently for each Bi. (Recall that

Y0 = X0 is sampled proportional to µ1
Bi

on Si ∩ Ai instead.) Then,

∥YT (C)− µ̂1
C∥TV ≥ ∥ZT (C)− µ̂1

C∥TV − ∥YT (C)− ZT (C)∥TV. (4.4.2)

We first provide an upper bound for the second term in (4.4.2). Plainly,

∥YT (C)− ZT (C)∥TV ≤ ∥YT − ZT∥TV ≤ Pr[Y0 ̸= Z0].

Let µY0 , µZ0 be the initial distribution for {Yt} and {Zt}, respectively, and let S =

⊗Si and A = ⊗Ai. For σ ∈ S ∩ A, we have µY0 (σ) = µ1
B(σ)/µ

1
B(S ∩ A), and

for σ ∈ A, µZ0 (σ) = µ1
B(σ)/µ

1
B(A). Therefore, if the configurations Y0 and Z0 are

sampled from the optimal coupling between µY0 , µZ0 and the steps of {Yt}, {Zt}
are then coupled with the SW coupling, we have

∥YT (C)− ZT (C)∥TV ≤ ∥µY0 − µZ0 ∥TV ≤
N∑
i=1

∥µY,i0 − µZ,i0 ∥TV = N∥µY,10 − µZ,10 ∥TV,

where µY,i0 , µZ,i0 are the initial distributions of Y0, Z0 on Bi. Then,

∥µY,10 − µZ,10 ∥TV =
µ1
B1
(A1 \ S1)

µ1
B1
(A1)

≤
µ1
B1
(Sc1)

µ1
B1
(A1)

= O
(
e−cL

)
,

where the last inequality follows from Lemma 4.4.3 and the fact that µ1
B1
(A1) =

Ω(1) . In summary, since L = C(log n) and C can be taken large enough, we have
proved

∥YT (C)− ZT (C)∥TV = o(1).

It remains for us to find a lower bound for ∥ZT (C)− µ̂1
C∥TV in (4.4.2) for a suit-

able T . For a configuration σ on B, let f(σ) denote the number of edges ei ∈ C
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that are monochromatic in σ. For any a ≥ 0 we have

∥ZT (C)− µ̂1
C∥TV ≥ Pr[f(ZT ) ≥ a]− Prσ∼µ1B [f(σ) ≥ a]. (4.4.3)

We will show that, for a suitable T and any i = 1, . . . , N ,

Pr[ZT (Bi) ∈ Ai] ≥ µ1
Bi
(Ai) +

1

N1/4
. (4.4.4)

Assuming this is the case, then setting W =
∑N

i=1 µ
1
Bi
(Ai) we obtain by Hoeffd-

ing’s inequality

Pr
[
f(ZT ) ≥ W +N3/4 −

√
N logN

]
≥ 1− 1

N2

and
Prσ∼µ1B

[
f(σ) ≥ W +

√
N logN

]
≤ 1

N2
,

which yields from (4.4.3) that ∥ZT (C)− µ̂1
C∥TV ≥ 1 − 2/N2 by taking, e.g., a =

W +
√
N logN .

To establish (4.4.4), note that by Lemma 4.4.5

Pr(ZT (Bi) ∈ Ai) ≥ µ1
Bi
(Ai) + (1− µ1

Bi
(Ai))

−T+1(Pr(Z1(Bi) ∈ Ai)− µ1
Bi
(Ai))

T .

(4.4.5)
We remark that {Zt} has positive semidefinite transition matrix; this follows from
the fact {Zt} is a product of SW dynamics in each Bi, and the SW dynamics has
positive semidefinite transition matrix [13].

Let P (i)
SW denote the transition matrix of the SW dynamics on Bi. Then

Pr(Z1(Bi) ∈ Ai) =
∑
σ∈Ai

µ1
Bi
(σ)

µ1
Bi
(Ai)

P
(i)
SW(σ,Ai) =

∑
σ∈Ai

µ1
Bi
(σ)

µ1
Bi
(Ai)

(
θ(σ) +

1− θ(σ)

q

)
=

1

q
+

q − 1

qµ1
Bi
(Ai)

∑
σ∈Ai

µ1
Bi
(σ)θ(σ) , (4.4.6)

where θ(σ) denotes the probability that, after the edge percolation phase of the
SW step, the end points of the edge ei are connected in the edge configuration.
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Similarly,

µ1
Bi
(Ai) =

∑
σ∈Ω(Bi)

µ1
Bi
(σ)P

(i)
SW(σ,Ai)

=
∑

σ∈Ω(Bi)\Ai

µ1
Bi
(σ)P

(i)
SW(σ,Ai) +

∑
σ∈Ai

µ1
Bi
(σ)P

(i)
SW(σ,Ai)

=
∑

σ∈Ω(Bi)\Ai

µ1
Bi
(σ)

q
+
∑
σ∈Ai

µ1
Bi
(σ)

(
θ(σ) +

1− θ(σ)

q

)
=

1

q
+
q − 1

q

∑
σ∈Ai

µ1
Bi
(σ)θ(σ).

Combining with (4.4.6) we get

Pr(Z1(Bi) ∈ Ai)− µ1
Bi
(Ai) =

q − 1

q

(
1

µ1
Bi
(Ai)

− 1

)∑
σ∈Ai

µ1
Bi
(σ)θ(σ)

≥ q − 1

q

(
1

µ1
Bi
(Ai)

− 1

)
p · µ1

Bi
(Ai)

=
q − 1

q

(
1− µ1

Bi
(Ai)

)
p,

where in the last inequality we use the fact that θ(σ) ≥ p when σ ∈ Ai; recall that
p = 1− e−β .

Plugging this bound into (4.4.5), we obtain

Pr(ZT (Bi) ∈ Ai) ≥ µ1
Bi
(Ai) + (1− µ1

Bi
(Ai))

−T+1

(
q − 1

q

(
1− µ1

Bi
(Ai)

)
p

)T
= µ1

Bi
(Ai) + (1− µ1

Bi
(Ai))

(
(q − 1)p

q

)T
≥ µ1

Bi
(Ai) +

1

N1/4
,

where the last inequality holds for T = ξ log n for a suitable constant ξ > 0 since
µ1
Bi
(Ai) = Ω(1).

We provide next the proof of Theorem 4.4.4, our bound on the speed of dis-
agreement propagation under the SW coupling.

Proof of Theorem 4.4.4. We will show inductively that with high probability dis-
agreements propagate a distance of at most L in each step. Let Λi(k) ⊆ Bi be
the cube of side length k < ℓ centered at vi; recall that ei = {vi, ui} where vi is
the center of Bi. Let Λ(k) =

⋃N
i=1 Λi(k). Note that at time 0, X0 and Y0 agree on

B = Λ(ℓ).
Let us assume that Xt and Yt agree on Λ(k) for some k ≤ ℓ − 2L. Suppose

Yt is L-shattered in each Bi; i.e., Yt(Bi) ∈ Si for i = 1, . . . , N . If E(k) is the set of
edges with both endpoints in Λ(k), after adding the monochromatic edges ofE(k)
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in Xt and Yt coupled with the SW coupling, the joint edge/spin configuration
on (Λ(k), E(k)) will be the same in both copies. However, when assigning the
new spins, the connected components are not necessarily the same since there
can be external connections; i.e., monochromatic paths in V \ Λ(k). This may
create disagreements between the two chains on Λ(k) but only in the components
touching the boundary of Λ(k). Since we are assuming that Yt is L-shattered in
each Bi, then with probability 1 − N |Bi| · exp(−γL), the disagreements cannot
propagate to Λ(k − 2(L + 1)). Consequently, the spin configurations of Xt+1 and
Yt+1 on Λ(k − 2(L+ 1)) are the same.

Proceeding inductively, and assuming that Yt is L-shattered in each Bi for all
t = 0, . . . , T , we deduce from a union bound that XT and YT agree on Λ(ℓ −
2L − 2T (L + 1)) with probability at least 1 − TN |Bi| exp(−γL), provided ℓ >

2T (L+1)+2L. Therefore,Xt(C) = Yt(C) for all t ≤ T since C ⊆ Λ(ℓ−2L−2t(L+1)).

It remains for us to show that Yt is L-shattered in each Bi for all t = 0, . . . , T

with probability at least 1 − o(1). The configuration of Y0 on Bi is sampled pro-
portional to µ1

Bi
on Si ∩ Ai. For σ ∈ Si ∩ Ai, let πi(σ) = µ1

Bi
(σ)/µ1

Bi
(Si ∩ Ai) and

for σ ∈ Si, let π̂i(σ) = µ1
Bi
(σ)/µ1

Bi
(Si). We have

PrY0(Bi)∼π̂i(Yt(Bi) ∈ Si)

=PrY0(Bi)∼π̂i(Yt(Bi) ∈ Si | Y0(Bi) ∈ Ai)PrY0(Bi)∼π̂i(Y0(Bi) ∈ Ai)+

PrY0(Bi)∼π̂i(Yt(Bi) ∈ Si | Y0(Bi) ̸∈ Ai)PrY0(Bi)∼π̂i(Y0(Bi) ̸∈ Ai),

and so

PrY0(Bi)∼πi(Yt(Bi) ∈ Si) = PrY0(Bi)∼π̂i(Yt(Bi) ∈ Si | Y0(Bi) ∈ Ai)

≥ 1−
1− PrY0(Bi)∼π̂i(Yt(Bi) ∈ Si)
PrY0(Bi)∼π̂i(Y0(Bi) ∈ Ai)

(4.4.7)

By Lemmas 4.4.5 and 4.4.3,

PrY0(Bi)∼π̂i(Yt(Bi) ∈ Si) ≥ µ1
Bi
(Si) ≥ 1− 1

ecL
.

Moreover, PrY0(Bi)∼π̂i(Y0(Bi) ∈ Ai) = α(β, q, d) = Ω(1), and so we obtain from (4.4.7)

PrY0(Bi)∼πi(Yt(Bi) ∈ Si) = 1−O

(
1

ecL

)
.

Setting S = ⊗N
i=1Si, a union bound over the Bi’s implies

Pr(Yt ∈ S) = 1−O

(
N

ecL

)
.
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It follows from another union bound over the steps that Pr(∀t ≤ T : Yt ∈ S) ≥
1−O

(
TN
ecL

)
. Setting T = A(log n) (which satisfies ℓ > 2T (L+1)+ 2L as required),

recalling thatN = Θ(n/ℓd), and takingC sufficiently large, we obtain that Pr(∀t ≤
T : Yt ∈ S) ≥ 1− o(1), and hence

Pr [∀t ≤ A log n : Xt(C) = Yt(C)] = 1− o(1),

as claimed.

4.4.1 Proof of auxiliary lemmas

We conclude the section with the proofs of Lemma 4.4.5 and 4.4.3.

Proof of Lemma 4.4.5. From the spectral decomposition (see, e.g., [87]), one has

Pr(Xt ∈ B) = π(B) + (1− π(B))

|Ω|∑
ℓ=2

κℓλ
t
ℓ, (4.4.8)

where κℓ ≥ 0 and
∑|Ω|

ℓ=2 κℓ = 1, and λ2, . . . , λ|Ω| denote the non-negative eigenval-
ues of the transition matrix of the Markov chain except for the principal eigen-
value λ1 = 1. In particular,

Pr(X1 ∈ B)− π(B) = (1− π(B))

|Ω|∑
ℓ=2

κℓλℓ. (4.4.9)

The convexity of the function f(x) = xt for t ≥ 1, x ≥ 0 and Jensen’s inequality
imply that

Pr(Xt ∈ B) ≥ π(B) + (1− π(B))

 |Ω|∑
ℓ=2

κℓλℓ

t

.

From (4.4.9) it follows that
∑|Ω|

ℓ=2 κℓλℓ = (1− π(B))−1(Pr(X1 ∈ B)− π(B)), and so
for t ≥ 1

Pr(Xt ∈ B) ≥ π(B) + (1− π(B))−t+1 ((Pr(X1 ∈ B)− π(B)))t .

Finally, observe also that from (4.4.8) it follows that Pr(Xt ∈ B)− π(B) ≥ 0.

Proof of Lemma 4.4.3. Let G = (V,E) be an n-vertex cube in Zd. Let EL be the set of
all edge configurations A ⊆ E such that for all v ∈ V at distance at least 2L from
partial ∂V , the connected component of v in A does not reach the boundary of
the cube Λv(L) centered at v of side length L. Consider the admissible boundary
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condition (1, 1) of the joint space that is wired and all spins are 1; i.e., in Defini-
tion 4.3.1 we set V0 = ∂V , E0 = ∂E, ψ = 1 and φ = 1. From Theorem 1.2 in [51],
we get that for a suitable constant a > 0

ν(1,1)(EL) ≥ 1− n

eaL
. (4.4.10)

We remark that Theorem 1.2 from [51] is stated for the random-cluster measure
with the wired boundary condition, but our statement for the joint measure ν is
equivalent; see Section 4.7 below for a definition of the random-cluster measure
and its boundary conditions. We also note that Theorem 1.2 from [51] requires
a weaker (easier to satisfy) condition than SSM . Recall that S is the set of L-
shattered configurations of V . Then,

ν(1,1)(EL) =
∑
σ∈S

µ1(σ)ν(1,1)(EL | σ) +
∑
σ∈Sc

µ1(σ)ν(1,1)(EL | σ)

≤ µ1(S) + (1− µ1(S))
(
1− n

eγL

)
= 1− n

eγL
+
nµ1(S)

eγL
.

Combining this with (4.4.10), we obtain that µ1(S) ≥ 1 − exp(−(a − γ)L); the
result follows by choosing γ = a/2 = c.

4.5 Entropy decay for dynamics in the joint space

In this section we study the implications of our spin/edge factorization of en-
tropy with respect to the joint measure ν for various dynamics on the joint space
on Zd.

4.5.1 Swendsen-Wang in the joint space

First, we consider the SW dynamics in the joint space. Let K denote the |ΩJ|× |ΩJ|
stochastic matrix corresponding to re-sampling the spins of a joint configuration
given the edges, and similarly let T be the stochastic matrix corresponding to
re-sampling the edges given the spins. Specifically,

K((σ,A), (τ, B)) = 1(A = B)ν(τ | A)

T ((σ,A), (τ, B)) = 1(σ = τ)ν(B | σ).

Note that T = T ∗ = T 2 and K = K∗ = K2; i.e., K and T are self-adjoint idempo-
tent operators.

The Markov chains with transition matrices KT and TK are natural variants
of the SW dynamics in the joint space. In the terminology of [47], they are the
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Markov chains in the joint space corresponding to the two-component Gibbs sam-
pler. The chains with transition matrices 1

2
(K + T ), KTK and TKT are also of

interest as reversible versions of KT and TK. We show that, under SSM , all of
these dynamics satisfy entropy decay with respect to ν and hence have O(log n)
mixing time.

Theorem 4.5.1. Let P be any of the stochastic matrices KT , TK, 1
2
(K + T ), KTK

or TKT . SSM implies that there exists constant δ > 0 such that, for all functions
f : ΩJ 7→ R+,

Entν(Pf) ≤ (1− δ)Entν(f).

In particular, the Markov chain with transition matrix P satisfies Tmix(P ) = O(log n).

First we state the following lemma, which is proved later and will be useful
in several of our proofs, including that of Theorem 4.5.1.

Lemma 4.5.2. Let S and S ′ be two idempotent stochastic matrices reversible with respect
to a distribution π over Γ, and let Q = S+S′

2
. Suppose there exists δ ∈ (0, 1) such that,

for any positive function f : Γ 7→ R, we have Entπ(Qf) ≤ (1 − δ)Entπ(f). Then
Entπ(SS

′f) ≤ (1− δ)Entπ(f) and Entπ(S
′Sf) ≤ (1− δ)Entπ(f).

We are now ready to prove Theorem 4.5.1.

Proof of Theorem 4.5.1. Let us consider first the case when P = K+T
2

. Since P = P ∗,
from Lemma 2.3.3 and Remark 2.3.2 it is sufficient to prove that, for all functions
f : ΩJ 7→ R+ with µ[f ] = 1,

Entν(Pf) ≤ (1− δ)Entν(f).

The convexity of the function x log x implies

Pf log(Pf) ≤ 1

2
Kf log(Kf) +

1

2
Tf log(Tf). (4.5.1)

If ν[f ] = 1, then ν[Pf ] = ν[Kf ] = ν[Tf ] = 1, and therefore taking expectations
with respect to ν in (4.5.1) we obtain

Entν(Pf) ≤
1

2
[Entν(Kf) + Entν(Tf)] . (4.5.2)

Noting that Kf(σ,A) = ν(f |A) and Tf(σ,A) = ν(f |σ), the decompositions
in (4.2.1) and (4.2.2) imply

Entν(f) = Entν(Kf) + ν [Entν(f |A)] = Entν(Tf) + ν [Entν(f |σ)] .
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Hence, (4.5.2) becomes

Entν(Pf) ≤ Entν(f)−
1

2
ν [Entν(f |A) + Entν(f |σ)] .

Lemma 4.3.2 now implies

Entν(Pf) ≤ (1− δ)Entν(f),

with δ = 1/2C. This proves the theorem for the case when P = K+T
2

. The re-
sult for KT and TK follows from Lemma 4.5.2, by noting that K2 = K = K∗

and T 2 = T = T ∗, and noting that (KT )∗ = TK and (TK)∗ = KT . (Note
that in Lemma 4.5.2, we do not require the matrices to be ergodic.) Finally, the
cases P = KTK, P = TKT follow from the cases P = KT and P = TK with
the observation that, by (4.5.5), Entν(KTKf) ≤ Entν(TKf) and Entν(TKTf) ≤
Entν(KTf).

Finally, we go back and supply the missing proof of Lemma 4.5.2.

Proof of Lemma 4.5.2. Let us first show that

Entπ(Sf) ≤ Entπ(S̃f), (4.5.3)

where S̃ = S+I
2

is a lazy version of S; I denotes the identity matrix. To this end,
defineUn =

[
1
2
(S + I)

]n. Then we haveU1 = S̃ andUn = (2n−1)S+I
2n

→ S as n→ ∞.
Therefore, (4.5.3) follows if we prove that for all n ≥ 1

Entπ (Un+1f) ≤ Entπ(Unf). (4.5.4)

On the other hand, if U is any stochastic matrix with stationary distribution π,
then for any function f : Γ 7→ R+ with π[f ] = 1 we have π[Uf ] = 1. Hence,
Entπ(Uf) = π[(Uf) log(Uf)]. Since U is a stochastic matrix, the convexity of the
function x log x implies (Uf) log(Uf) ≤ U(f log f), and so

Entπ(Uf) ≤ π[U(f log f)] = π[f log f ] = Entπ(f). (4.5.5)

Since Un+1f = U1Unf , applying (4.5.5) with f replaced by Unf and with U = U1

proves (4.5.4) and (4.5.3). We note that since (S ′)2 = S ′,

S̃S ′ =
1

2
(S + S ′)S ′ = QS ′.
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Applying (4.5.3) with f replaced by S ′f we obtain

Entπ(SS
′f) ≤ Entπ(S̃S

′f) = Entπ(QS
′f) ≤ (1− δ)Entπ(S

′f) ≤ (1− δ)Entπ(f),

where the second inequality follows from the assumption that Q contracts en-
tropy for any function and the last one follows again from (4.5.5). This completes
the proof for SS ′. The same argument with S and S ′ exchanged applies for S ′S

and we are done.

4.5.2 The local dynamics in the joint space

In this section, we use Lemma 4.3.2 to derive tight bounds for the local (Glauber)
dynamics in the joint space; this dynamics has been recently considered in [35],
but as far as we know there are no results in the literature concerning its rate of
convergence to stationarity. The dynamics is defined as follows: in each step,
with probability 1/2 update a vertex and with probability 1/2 update an edge. To
update a vertex, pick v ∈ V uniformly at random and perform a “heat-bath” up-
date at v (i.e., replace the spin of v with a new spin sampled from the conditional
distribution of the spin at v given the current spin/edge configuration); to update
an edge, pick e ∈ E uniformly at random and perform a “heat-bath” update at e.

For any v ∈ V , e ∈ E, let Qv denote the stochastic matrix corresponding to the
single heat-bath update at vertex v, and let We denote the stochastic matrix for
the single heat-bath update at the edge e. Then the transition matrix PLOCAL of the
Glauber dynamics in the joint space is given by

PLOCAL =
1

2|V |
∑
v∈V

Qv +
1

2|E|
∑
e∈E

We. (4.5.6)

Theorem 4.5.3. SSM implies that there exists a constant δ > 0 such that, for all f :

ΩJ 7→ R+

Entν(PLOCALf) ≤
(
1− δ

n

)
Entν(f).

Moreover, the mixing time of the local dynamics satisfies Tmix(PLOCAL) = O(n log n).

The mixing time bound in this theorem is asymptotically tight. This follows
from the lower bounds in [77] by considering the projection of PLOCAL on the spins;
see Remark 4.5.4.

The heat-bath updates in the joint space are quite simple. For a vertex v ∈ V ,
the heat-bath update at v assigns a new spin to v chosen u.a.r. from {1, . . . , q},
provided v is isolated (i.e., there are no edges incident to v in the edge con-
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figuration); otherwise, the spin at v does not change. On the other hand, the
heat-bath update at e ∈ E updates the state of e only if it is monochromatic
in the spin configuration; if this is the case, the new state of e corresponds to a
Bernoulli(p) random variable. We note that Qv and We are reversible with respect
to ν. Moreover, they are projection operators in L2(ΩJ, ν); that is, Q2

v = Qv = Q∗
v

and W 2
e = We = W ∗

e .

Proof of Theorem 4.5.3. First note that since Qv and We are reversible with respect
to ν, so is PLOCAL and by Lemma 2.3.3 and Remark 2.3.2 it is sufficient for us to
establish that

Entν(PLOCALf) ≤ (1− δ/n)Entν(f) (4.5.7)

for all functions f : ΩJ 7→ R+ such that ν[f ] = 1. Here δ > 0 is a constant
independent of n and the admissible boundary condition.

By the convexity of the function x log x, reasoning as in (4.5.2), we can write

Entν(PLOCALf) ≤
1

2|V |
∑
v∈V

Entν(Qvf) +
1

2|E|
∑
e∈E

Entν(Wef).

Let σV \v (resp., AE\e) denote the spin (resp., edge) configuration excluding v

(resp., excluding e). Since

Qvf(σ,A) = ν(f |σV \{v}, A)

and
Wef(σ,A) = ν(f |σ,AE\e),

from the decompositions of entropy in (4.2.1) and (4.2.2) we obtain

Entν(Qvf) = Entν(f)− ν
[
Entν(f |σV \{v}, A)

]
;

Entν(Wef) = Entν(f)

− ν
[
Entν(f |σ,AE\e)

]
.

Therefore,

Entν(PLOCALf) ≤ Entν(f)−
1

2|V |
∑
v∈V

ν
[
Entν(f |σV \{v}, A)

]
− 1

2|E|
∑
e∈E

ν
[
Entν(f |σ,AE\e)

]
.
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We show next that there exists a constant C > 0 such that

Entν(f) ≤ C
∑
v∈V

ν
[
Entν(f |σV \{v}, A)

]
+ C

∑
e∈E

ν
[
Entν(f |σ,AE\e)

]
. (4.5.8)

The desired estimate (4.5.7) then follows from the fact that |E| = O(|V |) = O(n).

To establish (4.5.8), note that by Theorem 3.3.2 we know that SSM implies
approximate even/odd factorization. Then, from Lemma 4.3.5 we know that, for
some constant C1 > 0,

Entν(f) ≤ C1ν [Entν(f |σE) + Entν(f |σO)] , (4.5.9)

where we recall that E ⊂ V and O ⊂ V are the even and odd sub-lattices, respec-
tively. Since ν(· |σO) = ⊗v∈E νv(· |σO) (see (4.3.7)), the standard tensorization of
entropy for product measures (see, e.g., [5]) implies

Entν(f |σO) ≤
∑
v∈E

ν [Entv(f |σO) |σO] ,

where as before we use Entv(· |σO) for the entropy with respect to νv(· |σO). From
Lemma 4.3.6 we see that

Entν(f |σO) ≤ C1

∑
v∈E

ν [Entv(f |σO, A) + Entv(f |σ) |σO] ,

for some constant C1 > 0.

For v ∈ E, the distribution of the spin σv given σO andA is the same as the dis-
tribution of σv given σV \{v} and A; that is, νv(· |σO, A) = ν(· |σV \{v}, A). Therefore
we may write

Entv(f |σO, A) = Entν(f |σV \{v}, A).

Let us also observe that, for every v ∈ E,

Entv(f |σ) ≤
∑

w∈V : {w,v}∈E

Entν(f |σ,AE\{w,v}). (4.5.10)

Indeed, νv(· |σ) is a product measure on Av = {Avw, {w, v} ∈ E}, and the en-
tropy appearing on the right hand side above is simply the entropy of Avw once
every other spin or edge variable has been fixed. Therefore, (4.5.10) is again the
standard tensorization statement for product measures. In conclusion, we have
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shown that

Entν(f |σO) ≤ C1

∑
v∈E

ν
[
Entν(f |σV \{v}, A) |σO

]
+ C1

∑
e∈E

ν
[
Entν(f |σ,AE\e) |σO

]
,

(4.5.11)

where the second sum is now over the set of all edges E. The same estimate can
be obtained with the role of even and odd sites reversed:

Entν(f |σE) ≤ C1

∑
v∈O

ν
[
Entν(f |σV \{v}, A) |σE

]
+ C1

∑
e∈E

ν
[
Entν(f |σ,AE\e) |σE

]
.

(4.5.12)

Taking expectations with respect to ν and summing (4.5.11) and (4.5.12), from
(4.5.9) we obtain (4.5.8) which finishes the proof.

Remark 4.5.4. By taking f that depends only on spins, we derive as a corollary
of Theorem 4.5.3 entropy decay for the Potts model Glauber dynamics (up to a
constant laziness factor to account for the probability of a site being isolated);
similarly, taking f that depends only on edges, we obtain entropy decay for the
corresponding Glauber dynamics for the random-cluster model. While entropy
decay was previously known for the Potts Glauber dynamics under SSM [36],
the same statement for the random-cluster dynamics appears to be a new result.
(Note in particular that entropy decay does not follow from the mixing time re-
sults for this dynamics in [16].)

We briefly mention several other consequences of our results. First, we note
that Theorem 4.5.3 can be extended to the more general case of (weighted) block
dynamics for the joint space. In addition, since the “edge marginal” of the joint
measure ν is the random-cluster distribution, we can show that the mixing time of
the SW dynamics for the random-cluster model, which alternates between edge
and joint configurations, is alsoO(log n) for all integer q ≥ 2 provided SSM holds;
see Section 4.7 for more details about our results for random-cluster dynamics.

Finally, we note that while our results in the joint space are all stated for the
free boundary condition, they actually extend to the more general class of admis-
sible boundary conditions; see Definition 4.3.1 in Section 4.3 for the definition of
this class.

4.6 Entropy decay for the alternating scan dynamics

The fact that classical log-Sobolev inequalities do not capture the mixing time of
the SW dynamics seems to be a more general phenomenon afflicting non-local
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Markov chains. These chains are popular due to their presumed speed-up over
Glauber dynamics and to the fact that their updates can be parallelized. With our
techniques, we are able to establish entropy contraction for another standard non-
local Markov chain for the Potts model known as the alternating scan dynamics.
This chain, which is used in practice to sample from the Gibbs distribution and
has received some theoretical attention [13, 114, 72], also has a “bad” log-Sobolev
constant, but we can show that entropy decays at a constant rate over the steps
of the chain.

In one step of the alternating scan dynamics, all the even vertices (i.e., those
with even coordinate sum) are updated simultaneously with a new configuration
distributed according to the conditional measure on the even sub-lattice given
the configuration on the odd sub-lattice; the process is then repeated for the odd
vertices. The key observation is that the conditional distributions on the even and
odd sub-lattices are product distributions, which makes this chain particularly
amenable to parallelization and thus attractive in applications.

Let PE be the stochastic matrix corresponding to the update of the even sites
conditional on the spins of the odd sites, and define PO analogously for the odd
sites. The alternating scan dynamics is the Markov chain with transition matrix
SEO = PEPO (or, equivalently, SOE = POPE). Note that PE, PO do not commute
(unless β = 0), so SEO and SOE are not reversible with respect to their stationary
measure µ. In [13] it was shown that whenever SSM holds, the mixing time of
the reversibilized version SOEO = POPEPO of this dynamics is O(n). Here we
prove a much tighter bound by showing that the alternating scan dynamics itself
contracts entropy at a constant rate.

Theorem 4.6.1. Let P be either of the stochastic matrices SEO or SOE . SSM implies
that there exists a constant δ > 0 such that, for all boundary conditions and all functions
f : Ω 7→ R+,

Entµ(Pf) ≤ (1− δ)Entµ(f).

In particular, the Markov chain with transition matrix P satisfies Tmix(P ) = O(log n).

We note that the alternating scan dynamics is a version of so-called systematic
scan dynamics, a variant of Glauber dynamics in which vertices are updated in
some fixed, rather than random, ordering. Due to their widespread use in prac-
tice, the effect of decay of correlations properties on the speed of convergence of
this class of dynamics has been widely studied; see, e.g. [53, 76, 54].

Proof of Theorem 4.6.1. We will show that the discrete entropy contraction in (2.3.5)
holds for SEO and SOE for any positive function f : Ω 7→ R such that µ[f ] = 1. The
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mixing time bounds then follow from Lemma 2.3.3 and the fact that S∗
EO = SOE

and S∗
OE = SEO. In view of Lemma 4.5.2, it is sufficient for us to establish (2.3.5)

for P := PE+PO

2
. The convexity of the function x log x implies the pointwise bound

(Pf) log(Pf) ≤ 1

2
(PEf) log(PEf) +

1

2
(POf) log(POf).

From this and the fact that µ[Pf ] = 1 we get

Entµ(Pf) = µ[(Pf) log(Pf)] ≤ 1

2
[Entµ(PEf) + Entµ(POf)] . (4.6.1)

Note that PE and PO are the orthogonal projections in L2(Ω, µ) such that PEf =

µ(f |σO) and POf = µ(f |σE). Therefore,

Entµ(f) = Entµ(µ(f |σO)) + µ [Entµ(f |σO)] = Entµ(PEf) + µ [Entµ(f |σO)] ;

Entµ(f) = Entµ(µ(f |σE)) + µ [Entµ(f |σE)] = Entµ(POf) + µ [Entµ(f |σE)] ,

and we see that (4.6.1) is equivalent to

Entµ(Pf) ≤ Entµ(f)−
1

2
µ [Entµ(f |σO) + Entµ(f |σE)] .

We may now apply Theorem 3.3.2 which implies that, when SSM holds,

Entµ(Pf) ≤ (1− δ)Entµ(f),

for a suitable constant δ ∈ (0, 1). This establishes (2.3.5) for P = PE+PO

2
. Since

P 2
E = PE = P ∗

E and P 2
O = PO = P ∗

O, and (PEPO)
∗ = POPE , (POPE)∗ = PEPO, the

remainder of the result follows from Lemma 4.5.2.

4.7 Random-cluster dynamics

In this section we study the implications of our results for the dynamics of the
random-cluster model for both the high and low temperatures regimes. This allows
us to derive Theorem 1.3.5 from the introduction using a comparison mechanism
we establish in Section 4.7.2.

The random-cluster model on G = (V,E) with parameters p ∈ (0, 1) and q > 0

assigns to each A ⊆ E a probability

ϱ(A) = ϱG,p,q(A) =
1

ZRC

p|A|(1− p)|E|−|A|qc(A), (4.7.1)

where c(A) is the number of connected components in (V,A) and ZRC is the cor-

94



4.7. RANDOM-CLUSTER DYNAMICS

(a) (b) (c) (d)

Figure 4.7.1: The figures above show four distinct admissible boundary conditions of a square
region V of the joint space. The boundary condition in (a) is obtained by taking V0 = ∂V , E0 = ∂E,
ψ = “red” and φ = 0. The boundary condition in (b) is the spin-only monochromatic boundary
condition obtained by taking V0 = ∂V, E0 = ∅ and ψ = “red”; (c) is obtained by taking V0 =
∂V,E0 = ∂E, ψ = “red” and φ = 1 (wired edges are colored blue); note that the vertices incident
to ∂V will be “red” with probability 1. Boundary condition (d) is obtained by taking V0 = ∂V ,
E0 = ∂E \ E1, ψ = “red” and φ = 1. The marginal on edges of ν(ψ,φ) in (a) is the random-
cluster measure on the internal square V \ ∂V with the free boundary condition, while in (b), (c)
and (d) the edge marginal is a wired random-cluster measure over (V,E), (V \ ∂V,E \ ∂E) and
(V,E \ (∂E \ E1)), respectively.

responding partition function. The random-cluster model was first introduced
by Fortuin and Kasteleyn [62] as a unifying framework for random graphs, spin
systems and electrical networks; see the book [68] for extensive background.

A boundary condition for the random-cluster model is a partition ξ = {ξ1, ξ2, . . . }
of the internal boundary ∂V of V such that all vertices in each ξi are constrained
to be in the same connected component of any configuration A. (We can think of
the vertices in ξi as being connected through a configuration in V c.) These con-
nections are considered in the counting of the connected components in (4.7.1);
i.e., c(A) becomes c(A, ξ) (see, e.g., [15, 68]).

The distribution ϱ with a free boundary condition (i.e., every element of ξ is
a single vertex) corresponds to the edge marginal of the joint measure also with
free boundary condition (4.1.1); that is, ϱ(A) =

∑
σ:A⊆M(σ) ν(σ,A) and ZRC = ZJ;

see, e.g., [56, 68]. The wired boundary condition corresponds to the case when all
vertices of ∂V are connected by the boundary condition (i.e., ξ = {∂V }). More
generally, if (ψ, φ) is an admissible boundary condition for the joint space (see
Definition 4.3.1), we have

ϱψ,φ(A) =
∑

σ:A⊆M(σ)

νψ,φ(σ,A) =
1

Zψ,φ
p|A|(1− p)|E|−|A|qc(A)−c0(A)1(A ∼ ψ)1(A ∼ φ),

(4.7.2)
where A ∼ ψ means that A does not connect vertices of V0 with different colors
in ψ, A ∼ φ that A and φ agree on the edges in E0 and c0(A) denotes the num-
ber of connected components that intersect V0 ⊆ ∂V ; see Figure 4.7.1 for some
admissible boundary conditions.

As an example, consider the admissible boundary condition that is obtained
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by taking V0 = ∂V , E0 = ∂E, with ψ = i for some i ∈ [q] (i.e., the monochromatic
spin boundary condition) and φ = 1; see Figure 4.7.1(c). In this case, ϱψ,φ is
the random-cluster measure on the cube R = {1, . . . , ℓ − 1}d ⊂ V with wired
boundary condition. On the other hand, the marginal on the spins is the Potts
measure on R with the “all i” monochromatic boundary condition.

Another relevant random-cluster boundary condition is the one obtained by
adding to the random-cluster space the edges “sticking in” from ∂V . Namely,
let E1 ⊂ ∂E be the set of edges with exactly one endpoint in ∂V , and take the
monochromatic boundary condition ψ = i and the wired edge boundary condi-
tion on E0 = ∂E \ E1. The marginal on edges is the random-cluster distribution
measure on (V,E \ E0) with wired boundary condition on ∂V , while the spin
marginal is the Potts measure on R with the “all i” boundary condition on ∂V ;
see Figure 4.7.1(d).

Reasoning in this way one can obtain, as the edge marginal of the joint mea-
sure with an admissible boundary condition, any random-cluster measure with
a boundary condition where the vertices in the boundary are either free or wired
into a single component, simply by fixing monochromatic spins on that component
and fixing an edge configuration realizing the wiring of that component.

Planar duality. A useful tool in two dimensions is planar duality. Let Gd =

(Vd,Ed) denote the planar dual of G = (V,E), where V = {0, . . . , ℓ} × {0, . . . , ℓ}
is a square region of Z2. That is, Vd corresponds to the set of faces of V , and for
each e ∈ E, there is a dual edge ed ∈ Ed connecting the two faces bordering e. The
random-cluster distribution (4.7.1) satisfies ϱG,p,q(A) = ϱGd,pd,q(Ad), where Ad is
the dual configuration to A ⊆ E; i.e., ed ∈ Ad iff e ̸∈ A), and

pd =
q(1− p)

q(1− p) + p
.

The self-dual point (i.e, the value of p such that p = pd) corresponds to the critical
threshold pc(q) = 1− exp(−βc(q)).

Since Vd is not a subset of Z2, it is convenient to consider the graph Ĝd =

(V̂d, Êd) with V̂d = {−1, . . . , ℓ} × {−1, . . . , ℓ} + (1
2
, 1
2
) and identify all boundary

vertices of V̂d with the vertex of Gd corresponding to its external face. Then,
ϱ1G,p,q(A) = ϱ0

Ĝd,pd,q
(Ad) and ϱ0G,p,q(A) = ϱ1

Ĝd,pd,q
(Ad), where the 0 and 1 superscripts

denote the free and and wired boundary conditions respectively (see Section 6.1
in [68] for a detailed discussion).

Observe that both random cluster measures ϱ1
Ĝd,pd,q

and ϱ0
Ĝd,pd,q

on Ĝd can
be obtained as marginals of the joint measure in a square region of Z2 with a
monochromatic admissible boundary condition as described above.
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4.7.1 SW dynamics for the random-cluster model

Our first result concerns the SW dynamics for the random-cluster model. In this
variant of the SW dynamics, given an edge configurationA, we assign spins to the
connected components of A uniformly at random to obtain a joint configuration,
and then update the edge configuration by percolating on the monochromatic
edges with probability p. The transition matrix P̃SW of this chain satisfies

P̃SW(A,B) =
∑

σ:A⊆M(σ)

ν(σ |A)ν(B |σ);

P̃SW is reversible with respect to ϱ; see, e.g., [56, 127]. The following lemma follows
from Theorem 4.5.1.

Lemma 4.7.1. Let ν := νψ,φ be the joint distribution with an admissible boundary con-
dition (ψ, φ). If q and β = ln( 1

1−p) are such that SSM holds, then the SW dynamics on
random-cluster configurations with boundary conditions inherited from (ψ, φ) satisfies
the discrete time entropy decay with rate δ, and its mixing time is bounded by O(log n).

Proof. If f depends only on the edge configuration, then

P̃SWf(A) = ν[ν(f |σ) |A] = TKf(σ,A). (4.7.3)

Here and below, with slight abuse of notation, if a function f on the joint space
depends only on the edge configuration, we again write f for the corresponding
(projection) function on edges. Therefore, we have Entϱ(P̃SWf) = Entν(TKf).
More precisely, for any f ≥ 0 depending only on the edge configuration, and
such that ϱ[f ] = ν[f ] = 1, one has

Entϱ(P̃SWf) = ϱ[(P̃SWf) log(P̃SWf)] = ν[(TKf) log(TKf)] = Entν(KTf).

Theorem 4.5.1 says that, for any function f in the joint space, one has

Entν [KTf ] ≤ (1− δ)Entν(f).

In particular, for our f ,

Entϱ(P̃SWf) ≤ (1− δ)Entν(f) = (1− δ)Entϱ(f).

This is the desired discrete time entropy decay for P̃SW in the edge space.

Remark 4.7.2. The same argument in the previous proof applies to the spin dy-
namics. In particular, if g is a function depending only on the spin configuration,

97



4.7. RANDOM-CLUSTER DYNAMICS

then PSWg(σ) = KTg(σ,A). Repeating the previous steps with KT in place of
TK one has discrete time entropy decay with rate δ for the SW dynamics on spin
configurations. This provides an alternative view of the proof of Theorem 1.3.3
as a corollary of Theorem 4.5.1 for the joint space.

In Z2, we can take advatange of self-duality of the random-cluster model to
obtain bounds for the SW dynamics in the low temperature regime.

Theorem 4.7.3. In an n-vertex square region of Z2 with free or wired boundary condi-
tions, for all integer q ≥ 2 and all p > pc(q), there exists a constant δ > 0 such that for
all functions f : {0, 1}E 7→ R+

Entϱ(P̃SWf) ≤
(
1− δ

n

)
Entϱ(f).

In particular, the mixing time of the SW dynamics on random-cluster configurations
satisfies Tmix(P̃SW) = O(n log n).

Let G = (V,E) where V is n-vertex square region of Z2. Let ϱ := ϱθG,p,q where
θ ∈ {0, 1} and let PHB be the transition matrix of the heat-bath Glauber dynamics
on G. This is the standard Markov chain that, from a random-cluster configura-
tion At ⊆ E, transitions to a new configuration At+1 ⊆ E as follows:

1. choose an edge e ∈ E uniformly at random;

2. let At+1 = At ∪ {e} with probability

ϱ(At ∪ {e})
ϱ(At ∪ {e}) + ϱ(At \ {e})

=

{
p

q(1−p)+p if e is a “cut-edge” in (V,At);

p otherwise;

3. otherwise, let At+1 = At \ {e}.

We say e is a cut-edge in (V,At) if the number of connected components in At ∪
{e} and At \ {e} differ. PHB is (by design) reversible with respect to ϱ. It is also
straightforward to check that with the free (resp., wired) boundary condition and
parameters p and q, for any pair of configurations A and B, we have PHB(A,B) =

P d
HB(Ad, Bd), where P d

HB denotes the transition matrix of the heat-bath chain on Ĝd

with wired (resp., free) boundary condition and paramaters pd and q.

Theorem 4.7.3 follows from the following two results.

Lemma 4.7.4. There exists a constant c > 0 such that, for every function f : {0, 1}E 7→
R,

DP̃SW
(f, f) ≥ c · DPHB(f, f).
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Lemma 4.7.5. For all integer q ≥ 2 and all p > pc(q), there exists a constant δ > 0 such
that, for every function f : {0, 1}E 7→ R+,

DPHB(
√
f,
√
f) ≥ δ

n
· Entϱ(f).

Proof of Theorem 4.7.3. Lemmas 4.7.4 and 4.7.5 imply

DP̃SW
(
√
f,
√
f) ≥ cδ

n
· Entϱ(f). (4.7.4)

In words, this says that the SW dynamics on random-cluster configurations when
p > pc(q) satisfies a standard log-Sobolev inequality with constant cδ

n
. An in-

equality of Miclo relating the standard log-Sobolev inequality and discrete time
entropy decay (see Proposition 6 in [104]) shows that (4.7.4) implies the entropy
decay bound

Entϱ(P̃SWf) ≤
(
1− δc

n

)
Entϱ(f),

and the mixing time bound follows from Lemma 2.3.3 and Remark 2.3.2 since
P̃SW = P̃ ∗

SW.

It remains to prove Lemmas 4.7.4 and 4.7.5. We note that a version of the com-
parison inequality in Lemma 4.7.4 was proved in [127] (see Theorem 4.8 there),
but it is stated for the spectral gap under the free boundary condition.

In both of these proofs, we consider the single-bond variant of the Glauber
dynamics. In one step of this chain every connected component is assigned a
spin from [q] uniformly at random; a random edge e is then chosen and if the
endpoints of e are monochromatic, then the edge is added to the configuration
with probability p and deleted otherwise. The state of e does not change if its
endpoints are bi-chromatic. Note that this chain is the projection onto edges of
the local dynamics on the joint space, see (4.5.6); in particular, the update at the
edge e corresponds to We. Let PSB denote the transition matrix of the single bond
dynamics, which is reversible with respect to ϱ. The Dirichlet form associated to
this chain satisfies

DPSB(f, f) = ⟨(I − PSB)f, f⟩ϱ = ϱ [((I − PSB)f) · f ] =
1

|E|
∑
e∈E

ν
[
Varν(f |σ,AE\e)

]
(4.7.5)

since
PSBf(A) =

1

|E|
∑
e∈E

ν
[
ν[f |σ,AE\e] |A

]
,

where with a slight abuse of notation (here and below) we use f also for the “lift”
of f to the joint space.
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We note that for some constants ci = ci(q, p) > 0, i = 1, 2,

c1PSB(A,B) ≤ PHB(A,B) ≤ c2PSB(A,B)

for all random-cluster configurations A,B. Therefore the same bounds apply to
the Dirichlet forms:

c1DPSB(f, f) ≤ DPHB(f, f) ≤ c2DPSB(f, f), (4.7.6)

for any function f : {0, 1}E 7→ R.

Proof of Lemma 4.7.4. The Dirichlet form associated with P̃SW is given by

DP̃SW
(f, g) = ⟨(I − P̃SW)f, g⟩ϱ = ϱ

[
((I − P̃SW)f) · g

]
,

and since P̃SWf(A) = ν[ν[f |σ] |A], we obtain

DP̃SW
(f, f) = ν [(f − ν[ν[f |σ] |A]) · f ] = ν [(f − ν[f |σ]) · f ] = ν [Varν(f |σ)] .

Then, for any function f ≥ 0,

DP̃SW
(
√
f,
√
f) = ν

[
Varν(

√
f |σ)

]
≥ 1

|E|
∑
e∈E

ν
[
Varν(

√
f |σ,AE\e)

]
= DPSB(

√
f,
√
f),

where we have used (4.7.5) and the fact that, for any e ∈ E,

ν
[
Varν(

√
f |σ)

]
≥ ν

[
Varν(

√
f |σ,AE\e)

]
by monotonicity of the variance functional. The result then follows from (4.7.6).

Proof of Lemma 4.7.5. By duality (see discussion at the beginning of the section),
we have

DPHB(
√
f,
√
f) = DPd

HB
(
√
fd,
√
fd), (4.7.7)

where fd is the function such that fd(Ad) = f(A) and P d
HB is the transition matrix

corresponding to the dual of ϱ.

Thus, if DPHB is at low temperature (p > pc(q)), then DPd
HB

is at high temperature
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(p < pc(q)). Moreover, from (4.7.5) and (4.7.6),

DPd
HB
(
√
f,
√
f) ≥ c1DPd

SB
(
√
f,
√
f) =

c1
|E|
∑
e∈E

νd

[
Varνd(

√
f |σ,AE\e)

]
,

where νd is the dual joint measure. Specifically, if ϱd is the dual measure of ϱ (and
the stationary distribution of P d

HB), νd is a joint measure whose edge marginal is
ϱd. Observe that since ϱ is a random-cluster distribution on the square region
V = {0, . . . , ℓ} × {0, . . . , ℓ} with free (or wired) boundary condition, ϱd is a distri-
bution over V̂d = {−1, . . . , ℓ} × {−1, . . . , ℓ}+ (1

2
, 1
2
) with wired (or free) boundary

condition. As discussed earlier, in either case there exists a joint measure with an
admissible boundary condition whose edge marginal is ϱd.

Observe also that, as before, with a slight abuse of notation, we also use f
for the “lift” of f to the joint space. Now, as in (4.3.10) we know that for some
constant C = C(p, q), for all e ∈ E and for all f ≥ 0,

Varνd(
√
f |σ,AE\e) ≥ C−1Entνd(f |σ,AE\e).

Therefore,

DPd
HB
(
√
f,
√
f) ≥ c1C

−1

|E|
∑
e∈E

νd
[
Entνd(f |σ,AE\e)

]
.

Since for p < pc(q) and q ≥ 2 the SSM property holds, we can use (4.5.8) to obtain∑
e∈E

νd
[
Entνd(f |σ,AE\e)

]
≥ δ1Entνd(f).

Indeed, if f is a function of edges only then the first term on the right hand side
of (4.5.8) is zero. Moreover for such an f we have Entνd(f) = Entϱd(f). Summa-
rizing, we have proved, for all f ≥ 0,

DPd
HB
(
√
fd,
√
fd) ≥

δ2
n
Entϱd(fd), (4.7.8)

for a suitable constant δ2 > 0. The result follows from (4.7.7) and the fact that
Entϱd(fd) = Entϱ(f).

Remark 4.7.6. We remark that (4.7.8) says that the heat-bath Glauber dynamics
for the random-cluster model in square regions of Z2 with free or wired bound-
ary conditions satisfies the standard log-Sobolev inequality with constant δ/n for
some δ = δ(p, q) for all p ̸= pc(q). This bound is optimal up to a multiplicative
constant, as can be seen by choosing an appropriate test function.

101



4.7. RANDOM-CLUSTER DYNAMICS

4.7.2 Decay for spins from decay for edges and vice versa

We will use Theorem 4.7.3 to deduce our low temperature results for the SW dy-
namics on spin configurations. We do so using the following entropy contraction
“transfer” result between the spin and edge variants of the SW dynamics. A sim-
ilar comparison result for the spectral gap was provided by Ullrich [127].

Lemma 4.7.7. Suppose we know that the SW dynamics on edges with invariant measure
ϱ, corresponding to an n-vertex square region V with some boundary condition, has en-
tropy decay with rate δ. Then the SW dynamics on spins on V , with any boundary condi-
tion inherited from a joint measure ν whose marginal on edges equals ϱ, satisfies the same
entropy decay (asymptotically) and has the same mixing time bound Tmix = O(δ−1 log n).
The same applies with the roles of spins and edges reversed.

Proof. The assumption on ϱ says that

Entϱ(P̃SWg) ≤ (1− δ)Entϱ(g), (4.7.9)

for any function g = g(A), A ⊂ E. Recalling (4.7.3) we see that (4.7.9) can be
rewritten as

Entν(TKg) ≤ (1− δ)Entν(g),

for any g = g(A) and any joint measure ν such that the marginal on edges equals
ϱ. Now, let f = f(σ) be any function depending only on the spin configuration.
Since g = Tf depends only on the edge configuration, we have

Entν(TKTf) ≤ (1− δ)Entν(Tf). (4.7.10)

If we apply (4.7.10) with f replaced by (KT )ℓ−1f , then

Entν(T (KT )
ℓf) ≤ (1− δ)Entν(T (KT )

ℓ−1f),

for any ℓ ∈ N. Iterating this inequality we find, for any ℓ ∈ N,

Entν(T (KT )
ℓf) ≤ (1− δ)ℓEntν(Tf). (4.7.11)

102



4.7. RANDOM-CLUSTER DYNAMICS

Recalling that P ℓ
SWf = (KT )ℓf , from (4.7.11) we get

Entµ(P
ℓ
SWf) = Entν((KT )

ℓf)

= Entν(KT (KT )
ℓ−1f)

≤ Entν(T (KT )
ℓ−1f)

≤ (1− δ)ℓ−1Entν(Tf)

≤ (1− δ)ℓ−1Entν(f) = (1− δ)ℓ−1Entµ(f),

where the first inequality follows from (4.5.5). This shows that the discrete time
entropy decay for SW on spins is asymptotically the same as the one assumed
for SW on edges, and Lemma 2.3.3 allows us to conclude the desired mixing time
bound. The same argument (with KT replaced by TK) shows that if we assume
an entropy decay for spins then we obtain (asymptotically) the same entropy de-
cay for edges, and therefore the same mixing time bound.

We can now provide the proof of Theorem 1.3.5 from the introduction.

Proof of Theorem 1.3.5. From the discussion at the beginning of Section 4.7, note
that there is an admissible boundary condition in the joint space for which the
edge marginal is the random-cluster measure on a square region of Z2 with a
wired boundary condition, and the spin marginal is the monochromatic bound-
ary condition. The result then follows from Theorem 4.7.3 and Lemma 4.7.7.
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Chapter 5
Spectral independence and q-spin
systems

5.1 Proof overviews for main results

In this chapter, we consider arbitrary q−spin systems on G = (V,E) where the
maximum degree of the graph G is independent on |V |, and we sketch the proof
of our key technical results showed in section 1.4 of the introduction. We begin
in Section 5.1.1 with an overview of our proof that spectral independence implies
optimal bounds for arbitrary block dynamics and the Swendsen-Wang dynam-
ics (namely, Theorems 1.4.1 and 1.4.2). In Section 5.1.2 we highlight the proofs
of Theorems 1.4.3, and 1.4.4 that a contractive coupling for an arbitrary local dy-
namics implies spectral independence.

5.1.1 Optimal mixing under spectral independence

We begin with the high-level idea for the proof that spectral independence im-
plies optimal mixing for arbitrary heat-bath block dynamics, and then we de-
scribe the key ideas to obtain optimal mixing for the Swendsen-Wang dynamics.

Recall that to establish optimal mixing for an arbitrary choice of block dy-
namics it suffices to prove general block factorization (GBF); see Lemma 2.4.6 for
more details. Previous results show that spectral independence implies ℓ-uniform
block factorization (ℓ-UBF) with ℓ = ⌈θn⌉ for any fixed θ ∈ (0, 1); see [42] and The-
orem 5.4.1. Note, ℓ-UBF refers to the block factorization where the weights α are
uniform over all subsets of size ℓ; see Definition 5.1.1 below. The key step in the
proof of Theorem 1.4.1 is to show that ℓ-UBF, with ℓ = ⌈θn⌉ and θ sufficiently
small, implies general block factorization (GBF).

We begin with the formal definition of ℓ-UBF. For a positive integer ℓ ≤ n, let
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(
V
ℓ

)
denote the collection of all subsets of V of size ℓ.

Definition 5.1.1 (Uniform Block Factorization). We say that the spin system µ

satisfies the ℓ-uniform block factorization (ℓ-UBF) of entropy with constant CUBF if for
all f : Ω → R+

ℓ

n
Ent(f) ≤ CUBF ·

1(
n
ℓ

) ∑
S∈(Vℓ )

µ[EntS(f)]. (5.1.1)

We prove the following theorem that ℓ-UBF (for sufficiently small choice of ℓ)
implies general block factorization (GBF).

Theorem 5.1.2. For an arbitrary b-marginally bounded spin system on a graph of max-
imum degree ∆, if ⌈θn⌉-UBF holds with constant CUBF and 0 < θ ≤ b2(∆+1)

4e∆2 , then GBF
holds with constant CGBF = CUBF ×O ((θ b2)−1 log(1/b)∆3).

This and the already known ⌈θn⌉-UBF implies Theorem 1.4.1 from the intro-
duction:

Proof of Theorem 1.4.1. For a spin system that is η-spectrally independent and b-
marginally bounded, ⌈θn⌉-UBF holds with constant CUBF = (1

θ
)O( η

b
) (see The-

orem 5.4.1). Then, taking θ = b2(∆+1)

4e∆2 , Theorem 5.1.2 implies that GBF holds

with constant CGBF = O
(

4e∆5

b2(∆+2) log(1/b)
)
×
(

4e∆2

b2(∆+1)

)O( η
b )
, and it thus follows that

CGBF =
(
2
b

)O(∆(1+ η
b
)).

Hence, the key novelty in the proof of Theorem 1.4.1 is Theorem 5.1.2. To es-
tablish Theorem 5.1.2 we consider a special case of GBF, which we call k-partite
factorization of entropy. Recall that a graph G of maximum degree ∆ is k-partite,
with k ≤ ∆ + 1. Let {V1, ..., Vk} denote the independent sets Vi ⊂ V correspond-
ing to a k-partition of G. Theorem 5.1.2 follows immediately from the following
factorization statements.

Lemma 5.1.3. Suppose that for an arbitrary b-marginally bounded spin system on a
graph of maximum degree ∆, ⌈θn⌉-UBF holds with constant CUBF and θ ≤ b2(∆+1)

4e∆2 . Then,

Ent(f) ≤ KCUBF

k∑
i=1

µ[EntVi(f)], (5.1.2)

where the constantK satisfiesK = O(∆2(θ b2)−1 log(1/b)). We refer to inequality (5.1.2)
as a k-partite factorization of entropy with constant KCUBF.

Lemma 5.1.4. Suppose that for an arbitrary spin system on a graph of maximum de-
gree ∆, k-partite factorization of entropy holds with constant C. Then, GBF holds with
constant Ck.
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We comment briefly on how we prove these two lemmas; their actual proofs
are provided in Section 5.2. The main idea behind the proof of Lemma 5.1.3 can
be roughly explained as follows. If the sets S in (5.1.1) were all independent
sets, then a suitable decomposition of the entropy functional would imply the de-
sired conclusion. Using a tensorization argument from [27], the same conclusion
would continue to hold if S only contained connected components of bounded
size. However, even if θ is small, a uniformly random set S with |S| = ⌈θn⌉ is
likely to have components of size Θ(log n). On the other hand, locally the ex-
pected component size is bounded if θ is sufficiently small. The challenge in ob-
taining optimal bounds is thus to use the expected local component size instead
of the maximum component size. To achieve this we combine ideas from [27]
and [42] together with a new conditioning argument. The proof of Lemma 5.1.4
is simpler, and relies on the fact that GBF holds on each of the independent sets
Vi; this is a consequence of the weighted Shearer inequality, see lemma 2.4.4.
Lemma 5.1.4 also generalizes proposition 3.3.1 in chapter 3.

Finally, to prove Theorem 1.4.2, that is the optimal mixing results for the SW
dynamics, our strategy is based on establishing the spin/edge factorization of en-
tropy. In chapter 4 we showed that the spin/edge factorization of entropy im-
plies O(log n) mixing of the SW dynamics on any graph, see lemma 4.1.4. To
prove Theorem 1.4.2, we show that k-partite factorization of entropy for µ im-
plies spin/edge factorization of entropy. This requires a nontrivial adaptation of
Lemma 4.1.3 established in chapter 4 in the special case of bipartite graphs. The
proof of Theorem 1.4.2 is provided in Section 5.5.

5.1.2 Spectral independence via contractivity

Here we outline our proofs of Theorems 1.4.3 and 1.4.4. We establish spectral
independence by showing that the maximum absolute row sum of the ALO in-
fluence matrix is bounded. Consider the case without pinnings for simplicity. We
would like to upper bound, for each (x, a) ∈ X , the quantity

S(x, a) =
∑

(y,a′)∈X

|J(x, a; y, a′)| =
∑

(y,a′)∈X : y ̸=x

|ν(σy = a′)− µ(σy = a′)|

where ν = µ(· | σx = a) is the conditional distribution under the pinning σx =

a. Upper bounds on S(x, a) (and analogous results with pinnings) would then
imply spectral independence. The first step is to define a 2-Lipschitz function
f : Ω → R, w.r.t. the Hamming metric dH, such that S(x, a) = Eνf − Eµf . In
particular, it follows that S(x, a) ≤ 2W1,dH(ν, µ) where W1,dH(ν, µ) represents the
1-Wasserstein distance; we refer to Section 5.3.1 for relevant definitions. The im-
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portant intuition here is that it suffices to upper bound some statistical distance
between the two distributions µ and ν = µ(· | σx = a). In other words, to deduce
spectral independence one only needs to show that every pinning σx = a would
disturb the distribution µ on a limited scale, in terms of the Wasserstein distance.

Up to now, we have not yet applied our assumptions on contractivity of the
distribution µ. Our next step is to show W1,dH(ν, µ) = O(1) for contractive µ. To
achieve this, we generalize a result from previous works [73, 117] to bound the
Wasserstein distance of two distributions; see Lemma 5.3.4. Roughly speaking,
we show that, assuming contractivity, the stationary distributions of two Markov
chains are close to each other if the two chains are close in one step. Previous
results in [73, 117] were specialized for the binary product space and the Glauber
dynamics. Here, we establish our Lemma 5.3.4 for any finite state space and any
Markov chain. This result is of independent interest and may find applications in
other problems.

We point out that in the article [88] have been established similar results to
Theorem 1.4.4, which also implied Theorem 1.4.8 for the Glauber dynamics. In
[88] the author concluded a version of Theorem 1.4.6 as well, but required the
stronger assumption that the row sum of the Dobrushin dependency matrix is
bounded. Using our Theorem 1.4.3 we only require a bound on the spectral ra-
dius which is the weakest assumption of this type; see Remark 5.3.5.

We now turn to the organization of this chapter. In Section 5.2 we prove that
uniform block factorization implies general block factorization of entropy. In Sec-
tion 5.3, we establish spectral independence if the distribution admits a contrac-
tive Markov chain. In Section 5.4, we reformulate the result of [42] showing that
spectral independence implies uniform block factorization; our new proof avoids
abstract simplicial complexes and gives a slightly better constant. We also show
in Section 5.4 that spectral independence implies approximate subadditivity of
entropy, see Theorem 5.4.1. Finally, in Section 5.5 we show optimal mixing and
optimal entropy decay of the Swendsen-Wang dynamics if k-partite factorization
holds, which can be in turn deduced from spectral independence.

5.2 Uniform block factorization implies general block

factorization

We provide in this section the proofs of Lemmas 5.1.4 and 5.1.3. Recall that these
are the key ingredients for proving Theorem 5.1.2.

Proof of Lemma 5.1.4. Let α = (αB)B⊂V be a probability distribution over the sub-
sets of V . Observe that for all j = 1, ..., k and all τ ∈ ΩV \Vj , µ

τ
Vj

is a product mea-
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sure on Ωτ
Vj

. Therefore, we can apply Lemma 2.4.4 with Λ = Vj and α̂ = (α̂U)U⊂Vj ,
where α̂U = ω−1

∑
B⊂V αB1(Vj ∩B = U) and ω =

∑
B⊂V αB1(Vj ∩B ̸= ∅) . We get

δ(α̂) EntτVj(f) ≤
∑
U⊂Vj

α̂U µ
τ
Vj
[EntU(f)] = ω−1

∑
B⊂V

αB µ
τ
Vj
[EntVj∩B(f)]. (5.2.1)

Observe that

ωδ(α̂) = ω min
x∈Vj

∑
U⊂Vj :U∋x

α̂U = min
x∈Vj

∑
B⊂V :B∋x

αB ≥ δ(α),

and from (2.4.3) we have µ[EntVj∩B(f)] ≤ µ[EntB(f)]. Hence, taking expectation
in (5.2.1) with respect to µ we obtain

δ(α)µ[EntVj(f)] ≤
∑
B⊂V

αB µ[EntB(f)].

Summing over j we have, for all f : Ω → R+,

δ(α)
k∑
j=1

µ[EntVj(f)] ≤
k∑
j=1

∑
B⊂V

αB µ[EntB(f)],

and since by assumption k-partite factorization of entropy holds with constant C,
we have

δ(α)Ent(f) ≤ C
k∑
j=1

∑
B⊂V

αB µ[EntB(f)] ≤ C k
∑
B⊂V

αB µ[EntB(f)].

Hence, GBF holds with constant Ck.

Proof of Lemma 5.1.3. Since ⌈θn⌉-UBF holds by assumption, setting C = CUBF one
has

Ent(f) ≤ C

θ
E [µ [EntS(f)]] ,

where S is a random set with uniform distribution over all subsets of V of cardi-
nality ⌈θn⌉, and E denotes the corresponding expectation.

Let S1, S2, . . . denote the connected components of S in G (taken in some arbi-
trary order) and for i > 1 let S<i = ∪i−1

j=1Sj . Then µS<i+1
has the product structure

µS<i+1
= ⊗i

j=1µSj
. By Lemmas 2.4.1 and 2.4.5, one has the decomposition

µ [EntS(f)] =
∑
i≥1

µ
[
EntS<i+1

(µS<i
(f))

]
=
∑
i≥1

µ[EntSi
(µS<i

(f))], (5.2.2)

where we have used Eq. (2.4.6) with A = Si and B = S<i. For τ ∈ ΩV \Si
, let
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Γ(Si, τ) be the optimal constant so that

EntτSi
(µS<i

(f)) ≤ Γ(Si, τ)
k∑
j=1

µτSi

[
EntVj∩Si

(µS<i
(f))

]
.

Let Γ(Si) = maxτ∈ΩV \Si
Γ(Si, τ). Then,

µ [EntS(f)] ≤
∑
i≥1

Γ(Si)
k∑
j=1

µ
[
EntVj∩Si

(µS<i
(f))

]
.

We observe next that for all j = 1, ..., k one has

µ
[
EntVj∩Si

(µS<i
(f))

]
≤ µ

[
EntVj∩Si

(µVj∩S<i
(f))

]
. (5.2.3)

To see this, we apply Lemma 2.4.5 with A = Vj ∩ Si, B = S<i and U = Vj ∩
S<i. Since µS<i+1

= ⊗i
j=1µSj

the assumptions for that lemma are satisfied and we
obtain (5.2.3) from Eq. (2.4.7).

Summarizing, we have obtained

Ent(f) ≤ C

θ

k∑
j=1

E

[∑
i≥1

Γ(Si)µ
[
EntVj∩Si

(µVj∩S<i
(f))

]]
. (5.2.4)

We show next that for all j = 1, ..., k

E

[∑
i≥1

Γ(Si)µ
[
EntVj∩Si

(µVj∩S<i
(f))

]]
≤ C ′µ

[
EntVj(f)

]
, (5.2.5)

with C ′ = O
(

log(1/b)
b2

∆2
)

. Combined with (5.2.4), this concludes the proof of the
lemma.

Let us fix j and let v1, v2, . . . denote an ordering of the sites in Vj ∩ S such that
v1, ..., v|Vj∩S1| is an ordering of Vj ∩ S1, v|Vj∩S1|+1, ..., v|Vj∩S1|+|Vj∩S2| is an ordering of
Vj ∩ S2 and so on. Since, for all i ≥ 1, µVj∩Si

is a product measure, Lemmas 2.4.1
and 2.4.5 (as in (5.2.2)) imply

µ
[
EntVj∩Si

(µVj∩S<i
(f))

]
=

|Vj∩S1|+···+|Vj∩Si|∑
h=|Vj∩S1|+···+|Vj∩Si−1|+1

µ [Entvh(ϱvh(f))] ,

where ϱvh is the conditional distribution obtained from µ by freezing the spins at
all the sites outside Vj , together with all the sites vh, vh+1, . . . , v|Vj∩S|.
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Using this decomposition and rearranging one finds

E

[∑
i≥1

Γ(Si)µ
[
EntVj∩Si

(µVj∩S<i
(f))

]]

= E

∑
i≥1

Γ(Si)

|Vj∩S1|+···+|Vj∩Si|∑
h=|Vj∩S1|+···+|Vj∩Si−1|+1

µ [Entvh(ϱvh(f))]


= E

[∑
h

µ [Entvh(ϱvh(f))] Γ(S(vh))

]
,

where S(vh) denotes the (unique) connected component of S containing vh. No-
tice that for each realization of S, µVj∩S is a product measure and so one has from
Lemmas 2.4.1 and 2.4.5 that∑

h

µ [Entvh(ϱvh(f))] = µ
[
EntVj∩S(f))

]
≤ µ

[
EntVj(f)

]
;

the inequality follows from (2.4.3).

Observe that each term µ[Entvh(ϱvh(f))], as well as the sequence {vh}, depends
on the realization S only through Vj ∩ S. Therefore,

E

[∑
h

µ [Entvh(ϱvh(f))] Γ(S(vh))

]
= E

[∑
h

µ [Entvh(ϱvh(f))]E [Γ(S(vh)) |Vj ∩ S]

]
,

where E [Γ(S(vh)) |Vj ∩ S] is the conditional expectation of Γ(S(vh)) given the re-
alization Vj ∩ S. Therefore, (5.2.5) follows if we prove that

max
W⊂Vj

max
v∈W

E [Γ(S(v)) |Vj ∩ S = W ] ≤ C ′. (5.2.6)

Now, for a b marginally bounded spin system, it follows from Lemma 4.2 in [42]
and (2.4.3) that

Γ(S(v)) ≤ ζ|S(v)|3z|S(v)|,

where ζ = ζ(b) = 3 log(1/b)
2b2

and z = 1/b2. Thus,

max
W⊂Vj

max
v∈W

E [Γ(S(v)) |Vj ∩ S = W ] ≤ ζ · max
W⊂Vj

max
v∈W

E
[
|S(v)|3z|S(v)| | Vj ∩ S = W

]
.

(5.2.7)

To bound the expectation on the right-hand-side of (5.2.7), we consider the
graph G2 with vertex set V and edge set E ∪E2, where E is the edge set of G and
E2 is the set of all pairs of vertices with a common neighbor in G. Note that G2

has maximum degree ∆2. Let Av(a) be the collection of subsets of vertices U ⊂ V

such that |U | ≥ a, v ∈ U and the induced subgraph G2[U ] of U in G2 is connected.
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Now, let us fix the set W = Vj ∩ S and the vertex v ∈ W and let S2 := (S(v) ∩
V ̸=j) ⊂ S, where V̸=j :=

⋃
i:i ̸=j Vi. We claim that when the event {|S(v)| = a}

occurs for some a ∈ N, then S2 ∈ Av(
a

∆+1
). Indeed, G2[S2] is connected, since S(v)

is connected in G and removing the vertices in Vj from S(v) will not disconnect
S2 in G2. Moreover, since each vertex in S(v) ∩ Vj is a neighbor of some vertex in
S(v)∩ V̸=j and the maximum degree of G is ∆, one has ∆|S(v)∩ V̸=j| ≥ |S(v)∩Vj|,
and so

a = |S(v) ∩ Vj|+ |S(v) ∩ V̸=j| ≤ (∆ + 1)|S(v) ∩ V ̸=j|,

which implies that |S2| = |S(v) ∩ V̸=j| ≥ a/(∆ + 1). Given S, let T2(v) denote the
connected component of S in G2 containing v, and note that S2 ⊂ T2(v). Then, for
any W ⊂ Vj , v ∈ W and integer a ≥ 1 we get

P (|S(v)| = a |Vj ∩ S = W ) ≤ P
(
∃S ′ ∈ Av

(
a

∆+ 1

)
;S ′ ⊂ S

)
≤ P

(
|T2(v)| ≥

a

∆+ 1

)
.

To estimate the size of the connected component T2(v) one can use Lemma 4.3
from [42], which implies that for any integer m ≥ 1,

P (|T2(v)| = m) ≤ ℓ

n
(2e∆2θ)m−1.

Indeed, the only difference with respect to Lemma 4.3 from [42] is that we have
maximum degree ∆2 here instead of ∆. In particular, if 2e∆2θ ≤ 1/2, using ℓ

n
≤

2θ,

P
(
|T2(v)| ≥

a

∆+ 1

)
≤ 4θ(2e∆2θ)⌊

a
∆+1

⌋−1 ≤ ∆−2(2e∆2θ)⌊
a

∆+1
⌋.

It follows that

E
[
|S(v)|3z|S(v)| |Vj ∩ S = W

]
=
∑
a≥1

a3za · P (|S(v)| = a |Vj ∩ S = W )

≤ ∆−2
∑
a≥1

a3(2e∆2θz∆+1)⌊
a

∆+1
⌋ ≤ C1∆

2,

for some absolute constant C1 provided that 2e∆2θz∆+1 ≤ 1/2. The last bound
can be seen e.g. by writing the sum over a as a sum over ℓ and the by summing
over (ℓ− 1)(∆ + 1) ≤ a ≤ ℓ(∆ + 1)− 1. This implies that

max
W⊂Vj

max
v∈W

E
[
|S(v)|3z|S(v)| | Vj ∩ S = W

]
≤ C1∆

2.
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Hence, (5.2.6) and (5.2.5) hold with C ′ = C1ζ∆
2, and consequently k-partite fac-

torization holds with constant CUBFC1ζ∆
2/θ.

5.3 A contractive distribution is spectrally indepen-

dent

In this section we establish our main results that a contractive distribution is
spectrally independent. These results in particular connect classic probabilistic
approach for establishing fast mixing of Markov chains such as coupling with
recent developments utilizing spectral independence. We first consider a special
case of Theorem 1.4.3 concerned with Glauber dynamics and Hamming metric
in Section 5.3.1; this will serve as a concrete example to illustrate our approach
for establishing spectral independence. In Section 5.3.2, we consider arbitrary
metric and prove Theorem 1.4.3. Finally, we consider general Markov chains and
metrics in Section 5.3.3 and prove Theorem 1.4.4.

5.3.1 Warm-up: contraction for Glauber dynamics and Hamming

metric

In this section, we prove a simpler version of Theorem 1.4.3, which already gives
the main idea of our proof approach for establishing spectral independence.

We first give the formal definition of κ-contraction of the distribution µ.

Definition 5.3.1. Let P = {P τ : τ ∈ T } denote a collection of Markov chains
associated with µ where each P τ is a Markov chain with stationary distribution
µτ and let d be a metric on Ω. For κ ∈ (0, 1) we say that µ is κ-contractive w.r.t. P
and d if for all τ ∈ T , all X0, Y0 ∈ Ωτ , there exists a coupling (X0, Y0) → (X1, Y1)

for P τ such that:
E[d(X1, Y1)|X0, Y0] ≤ κd(X0, Y0).

We show that, if the distribution µ is contractive w.r.t. the Glauber dynamics
and the Hamming metric, then it is spectrally independent.

Theorem 5.3.2. If µ is κ-contractive w.r.t. the Glauber dynamics and the Hamming
metric for some κ ∈ (0, 1), then µ is spectrally independent with constant η = 2

(1−κ)n . In
particular, if κ ≤ 1− ϵ/n, then η ≤ 2/ϵ.

Remark 5.3.3. We define the Glauber dynamics P τ
GL for the conditional distribution

µτ with a pinning τ on U ⊂ V as follows: in each step the chain picks a vertex
x ∈ V u.a.r. and updates its spin conditioned on all other vertices and τ . In par-
ticular, all pinned vertices in U are allowed to be selected and when this happens
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the configuration will remain the same (no updates will be made). This setting
can make our theorem statements and proofs easier to understand, and will not
harm our results since we only consider these chains for the purpose of analysis
rather than actually running them. Alternatively, we can define the Glauber dy-
namics P̃ τ

GL for µτ in the following way: in each step an unpinned vertex x ∈ V \U
is selected u.a.r. and updated accordingly. Note that P̃ τ

GL is faster than P τ
GL and

the contraction rate of P̃ τ
GL depends on the number of unpinned vertices. If we

assume µτ is κℓ-contractive w.r.t. P̃ τ
GL and dH where ℓ = |V \ U |, then an analog of

Theorem 5.3.2 can show that µ is spectrally independent with

η = max
ℓ=1,...,n

{
2

(1− κℓ)ℓ

}
.

However, in actual applications such as under the Dobrushin uniqueness condi-
tion in Section 5.3.2, the contraction rate satisfies κℓ ≤ 1 − ϵ/ℓ, so we eventually
get η ≤ 2/ϵ just as from Theorem 5.3.2.

Recall that for any pinning τ ∈ T we let µτ be the conditional distribution
over Ωτ given τ , and the ALO influence matrix Jτ is a square matrix indexed by
X τ and defined as J(x, a;x, a′) = 0 and

Jτ (x, a; y, a′) = µτ (σy = a′ | σx = a)− µτ (σy = a′) for x ̸= y.

The distribution µ is said to be η-spectrally independent if λ1(Jτ ) ≤ η for all
pinning τ .

Our goal is to upper bound the maximum eigenvalue of the ALO influence
matrix Jτ for a given pinning τ . In fact, to make notations simpler we will only
consider the case where there is no pinning; the proof is identical by replacing
Ω, µ, J with Ωτ , µτ , Jτ when an arbitrary pinning τ is given. To upper bound
λ1(J), a standard approach that has been applied in previous works [4, 41, 40,
132, 42] is to upper bound the infinity norm of J . More specifically, for each
(x, a) ∈ X we define

S(x, a) =
∑

(y,a′)∈X

|J(x, a; y, a′)| (5.3.1)

to be the sum of absolute influences of a given pair (x, a). The quantity S(x, a)

can be thought of as the total influence of (x, a) on all other vertex-spin pairs. If
one can show S(x, a) ≤ η for all (x, a) ∈ X , then it immediately follows that

λ1(J) ≤ ∥J∥∞ = max
(x,a)∈X

S(x, a) ≤ η.

Hence, it suffices to prove a suitable upper bound on S(x, a). Fix (x, a) ∈ X , and
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define the distribution ν = µ(· | σx = a); namely, ν is the conditional distribution
of µ with the pinning σx = a. The key observation we make here is that the quan-
tity S(x, a) can be viewed as the difference of the expectation of some function f
under the two measures µ and ν. More specifically, we define

f(σ) =
∑

(y,a′)∈X

t(x, a; y, a′)1{σy=a′}, (5.3.2)

where

t(x, a; y, a′) = sgn(J(x, a; y, a′)) =


+1, J(x, a; y, a′) > 0;

−1, J(x, a; y, a′) < 0;

0, J(x, a; y, a′) = 0.

With this definition it follows that

S(x, a) =
∑

(y,a′)∈X

t(x, a; y, a′)J(x, a; y, a′)

=
∑

(y,a′)∈X

t(x, a; y, a′)µ(σy = a′ | σx = a)− t(x, a; y, a′)µ(σy = a′)

= Eνf − Eµf.

Therefore, the absolute sum of influences S(x, a) describes, in some sense, the
“distance” of the two distributions ν and µ measured by f .

To be more precise about our last statement, we review some standard defini-
tions about the Wasserstein distance. Let (Ω, d) be a finite metric space. We say a
function f : Ω → R is L-Lipschitz w.r.t. the metric d if for all σ, τ ∈ Ω we have

|f(σ)− f(τ)| ≤ Ld(σ, τ).

For every function f : Ω → R, we let Ld(f) be the optimal Lipschitz constant of f
w.r.t. the metric d; i.e., Ld(f) = inf{L ≥ 0 : f is L-Lipschitz w.r.t. d}. For a pair of
distributions µ and ν on Ω, the 1-Wasserstein distance w.r.t. the metric d between µ
and ν is defined as

W1,d(µ, ν) = inf
π∈C(µ,ν)

Eπ[d(σ, τ)],

where C(µ, ν) denotes the set of all couplings of µ, ν (i.e., π(·, ·) ∈ C(µ, ν) is a
joint distribution over Ω × Ω with the marginals on the first and second coor-
dinates being µ and ν respectively) and (σ, τ) is distributed as π; equivalently,
the 1-Wasserstein distance can be represented in the following functional form,
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which follows from Kantorovich-Rubinstein duality [131],

W1,d(µ, ν) = sup
f :Ω→R
Ld(f)≤1

Eµf − Eνf. (5.3.3)

Observe that, the function f defined by (5.3.2) is 2-Lipschitz w.r.t. the Ham-
ming metric dH; to see this, if σ, τ ∈ Ω and dH (σ, τ) = k then by the definition of f
we have |f(σ)− f(τ)| ≤ 2k. Therefore, we deduce from (5.3.3) that

S(x, a) = Eνf − Eµf ≤ LdH(f)W1,dH(ν, µ) ≤ 2W1,dH(ν, µ).

That means, if one can show W1,dH(ν, µ) ≤ C for µ and ν = µ(· | σx = a) for any
pair (x, a), then λ1(J) ≤ 2C and the η-spectral independence with η = 2C would
follow.

The following lemma, which generalizes previous works [73, 117], will be
used to bound the Wasserstein distance of two distributions and may be inter-
esting of its own. Roughly speaking, it claims that if µ, ν are the stationary distri-
butions of two Markov chains P,Q (e.g., Glauber dynamics) respectively, and if µ
is contractive w.r.t. P and the two chains P,Q are “close” to each other in one step,
then the Wasserstein distance between ν and µ is small. The special case where
Ω = {+,−}n and P,Q are both the Glauber dynamics appeared in [73, Theorem
3.1] and [117, Theorem 2.1], but here we do not make any assumption on the state
space or the chains, which is crucial to our applications in Section 5.3.3.

Lemma 5.3.4. Let (Ω, d) be a finite metric space. Let µ, ν be two distributions over Ω,
and P,Q be two Markov chains on Ω with stationary distributions µ, ν respectively. If µ
is κ-contractive w.r.t. the chain P and the metric d, then for every f : Ω → R we have

|Eµf − Eνf | ≤
Ld(f)

1− κ
Eν [W1,d(P (σ, ·), Q(σ, ·))]

where P (σ, ·) is the distribution after one step of the chain P when starting from σ and
similarly for Q(σ, ·). As a consequence,

W1,d(µ, ν) ≤
1

1− κ
Eν [W1,d(P (σ, ·), Q(σ, ·))] .

We remark that Lemma 5.3.4 holds in a very general setting, and (Ω, d) can
be any finite metric space. It shows that if two Markov chains are close to each
other, then their stationary distributions must be close to each other, under the
assumption that one of the chains is contractive.

Proof of Lemma 5.3.4. The proof imitates the arguments from [73, 117]. Assume for
now that P is irreducible; this is a conceptually easier case and we will consider
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general P later. Since P is irreducible, let h be the principal solution to the Poisson
equation (I − P )h = f̄ where f̄ = f − Eµf ; that is,

h =
∞∑
t=0

P tf̄ . (5.3.4)

See Lemma 2.1 in [73] and the references in that paper for backgrounds on the
Poisson equation. We then have

Eνf − Eµf = Eν f̄ = Eν [(I − P )h] = Eν [(Q− P )h]

where the last equality is due to ν = νQ. For each σ ∈ supp(ν) ⊂ Ω, we deduce
from (5.3.3) that

((Q− P )h)(σ) = EQ(σ,·)h− EP (σ,·)h ≤ Ld(h)W1,d(Q(σ, ·), P (σ, ·)).

It remains to bound the Lipschitz constant of h. For σ, τ ∈ Ω,

|h(σ)− h(τ)| ≤
∞∑
t=0

∣∣(P tf̄)(σ)− (P tf̄)(τ)
∣∣

=
∞∑
t=0

∣∣EP t(σ,·)f̄ − EP t(τ,·)f̄
∣∣

≤ Ld(f)
∞∑
t=0

W1,d(P
t(σ, ·), P t(τ, ·))

where the last inequality again follows from (5.3.3). Since µ is κ-contractive w.r.t.
P and d, for all σ, τ ∈ Ω and every integer t ≥ 1 we have

W1,d(P
t(σ, ·), P t(τ, ·)) ≤ κtd(σ, τ).

We then deduce that

|h(σ)− h(τ)| ≤ Ld(f)
∞∑
t=0

κtd(σ, τ) =
Ld(f)

1− κ
d(σ, τ).

This implies that Ld(h) ≤ Ld(f)/(1− κ) and the lemma then follows.

Next, we show how to remove the assumption that P is irreducible. Observe
that in the proof above we only need the irreducibility of P to guarantee that the
function h given by (5.3.4) is well-defined; i.e., the series on the right-hand side
of (5.3.4) is convergent. The rest of the proof does not require the irreducibility of
P . In fact, one can deduce the convergence of (5.3.4) solely from the contraction
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of P . Note that for all σ ∈ Ω,

∣∣P tf̄(σ)
∣∣ = ∣∣P tf̄(σ)− EµP tf̄

∣∣
=

∣∣∣∣∣P tf̄(σ)−
∑
τ∈Ω

µ(τ)P tf̄(τ)

∣∣∣∣∣
≤
∑
τ∈Ω

µ(τ)
∣∣P tf̄(σ)− P tf̄(τ)

∣∣
where the first equality follows from EµP tf̄ = Eµf̄ = 0. Since Ω is finite, to show
that (5.3.4) is convergent for all σ ∈ Ω, it suffices to show that for all σ, τ ∈ Ω

the series
∑∞

t=0

∣∣P tf̄(σ)− P tf̄(τ)
∣∣ is convergent. Actually, our proof before has

already showed that

∞∑
t=0

∣∣P tf̄(σ)− P tf̄(τ)
∣∣ ≤ Ld(f)

1− κ
d(σ, τ) <∞

using only the contraction of P , where we have Ld(f) <∞ and supσ,τ∈Ω d(σ, τ) <

∞ because Ω is finite. Therefore, the lemma remains true without the assumption
of irreducibility of P .

Given Lemma 5.3.4, we can now complete the proof of Theorem 5.3.2.

Proof of Theorem 5.3.2. For every (x, a) ∈ X , we deduce from Lemma 5.3.4 that

S(x, a) = Eνf − Eµf ≤ LdH(f)

1− κ
Eν [W1,dH(P (σ, ·), Q(σ, ·))] (5.3.5)

where S(x, a) is given by (5.3.1), f is given by (5.3.2), P is the Glauber dynamics
for µ, and Q is the Glauber dynamics for ν = µ(x,a) = µ(· | σx = a) (we use (x, a)

to denote the pinning σx = a). We claim that for every σ ∈ Ω(x,a),

W1,dH(P (σ, ·), Q(σ, ·)) ≤
1

n
. (5.3.6)

To see this, let σ1 and σ2 be the configurations after one step of P and Q respec-
tively when starting from σ. We can couple σ1 and σ2 by picking the same vertex
to update in the Glauber dynamics. If the picked vertex is not x, then we can
make σ1 = σ2; meanwhile, if x is picked, which happens with probability 1/n,
then dH(σ1, σ2) ≤ 1 where the discrepancy is caused by the pinning σx = a. There-
fore, the 1-Wasserstein distance between σ1 and σ2 is upper bounded by 1/n; this
justifies our claim. Combining LdH(f) ≤ 2 and (5.3.6), we obtain from (5.3.5) that
S(x, a) ≤ 2

(1−κ)n for each (x, a); consequently, λ1(J) ≤ 2
(1−κ)n . The same argu-

ment holds for µτ under any pinning τ as well, and spectral independence then
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follows.

5.3.2 Contraction for Glauber dynamics and general metrics

In this section, we generalize the Hamming metric assumption in Theorem 5.3.2
to any weighted Hamming metric or any metric equivalent to Hamming, which
establishes Theorem 1.4.3. We restate it here for convenience.

Theorem 1.4.3.

(1) If µ is κ-contractive w.r.t. the Glauber dynamics and an arbitraryw-weighted Ham-
ming metric, then µ is spectrally independent with constant η = 2

(1−κ)n . In partic-
ular, if κ ≤ 1− ϵ

n
, then η ≤ 2

ϵ
.

(2) If the metric in (1) is not a weighted Hamming metric but instead an arbitrary
γ-equivalent metric, then η = 2γ2

(1−κ)n . In particular, if κ ≤ 1− ϵ
n

, then η ≤ 2γ2

ϵ
.

We prove the two cases of Theorem 1.4.3 separately. We first consider the
weighted Hamming metric. Recall that for a positive weight function w : V →
R+, the w-weighted Hamming metric d = dw is given by

dw(σ, τ) =
∑
x∈V

w(x)1{σx ̸= τx} for σ, τ ∈ Ω.

In particular, if w(x) = 1 for all x then d is the usual Hamming metric.
Unfortunately, the proof of Theorem 5.3.2 does not work directly in this sce-

nario. The reason is that the right-hand side of (5.3.5), with dH replaced by d = dw

now, can be as large as O(wmax/wmin) (more specifically, Ld(f) = O(1/wmin) and
W1,d(P (σ, ·), Q(σ, ·)) = O(wmax)), which can be unbounded since we are not mak-
ing any assumption on w. To deal with this, we need to take the vertex weights
into account when defining the function f and, more importantly, when defining
the absolute sum of influences S(x, a).

Proof of Theorem 1.4.3(1). For ease of notation we may assume that there is no pin-
ning; the proof remains the same with an arbitrary pinning τ . For fixed (x, a) ∈ X ,
we define the w-weighted sum of absolute influences given by

Sw(x, a) =
∑

(y,a′)∈X

w(y) |J(x, a; y, a′)|.

Such weighted sums were considered in [41, Lemma 22] to deduce spectral in-
dependence. We claim that if Sw(x, a) ≤ η w(x) for all (x, a) ∈ X for some
η > 0, then λ1(J) ≤ η. To see this, let w̃ ∈ R|X |

+ with w̃(x, a) = w(x) and let
W = diag(w̃); the assumption of the claim then implies that ∥W−1JW∥∞ ≤ η and
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thus λ1(J) = λ1(W
−1JW ) ≤ η. Therefore, it suffices to upper bound the ratio

Sw(x, a)/w(x).

Let ν = µ(x,a) = µ(· | σx = a) be the conditional distribution with pinning
σx = a, and define

fw(σ) =
∑

(y,a′)∈X

w(y) t(x, a; y, a′)1{σy=a′}

where t(x, a; y, a′) = sgn(J(x, a; y, a′)). Observe that Ld(fw) ≤ 2 and

Sw(x, a) = Eνfw − Eµfw.

It then follows from Lemma 5.3.4 that

Sw(x, a) ≤
2

1− κ
Eν [W1,d(P (σ, ·), Q(σ, ·))]

where P,Q are the Glauber dynamics for µ, ν respectively. For every σ ∈ Ω(x,a)

we have
W1,d(P (σ, ·), Q(σ, ·)) ≤

w(x)

n
,

since if we couple the configurations σ1, σ2 after one step of P,Q respectively by
picking the same vertex to update, then d(σ1, σ2) = w(x) only when the site x
is picked, and σ1 = σ2 otherwise. Therefore, we get Sw(x, a) ≤ 2w(x)

(1−κ)n for every
(x, a) ∈ X , implying that λ1(J) ≤ 2

(1−κ)n . The same argument works for µτ under
any pinning τ as well, which establishes spectral independence.

Next we consider the second part of Theorem 1.4.3. Recall that a metric d on
Ω is said to be γ-equivalent (to the Hamming metric) for some γ > 1 if for all
σ, τ ∈ Ω

1

γ
dH (σ, τ) ≤ d(σ, τ) ≤ γdH (σ, τ) .

To prove the second part, we follow the proof approach for Theorem 5.3.2, and in
particular the right-hand side of (5.3.7) below (analogous to (5.3.5)) can be upper
bounded using the γ-equivalence.

Proof of Theorem 1.4.3(2). For every (x, a) ∈ X , we deduce from Lemma 5.3.4 that

S(x, a) = Eνf − Eµf ≤ Ld(f)

1− κ
Eν [W1,d(P (σ, ·), Q(σ, ·))] (5.3.7)

where S(x, a) and f are defined by (5.3.1), (5.3.2) respectively, and P,Q are the
Glauber dynamics for µ and ν = µ(x,a) = µ(· | σx = a) respectively. Since d is
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γ-equivalent, for all σ, τ ∈ Ω we have

|f(σ)− f(τ)| ≤ 2dH (σ, τ) ≤ 2γd(σ, τ);

this shows Ld(f) ≤ 2γ. Meanwhile, by the definition of 1-Wasserstein distance
for every σ ∈ Ω(x,a) we have

W1,d(P (σ, ·), Q(σ, ·)) = inf {Eπ[d(σ, τ)] | π ∈ C(P (σ, ·), Q(σ, ·))}

≤ γ inf {Eπ[dH(σ, τ)] | π ∈ C(P (σ, ·), Q(σ, ·))} = γW1,dH(P (σ, ·), Q(σ, ·)) ≤
γ

n

where the last inequality is (5.3.6). Thus, we obtain from (5.3.7) that S(x, a) ≤
2γ2

(1−κ)n . The rest of the proof is the same as Theorem 5.3.2.

Application: Dobrushin uniqueness condition

As an application of Theorem 1.4.3, we show that the Dobrushin uniqueness con-
dition, as well as its generalizations [76, 54], implies spectral independence. Re-
call that the Dobrushin dependency matrix R is a |V | × |V | matrix defined as
R(x, x) = 0 and

R(x, y) = max {dTV (µy(· | σ), µy(· | τ)) : (σ, τ) ∈ Sx,y} for x ̸= y

where Sx,y is the set of pairs of configurations on V \ {y} that differ at most at x.
Denote the spectral radius of a square matrix M by ϱ(M). If M is nonnegative,
then ϱ(M) is an eigenvalue of M by the Perron-Frobenius theorem. We prove
Theorem 1.4.6 from the introduction.

Theorem 1.4.6. If the Dobrushin dependency matrix R satisfies ϱ(R) ≤ 1− ϵ for some
ϵ > 0, then µ is spectrally independent with constant η = 2/ϵ.

Remark 5.3.5. If ∥R∥∞ < 1, then the Glauber dynamics mixes rapidly by a simple
application of the path coupling method of Bubley and Dyer [21]. The same is
true under the Dobrushin uniqueness condition, i.e., when ∥R∥1 < 1. Hayes
[76] generalized the condition to the spectral norm ∥R∥2 < 1. Dyer, Goldberg,
and Jerrum [54] further improved it to ∥R∥ < 1 for any matrix norm (where
the mixing time depends logarithmly on the norm of the all-one matrix). Our
condition ϱ(R) < 1 in Theorem 1.4.6 is technically better than previous works
since for a nonnegative matrix R one has ϱ(R) ≤ ∥R∥ for any matrix norm, and
the inequality can be strict for all norms when R is not irreducible; see [54] for
related discussions. Finally, we point out that ifR is symmetric then ϱ(R) = ∥R∥2.

It is known that the Glauber dynamics is contractive for some weighted Ham-
ming metric if the weight vector satisfies a spectral condition related to R.
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Lemma 5.3.6 ([54, Lemma 20]). If w ∈ RV
+ is a positive vector such that Rw ≤ (1 −

ϵ)w entrywisely, then µ is (1 − ϵ/n)-contractive w.r.t. the Glauber dynamics and the
w-weighted Hamming metric d = dw.

The following fact about nonnegative matrices is helpful.

Lemma 5.3.7 ([103, Example 7.10.2]). If M,N ∈ Rn×n
+ are two nonnegative square

matrices such that M ≤ N entrywisely, then ϱ(M) ≤ ϱ(N).

We give below the proof of Theorem 1.4.6.

Proof of Theorem 1.4.6. Consider first the case that there is no pinning. If the Do-
brushin dependency matrix R is irreducible, then the right principal eigenvector
w associated with the eigenvalue ϱ(R) satisfies Rw = ϱ(R)w ≤ (1− ϵ)w and w > 0

by the Perron-Frobenius theorem. Hence, Lemma 5.3.6 and (the proof of) Theo-
rem 1.4.3(1) immediately yield λ1(J) ≤ 2/ϵ. However, ifR is reducible, we cannot
use the principal eigenvector directly since it may have zero entries. We instead
consider the matrix Rδ = R + δO where O is the all-one matrix and δ > 0 is
a tiny constant. Let wδ be the right principal eigenvector of Rδ associated with
the eigenvalue ϱ(Rδ). Since Rδ is irreducible, wδ > 0 by the Perron-Frobenius
theorem. Moreover, Rwδ ≤ Rδwδ = ϱ(Rδ)wδ. Since limδ→0Rδ = R, we have
limδ→0 ϱ(Rδ) = ϱ(R); see, e.g., Remark 3.4 in [2]. Thus, ϱ(Rδ) < 1 for sufficiently
small δ. Then by Lemma 5.3.6 and Theorem 1.4.3(1), for δ small enough, we have
λ1(J) ≤ 2/(1− ϱ(Rδ)). Taking δ → 0 and using the assumption that ϱ(R) ≤ 1− ϵ,
we obtain λ1(J) ≤ 2/ϵ.

Next, consider the conditional measure µτ with a pinning τ on a subset U ⊂
V . Let Rτ be the Dobrushin dependency matrix for µτ ; note that by definition
Rτ (x, y) = 0 if x ∈ U or y ∈ U , and Rτ (x, y) ≤ R(x, y) for all x, y ∈ V . We deduce
from Lemma 5.3.7 that ϱ(Rτ ) ≤ ϱ(R) ≤ 1 − ϵ and thus this is reduced to the no-
pinning case. Therefore, we get λ1(Jτ ) ≤ 2/ϵ for all τ and spectral independence
then follows.

5.3.3 Contraction for general Markov chains and general metrics

In this section, we generalize Theorem 5.3.2 to arbitrary “local” Markov chains
and arbitrary metrics close to the Hamming metric. In particular, we prove The-
orem 1.4.4.

Consider a collection of Markov chains P = {P τ : τ ∈ T } associated with
µ, where each P τ is a Markov chain on Ωτ with stationary distribution µτ . Intu-
itively, one can think of P as the same dynamics applied to all conditional dis-
tributions µτ ; for example, P can be the collection of Glauber dynamics for all
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µτ ’s. We are particularly interested in local dynamics; these are Markov chains
that make local updates on the configuration in each step, e.g., Glauber dynamics
for spin systems or flip dynamics for colorings. Alternatively, we can describe
local dynamics as those insensitive to pinnings; that is, if the dynamics is applied
to both µ and µ(x,a) with a pinning σx = a, then with high probability there is no
difference in the two chains or the discrepancy caused by the pinning will not
propagate. This motivates the following definition.

Definition 5.3.8. We say a collection P of Markov chains associated with µ is Φ-
local if for any two adjacent pinnings τ ∈ T and τ ′ = τ ∪ (x, a) where (x, a) ∈ X τ

(i.e., τ ′ combines τ and the pinning σx = a), and for all σ ∈ Ωτ ′ , we have

W1,dH(P
τ (σ, ·), P τ ′(σ, ·)) ≤ Φ.

We show that for such local dynamics contraction implies spectral indepen-
dence.

Theorem 5.3.9. If µ is κ-contractive w.r.t. a Φ-local collection P of Markov chains and a
γ-equivalent metric d for some κ ∈ (0, 1), then µ is spectrally independent with constant
η = 2γ2Φ

1−κ .

Proof. The proof is similar to that of Theorems 5.3.2 and 1.4.3(2). For an arbitrary
pinning τ and (x, a) ∈ X τ , we define

Sτ (x, a) =
∑

(y,a′)∈X τ

|Jτ (x, a; y, a′)|

and
f τ (σ) =

∑
(y,a′)∈X τ

tτ (x, a; y, a′)1{σy=a′}

where tτ (x, a; y, a′) = sgn(Jτ (x, a; y, a′)); these definitions are analogous to (5.3.1)
and (5.3.2) with pinning τ . Let τ ′ = τ ∪ (x, a). Then we deduce from Lemma 5.3.4
that

Sτ (x, a) = Eµτ ′f
τ − Eµτf τ ≤

Ld(f
τ )

1− κ
Eµτ ′

[
W1,d(P

τ (σ, ·), P τ ′(σ, ·))
]
.

As shown in the proof of Theorem 1.4.3(2), since d is γ-equivalent to the Hamming
metric we have Ld(f τ ) ≤ γLdH(f

τ ) ≤ 2γ and for all σ ∈ Ωτ ′ we have

W1,d(P
τ (σ, ·), P τ ′(σ, ·)) ≤ γW1,dH(P

τ (σ, ·), P τ ′(σ, ·)) ≤ γΦ

using the Φ-locality of P . Therefore, we obtain that Sτ (x, a) ≤ 2γ2Φ
1−κ for all (x, a) ∈

X τ . This yields λ1(Jτ ) ≤ 2γ2Φ
1−κ and spectral independence follows.
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To better understand local dynamics, we consider a very general type of Markov
chains which we call select-update dynamics; examples include the Glauber dy-
namics, heat-bath block dynamics, and flip dynamics. Let B be a collection of
blocks associated with the select-update dynamics and fix some pinning τ . Given
the current configuration σt ∈ Ωτ , the next configuration σt+1 is generated as
follows:

1. SELECT: Select a block B ∈ B from some distribution pt over B;

2. UPDATE: Resample the configuration on B from some distribution νtB.

We try to make weakest assumptions on the selection rule pt and the update rule
νtB: the selection distribution pt is allowed to depend on the current configuration
σt but is independent of the pinning τ , and the update distribution νtB is allowed
to depend on the whole current configuration σt and the part of the pinning τ

contained in B. In particular, the heat-bath block dynamics is a special case of
the select-update dynamics: the selection rule pt = α is a fixed distribution over
B and the update rule νtB is the marginal distribution on B conditioned on σt

outside B and the pinning τ in B.

Remark 5.3.10. The assumption that the selection rule pt is independent of the
pinning τ is not necessary, but it is helpful for stating and proving our theorems
and does not weaken our results. Roughly speaking, we only require that the
collection of the select-update dynamics is the same dynamics applied to all µτ ’s,
and the selection rule pt can be conditioned on containing at least one unpinned
vertex. See the discussions in Remark 5.3.3 for the Glauber dynamics.

We write PB for a collection of select-update dynamics associated with µ. De-
note the maximum block size of B by

M = max
B∈B

|B|,

and the maximum probability of a vertex being selected in Step 1 by

D = max
pt

max
x

∑
B∈B:x∈B

pt(B), (5.3.8)

where we maximize over all selection rules pt that can occur. We can show that the
select-update dynamics PB is Φ-local with Φ = DM ; using this and Theorem 5.3.9
we establish Theorem 1.4.4, which we restate here for convenience.

Theorem 1.4.4. If µ is κ-contractive w.r.t. arbitrary select-update dynamics and an ar-
bitrary γ-equivalent metric, then µ is spectrally independent with constant η = 2γ2DM

1−κ .
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Proof. It suffices to show that the select-update dynamics PB is Φ-local with Φ =

DM ; the theorem would then follows immediately from Theorem 5.3.9. Consider
two adjacent pinnings τ and τ ′ = τ ∪ (x, a) where (x, a) ∈ X τ . For σ ∈ Ωτ ′ , let
σ1 and σ2 be the two configurations obtained from σ after one step of P τ and
P τ ′ respectively. We couple σ1 and σ2 by picking the same block B ∈ B in Step
1 of the select-update dynamics. If x /∈ B, then we have σ1 = σ2. Meanwhile, if
x ∈ B, which happens with probability at mostD, we have dH (σ1, σ2) ≤ |B| ≤M .
Therefore,

W1,dH(P
τ (σ, ·), P τ ′(σ, ·)) ≤ DM.

This establishes the (DM)-locality for PB.

Remark 5.3.11. If we further assume that in Step 2 the select-update dynamics re-
samples a block independently for each of its components (i.e., the update rule
νtB is a product distribution over all components of the induced subgraph G[B]),
then in Theorem 1.4.4 the maximum block size M can be replaced by the maxi-
mum component size of all blocks.

Application: flip dynamics for colorings

In this section we establish spectral independence for colorings utilizing Theo-
rem 1.4.4.

Theorem 5.3.12. Let ϵ0 ≈ 10−5 > 0 be a fixed constant. Let ∆, q ≥ 3 be integers and
q > (11

6
− ϵ0)∆. Then there exists η = η(∆, q) > 0 such that the following holds.

Let µ be the uniform distribution over all proper q-colorings of a graph G = (V,E) of
maximum degree at most ∆. Then µ is spectrally independent with constant η.

To apply Theorem 1.4.4, we need a contractive Markov chain for sampling
colorings of a graph. Vigoda considered the flip dynamics [129] and showed that
it is contractive for the Hamming metric when the number of colors q > 11

6
∆.

Recently, [38] improved the bound to q > (11
6
− ϵ0)∆ for a fixed tiny constant

ϵ0 ≈ 10−5, using variable-length coupling or an alternative metric. Our result on
spectral independence builds upon contraction results for the flip dynamics.

We first describe the flip dynamics. Let Ω be the set of all proper q-colorings
of G. Fix a pinning τ on U ⊂ V . For a coloring σ ∈ Ω, a vertex x ∈ V , and a color
a ∈ [q], denote by Lσ(x, a) the bicolored component containing x with colors a
and σx; that is, the set of all vertices which can be reached from x through an
alternating (σx, a)-colored path. Given the coloring σt at time t, the flip dynamics
with pinning τ generates the next coloring σt+1 as follows:

1. Pick a vertex x ∈ V u.a.r. and a color a ∈ [q] u.a.r.;
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2. If Lσt(x, a) contains a pinned vertex (i.e., Lσt(x, a) ∩ U ̸= ∅), then σt+1 = σt;

3. If all vertices in Lσt(x, a) are free (i.e., Lσt(x, a) ∩ U = ∅), then flip the two
colors of Lσt(x, a) with probability ps/s where s = |Lσt(x, a)|.

The flip dynamics is specified by the flip parameters {ps}∞s=1. In [129] and the
recent improvement [38], the flip parameters are chosen in such a way that ps = 0

for all s ≥ 7; i.e., in each step at most six vertices change their colors. We set
the flip parameters as in Observation 5.1 from [38], where the authors established
contraction of the flip dynamics using the path coupling method.

Lemma 5.3.13 ([38]). Under the assumptions of Theorem 5.3.12, there exists a constant
ϵ = ϵ(∆, q) > 0 and a 2-equivalent metric d such that µ is (1 − ϵ/n)-contractive w.r.t.
the flip dynamics and the metric d.

We remark that the pinning τ induces a list coloring instance where each un-
pinned vertex has a color list to choose its color from, and the results of [38] gen-
eralize naturally to list colorings. Also, we assume that the flip dynamics may
pick a pinned vertex and stay at the current coloring. This does not weaken our
results since we only consider the flip dynamics for analysis rather than actually
running it; see Remark 5.3.3 addressing the same issue for the Glauber dynamics
and also Remark 5.3.10 for general select-update dynamics.

We give below the proof of Theorem 5.3.12.

Proof of Theorem 5.3.12. Observe that the flip dynamics belongs to the class of select-
update dynamics, where the associated B is the collection of connected subsets of
vertices. Since the flip parameters satisfy ps > 0 only for s ≤ 6, we have M ≤ 6.
Moreover, we have D ≤ ∆6/n since a vertex x is in the selected bicolored compo-
nent Lσt(y, a) only if dist(x, y) ≤ 5, which happens with probability at most ∆6/n.
The theorem then follows from Lemma 5.3.13 and Theorem 1.4.4.

We conclude here with the proof of Theorem 1.4.8.

Proof of Theorem 1.4.8. By Theorem 5.3.12 the uniform distribution µ of proper col-
orings is spectrally independent. Then the results follows immediately from The-
orem 1.4.1.

Application: block dynamics for Potts model

Here we apply Theorems 5.3.2 and 1.4.4 to the ferromagnetic Potts model to es-
tablish spectral independence.
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5.3. A CONTRACTIVE DISTRIBUTION IS SPECTRALLY INDEPENDENT

Theorem 5.3.14. Let ∆ ≥ 3 and q ≥ 2 be integers. Let µ be the Gibbs distribution of
the q-state ferromagnetic Potts model with inverse temperature parameter β on a graph
G = (V,E) of maximum degree at most ∆. Then, the following holds:

1. If β < max
{

2
∆
, 1
∆
ln( q−1

∆
)
}

, then µ is spectrally independent with constant η =

η(β,∆).

2. For any δ > 0 there exists c = c(δ,∆) > 0 such that, if β ≤ ln q−c
∆−1+δ

then µ is
spectrally independent with constant η = η(δ, β,∆).

To prove this theorem, we need the following results from [128] and [19] re-
garding the contraction of the Glauber dynamics and of the heat-bath block dy-
namics with a specific choice of blocks.

Lemma 5.3.15 ([128, Corollary 2.14] & [19, Proposition 2.2]). Under the assumptions
in Part 1 of Theorem 5.3.14, there exists a constant ϵ = ϵ(β,∆) such that µ is (1 − ϵ

n
)-

contractive w.r.t. the Glauber dynamics and the Hamming metric.

Lemma 5.3.16 ([19, Theorem 2.7]). Under the assumptions in Part 2 of Theorem 5.3.14,
there exists a collection of blocks B = {Bx}x∈V satisfying x ∈ Bx, |Bx| = O(1/δ) and
G[Bx] connected for all x, such that µ is (1− 1

2n
)-contractive w.r.t. the α-weighted heat-

bath block dynamics for B and the Hamming metric, where α is the uniform distribution
over B.

Remark 5.3.17. To be more precise, [19] shows that the conclusion of Lemma 5.3.16
is true when β, q, and the maximum block size M = maxx∈V |Bx| satisfy

β

(
∆− 1 +

1

M

)
+ 3M(ln∆ + lnM) ≤ ln q. (5.3.9)

Thus, for any δ > 0, by taking M = ⌈δ−1⌉ and c = 3M(ln∆ + lnM), our assump-
tion β ≤ ln q−c

∆−1+δ
in Part 2 of Theorem 5.3.14 implies (5.3.9). Moreover, if we take,

say, M ≈
√
ln q (namely, δ ≈ 1/

√
ln q), then c = o(ln q) and our assumption be-

comes β ≤ (1− o(1)) ln q
∆−1

where o(1) tends to 0 as q → ∞; this gives the bound β1

in Theorem 1.4.9 from the introduction.

Theorem 5.3.14 is an immediate consequence of Lemmas 5.3.15, 5.3.16 and the
results proved in this section.

Proof of Theorem 5.3.14. Part 1 follows from Lemma 5.3.15 and Theorem 5.3.2. For
Part 2, we note that the block dynamics from Lemma 5.3.16 corresponds to a
select-update dynamics withM = O(1/δ) andD = ∆O(1/δ)/n; to see the bound on
D, we observe that if x ∈ By for some y then the graph distance between x and y

is at most |By| = O(1/δ) sinceG[By] is connected, and hence the number of blocks
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containing x is at most ∆O(1/δ). The theorem then follows from Lemma 5.3.16 and
Theorem 1.4.4.

We end this section with the proof of Theorem 1.4.9.

Proof of Theorem 1.4.9. For Ising model, spectral independence is known in the
whole uniqueness region [41]. For Potts model, Theorem 5.3.14 establishes spec-
tral independence in the corresponding parameter regimes. The theorem then
follows from Theorems 1.4.1 and 1.4.2.

5.4 Spectral independence and factorization of the en-

tropy

The goal of this section is to reformulate in the setting of spin systems some of
the key facts that were derived in [42] and the references therein in the framework
of simplicial complexes. This specialization yields some minor simplification in
the main proofs, and may be of use for later reference. The approach consists
in exploiting a recursive scheme which allows one to derive a global contraction
estimate by analysing the spectral norm of a local operator. This is reminiscent of
the recursive approach developed in [61, 25, 22], where similar ideas were used
to derive spectral gap estimates for a class of conservative spin systems. The
argument here is more robust and, unlike the one in [61, 25, 22], it does not rely
on symmetries of the underlying measures.

We first introduce some notation. Let f be a function of the spin configuration
σ in the whole region V , and U ⊂ V = [n] a subset of vertices. Recall the notation
µV \U for the conditional distribution given the spins in U , and write Av|U |=ℓ for
the uniform average over all sets U ⊂ [n] with ℓ vertices. We are going to prove
the following result that was established in [42].

Theorem 5.4.1. If the spin system is η-spectrally independent and b-marginally bounded
then there exists a constant C = O(1 + η

b
) such that for any ℓ = {1, . . . , n− 1} and for

all f ≥ 0:

n

ℓ
Av|U |=ℓ Ent(µV \Uf) ≤ C Entf. (5.4.1)

Moreover, for any θ ∈ (0, 1], there exists C =
(
1
θ

)O( η
b
) such that for ℓ = ⌈θn⌉:

ℓ

n
Entf ≤ C Av|Λ|=ℓ µ [EntΛf ] . (5.4.2)
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We remark that, when ℓ = 1, (5.4.1) takes the form of an approximate subad-
ditivity statement: ∑

x∈V

Ent(fx) ≤ C Ent(f), (5.4.3)

with constant C = O(1 + η
b
). Here the functions fx are defined by fx = µ(f |σx) =

µV \{x}f . When µ(f) = 1 then ν = fµ is a probability measure and, if µx denotes
the marginal of µ on x, then fxµx gives the marginal of ν on x. The inequal-
ity (5.4.3) is known to be equivalent to a Brascamp-Lieb type inequality for the
measure µ; see [33, 32]. For a general discussion of subadditivity of entropy,
Brascamp-Lieb type inequalities, and their applications, see for instance [7] and
the references therein. On the other hand (5.4.2) is the uniform block factorization
statement ℓ-UBF with ℓ = ⌈θn⌉; see Definition 5.1.1.

We articulate the proof in two steps. The first is a recursive scheme which
allows one to go from a local inequality to a global one; see Lemma 5.4.3. The
second step is a control of the local inequality; see Lemma 5.4.4.

5.4.1 Setting up the recursion

If U ⊂ V , and τ = τU a configuration of spins on U , recall that we use notation
µτ = µ(· | τ) for the conditional distribution µV \U when the spins on U are given
by τ . Moreover, we write µτ,x = µ(· | τ ∪ σx) if we additionally condition on the
spin σx at vertex x /∈ U and similarly for µτ,x,y = µ(· | τ ∪ σx ∪ σy) for x, y /∈ U ,
so that e.g. the expression µτ [Entµτ,x,yf ] indicates the entropy of f with respect to
µ(· | τ ∪ σx ∪ σy),

Entµτ,x,yf = µτ,x,y[f log(f/µτ,x,y(f))]

averaged over the two spins σx, σy sampled according to µτ . Define the constants
αk, k = 0, . . . , n− 2, as the largest numbers such that the inequalities

(1 + αk)Avx/∈U Entµτ (µ
τ,x(f)) ≤ Avx,y /∈U Entµτ (µ

τ,x,y(f)) , (5.4.4)

hold for all k = 0, . . . , n − 2, for all U ⊂ [n] with |U | = k, for all configurations τ
on U and for all functions f ≥ 0. The symbol Avx/∈U denotes the uniform average
over all n− k vertices x /∈ U , and Avx,y /∈U stands for the uniform average over all
(n−k)(n−k−1) pairs (x, y) with x, y /∈ U and x ̸= y. We refer to (5.4.4) as the local
inequality, since for each choice of x, y, the distributions involved are concerned
with the spins at two vertices only.

Remark 5.4.2. Fix x, y /∈ U . Using µτ,xf = µτ,xµτ,x,yf , from Lemma 2.4.1 we have
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the decomposition

Entµτ (µ
τ,x,y(f)) = Entµτ (µ

τ,x(f)) + µτ [Entµτ,x(µ
τ,x,y(f)] .

In particular, Entµτ (µτ,x,y(f)) ≥ Entµτ (µ
τ,x(f)) and therefore (5.4.4) is always true

with αk = 0. If µ is a product measure then the subadditivity of entropy for
product measures gives

Entµτ (µ
τ,x,y(f)) ≥ Entµτ (µ

τ,x(f)) + Entµτ (µ
τ,y(f)),

which implies the validity of (5.4.4) with αk = 1 for all k = 0, . . . , n− 2.

The recursion is based on the following statement, which rephrases [42, The-
orem 5.4].

Lemma 5.4.3. Let αk, k = 0, . . . , n − 2, be defined by (5.4.4). Then, for all functions
f ≥ 0,

Av|U |=jEnt(µV \Uf) ≤ (1− κj)Ent(f), j = 1, . . . , n− 1, (5.4.5)

where

κj =

∑n−1
i=j Γi∑n−1
i=0 Γi

, Γi =
i−1∏
k=0

αk , Γ0 = 1.

Proof. The claim (5.4.5) follows from the fact that for all k = 1, . . . , n− 1:

Av|U |=k Ent(µV \Uf) ≤ δkAv|U |=k+1 Ent(µV \Uf) , δk =

∑k−1
i=0 Γi∑k
i=0 Γi

, (5.4.6)

since Av|U |=n Ent(µV \Uf) = Ent(f), and δjδj+1 · · · δn−1 = (1− κj).
To prove (5.4.6), note that it holds for k = 1 with δ1 = 1/(1+α0) = Γ0/(Γ0+Γ1)

by the assumption (5.4.4) at τ = ∅. Next, we suppose it holds for 0 < k−1 < n−1

and show it for k. For any |U | = k + 1 and U ′ ⊂ U with |U ′| = k − 1, setting
{x, y} = U \ U ′ and letting τ = τU ′ be the configuration on U ′, as in Lemma 2.4.1
we have the decomposition

Ent(µV \Uf) = Ent(µ(µV \Uf | τU ′)) + µ
[
Ent(µV \Uf | τU ′)

]
= Ent(µV \U ′f) + µ [Entµτ (µ

τ,x,yf)] .

Averaging we obtain

Av|U |=k+1Ent(µV \Uf) = Av|U ′|=k−1Ent(µV \U ′f)

+ Av|U ′|=k−1Avx,y /∈U ′µ [Entµτ (µ
τ,x,yf)] .
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In the same way

Av|U |=kEnt(µV \Uf) = Av|U ′|=k−1Ent(µV \U ′f)

+ Av|U ′|=k−1Avx/∈U ′µ [Entµτ (µ
τ,xf)] .

From (5.4.4),

Av|U |=k+1Ent(µV \Uf)− Av|U ′|=k−1Ent(µV \U ′f)

≥ (1 + αk−1)Av|U ′|=k−1Avx/∈U ′µ [Entµτ (µ
τ,xf)]

= (1 + αk−1)
[
Av|U |=kEnt(µV \Uf)− Av|U ′|=k−1Ent(µV \U ′f)

]
.

Therefore,

Av|U |=k+1Ent(µV \Uf) ≥ (1 + αk−1)Av|U |=kEnt(µV \Uf)− αk−1Av|U ′|=k−1Ent(µV \U ′f).

By the inductive assumption (5.4.6) at k − 1 we have

Av|U |=k+1Ent(µV \Uf) ≥ (1 + αk−1 − αk−1δk−1)Av|U |=kEnt(µV \Uf)

= δ−1
k Av|U |=kEnt(µV \Uf).

5.4.2 Estimating the local coefficients

The next step is an estimate on the coefficients αk appearing in (5.4.4).

Lemma 5.4.4. If the spin system is η-spectrally independent and b-marginally bounded
then the local inequality (5.4.4) holds with

αk ≥ 1− 2η

b(n− k − 1)
.

Proof. Fix U ⊂ V , |U | = k ≤ n− 2 and τ = τU . We may assume µτ (f) = 1, which
implies µτ (µτ,x,y(f)) = µτ (µτ,x(f)) = 1 for all x, y /∈ U . For simplicity, we write
Avx,y and Avx for the averages Avx,y /∈U and Avx/∈U . Observe that

Avx,y Entµτ (µ
τ,x,y(f))− 2Avx Entµτ (µ

τ,x(f))

= Avx,y µ
τ [µτ,x,y(f) log µτ,x,y(f)− µτ,x(f) log µτ,x(f)− µτ,y(f) log µτ,y(f)]

= Avx,y µ
τ

[
µτ,x,y(f) log

µτ,x,y(f)

µτ,x(f)µτ,y(f)

]
.
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Using a log(a/b) ≥ a− b for all a, b ≥ 0,

Avx,y Entµτ (µ
τ,x,y(f))− 2Avx Entµτ (µ

τ,x(f))

≥ 1− Avx,y µ
τ [µτ,x(f)µτ,y(f)]

= −Avx,y µ
τ [(µτ,x(f)− 1)(µτ,y(f)− 1)] . (5.4.7)

We may rewrite

Avx,y µ
τ [(µτ,x(f)− 1)(µτ,y(f)− 1)]

=
1

n− k − 1

∑
(x,a)∈X

ν(x, a)φ(x, a)[Jτφ](x, a), (5.4.8)

where
φ(x, a) = µτ (f |σx = a)− 1 = [µτ,x(f)](a)− 1,

X is the set of all pairs (x, a) where x ∈ V \ U (if U is the set where τ = τU

is specified) and a ∈ [q], ν denotes the probability measure on X obtained by
setting

ν(x, a) =
1

n− k
µτ (σx = a),

and Jτ : X ×X 7→ R denotes the influence matrix from Definition 2.2.5. Note that
in the derivation of (5.4.8) we have used the fact that for each fixed y /∈ U one has

∑
a′∈[q]

ν(y, a′)φ(y, a′) =
1

n− k
µτ (µτ,y(f)− 1) = 0.

Observe that Jτ is self-adjoint in L2(X , ν):

ν(x, a)Jτ (x, a; y, a′) = ν(y, a′)Jτ (y, a′;x, a).

In particular, its eigenvalues are real. Let η ≥ 0 denote its largest eigenvalue
(the eigenvalue zero always exists since all row sums of Jτ vanish). Letting ⟨·, ·⟩
denote the scalar product in L2(X , ν) we have ⟨ψ, Jτψ⟩ ≤ η⟨ψ, ψ⟩ for all ψ ∈
L2(X , ν). Therefore,

Avx,y µ
τ [(µτ,x(f)− 1)(µτ,y(f)− 1)]

=
1

n− k − 1
⟨φ, Jτφ⟩ ≤ η

n− k − 1
⟨φ, φ⟩

=
η

n− k − 1
Avx µ

τ
[
(µτ,x(f)− 1)2

]
=

η

n− k − 1
AvxVarµτ (µ

τ,x(f)).
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Recalling (5.4.7) we have shown

Avx,y Entµτ (µ
τ,x,y(f))− 2Avx Entµτ (µ

τ,x(f))

≥ − η

n− k − 1
AvxVarµτ (µ

τ,x(f)). (5.4.9)

Next, observe that for every fixed x /∈ U , setting hτ (σx) = [µτ,x(f)](σx):

Varµτ (µ
τ,x(f)) =

∑
a

µτ (σx = a)(hτ (a)− 1)2

≤ 1

b

(∑
a

µτ (σx = a)|hτ (a)− 1|

)2

where b = minx/∈U mina µ
τ (σx = a), as in Definition 2.2.7, with the minimum over

a restricted to spin values that are allowed at x, that is such that µτ (σx = a) > 0,
and we have used

∑
i a

2
i ≤ (

∑
i ai)

2 for all ai ≥ 0. Pinsker’s inequality shows that

∑
a

µτ (σx = a)|hτ (a)− 1| ≤
√
2Entµτ (µτ,x(f)).

It follows that

Varµτ (µ
τ,x(f)) ≤ 2

b
Entµτ (µ

τ,x(f)). (5.4.10)

Inserting (5.4.10) into (5.4.9) concludes the proof.

5.4.3 Proof of Theorem 5.4.1

From Lemma 5.4.3, we see that (5.4.1) holds with C = n
ℓ
(1 − κℓ). From Lemma

5.4.4 if follows that

αk ≥ max{1−R/(n− k − 1), 0}, R = ⌈2η/b⌉.

Using this bound in the definition of the coefficients κℓ and rearranging, see Sec-
tion 2.2 of [42], it is not hard to see that for any 1 ≤ ℓ ≤ n− 1:

κℓ ≥
(n− ℓ− 1) · · · (n− ℓ−R)

(n− 1) · · · (n−R)
. (5.4.11)

In particular,

n

ℓ
(1− κℓ) ≤

n

ℓ

(
1− (n− ℓ− 1) · · · (n− ℓ−R)

(n− 1) · · · (n−R)

)
.
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Remarkably, the expression in the right hand side above is decreasing with ℓ, and
therefore it is always less than R + 1, its value at ℓ = 1. This shows that (5.4.1)
holds with C ≤ R + 1 = O(1 + η

b
).

To prove (5.4.2), we start with the decomposition

Av|Λ|=ℓ µ [EntΛf ] = Ent(f)− Av|U |=n−ℓ Ent
[
µV \Uf

]
,

which follows from Lemma 2.4.1. Therefore Lemma 5.4.3 implies that (5.4.2)
holds with C = ℓ

n κn−ℓ
. Using (5.4.11) we see that

ℓ

n κn−ℓ
≤ (n− 1) · · · (n−R)

(ℓ− 1) · · · (ℓ−R)
.

In particular, if ℓ = ⌈θn⌉ with θ ∈ (0, 1] fixed, then for all sufficiently large n one
has ℓ

n κn−ℓ
≤ (1

θ
)O(R). This ends the proof of Theorem 5.4.1.

5.5 Optimal mixing of the SW dynamics

In this section, we show that for ferromagnetic Potts models, the k-partite factor-
ization of entropy, as defined in (5.1.2), implies optimal mixing of the Swendsen-
Wang (SW) dynamics. Since we have already established that, for any spin sys-
tem, k-partite factorization is implied by spectral independence, we then deduce
Theorem 1.4.2 from the introduction.

We again take G = (V,E) to be an n-vertex graph of maximum degree ∆, µ

to be the Potts distribution on G with configuration space Ω = [q]V and ν to be
the Edward-Sokal measure. We refer to section 4.1 for the definition of ν and the
spin/edge factorization.

The main result in this section is stated as follows.

Theorem 5.5.1. Suppose µ satisfies the k-partite factorization of entropy with constant
Cpar; see Eq. (5.1.2). Then, there exists a constant C = C(Cpar, β,∆) such that for all
f : ΩJ 7→ R+

Entν(f) ≤ C (ν [Entν(f |σ)] + ν[Entν(f |A)]) .

The constant C satisfies C = Cpar ×O(β∆2eβ∆).

Theorem 1.4.2 from the introduction now follows immediately.

Proof of Theorem 1.4.2. For the Potts model one has eβ∆ = O(1/b). Therefore, the
results follows from Theorem 5.4.1, Lemma 5.1.3, Theorem 5.5.1 and Lemma 4.1.4.
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Let {V1, ..., Vk} be the k-partition of G, where k ≤ ∆+ 1, as in Section 5.2. For
all j ∈ [k] let ν(· |σV c

j
, A) denote the measure ν conditioned on σV c

j
= {σv, v /∈ Vj}

and A ⊂ E. We use Entν(f |σV c
j
, A) for the corresponding conditional entropy

and ν
[
Entν(f |σV c

j
, A)
]

for its expectation with respect to ν. Theorem 5.5.1 will
follow from the following lemmas.

Lemma 5.5.2. For all f : ΩJ 7→ R+ and all j ∈ [k] we have

ν [Entν(f |A)] ≥ ν
[
Entν(f |σV c

j
, A)
]
.

Lemma 5.5.3. There exists a constant δ1 > 0 such that, for all f : ΩJ 7→ R+ and all
j ∈ [k],

ν [Entν(f |σ)] + ν
[
Entν(f |σV c

j
, A)
]
≥ δ1 ν

[
Entν(f |σV c

j
)
]
.

The constant δ1 satisfies 1/δ1 = O(β∆eβ∆).

Lemma 5.5.4. If µ satisfies the k-partite factorization with constant Cpar, then for all
f : ΩJ 7→ R+,

k∑
j=1

ν
[
Entν(f |σV c

j
)
]
≥ δ2Entν(f),

where δ2 = 1
Cpar

.

Proof of Theorem 5.5.1. By combining the bounds from Lemmas 5.5.2, 5.5.3 and
5.5.4 we get

ν [Entν(f |σ) + Entν(f |A)] ≥
δ1δ2
k

Entν(f),

and so, using also k ≤ ∆+ 1, the spin/edge factorization holds with constant

C =
k

δ1δ2
= Cpar ×O(β∆2eβ∆).

We turn to the proof of Lemmas 5.5.2, 5.5.3 and 5.5.4. In the special case of
bipartite graphs these correspond to Lemmas 4.3.3, 4.3.4 and 4.3.5 in chapter 4,
respectively. For Lemmas 5.5.2 and 5.5.4 the adaptation to our setting is straight-
forward. The proof of Lemma 5.5.3, the core of the argument, requires some mod-
ification. The main difference with the proof of lemma 4.3.4 is in the definition of
the measures νx(· |σV c

j
) below, since in the bipartite case one only needs to con-

sider the measures νx(· |σV c
j
) for x ∈ Vj while here one needs to define νx(· |σV c

j
)
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for all x ∈ V . Once this is taken care of, however, the proof proceeds essentially
in the same way.

Proof of Lemma 5.5.2. This is an instance of the same monotonicity already seen in
Lemma 2.4.2. In this particular case, it follows from the argument in the proof of
4.3.3 by simply substituting σO with σV c

j
in that proof.

Proof of Lemma 5.5.3. Let us fix j ∈ [k], and an arbitrary ordering of the indepen-
dent sets V1, . . . , Vk, such that Vj is the lowest independent set, that is Vj < Vi for
all i ̸= j. We use xy to denote the edge {x, y}, and view the edge configuration A
as a vector in {0, 1}E . Clearly, if xy ∈ E then x ∈ Vi and y ∈ Vℓ for some i ̸= ℓ. For
any x ∈ V we write N(x) for the set of neighbors of x which belong to a higher
independent set, that is if x ∈ Vi then y ∈ N(x) iff xy ∈ E and y ∈ Vℓ for some
Vℓ > Vi. Note that, since Vj is the lowest independent set, if x ∈ Vj then N(x)

coincides with the set of all neighbors of x. The main observation here is that, by
definition of the measure ν, for any fixed configuration σV c

j
of spins on V c

j , the
conditional probability ν(· |σV c

j
) is a product measure

ν(· |σV c
j
) =

⊗
x∈V

νx(· |σV c
j
),

where the single measures νx(· |σV c
j
), x ∈ V , are described as follows. For each

x ∈ Vj , νx(· |σV c
j
) is the law on {1, . . . , q} × {0, 1}N(x) obtained by picking the

spin of site x according to the Potts measure on x conditioned on the spin of its
neighbors in V c

j and then, independently for every y ∈ N(x) with σx = σy by
taking Axy a Bernoulli(p) random variable, and for every y ∈ N(x) with σx ̸= σy

by setting Axy = 0. For x ∈ V c
j instead, the single measure νx(· |σV c

j
) is the law

on {1, . . . , q} × {0, 1}N(x) obtained by taking a Dirac mass on {1, . . . , q} according
to the assigned spin value σx, and such that independently for every y ∈ N(x)

with σx = σy, Axy is a Bernoulli(p) random variable, and for every y ∈ N(x) with
σx ̸= σy one has Axy = 0. Note that, by construction, if x ∈ V c

j then the spins
σx, σy, for y ∈ N(x), are all assigned once we condition on σV c

j
.

The measure ν(· |σV c
j
, A), obtained by further conditioning on a valid config-

uration of all edge variables A compatible with the fixed spins σV c
j

, is again a
product measure:

ν(· |σV c
j
, A) =

⊗
x∈V

νx(· |σV c
j
, A),

where νx(· |σV c
j
, A) is defined as follows. If x ∈ Vj , νx(· |σV c

j
, A) is the probability

measure on {1, . . . , q} × {0, 1}N(x) that is uniform in the spin variable if x has no
incident edges in A, and is concentrated on the unique admissible value given
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σV c
j

and A otherwise, and it is a Dirac mass in the edge variables according to A.
If x ∈ V c

j , νx(· |σV c
j
, A) is a Dirac mass on {1, . . . , q} × {0, 1}N(x) according to the

assigned spin value σx and edge variables A.

Next, we note that ν(· |σ) is a product of Bernoulli(p) random variables over
all monochromatic edges in σ, while it is concentrated onAxy = 0 on all remaining
edges. Therefore we may write

ν(· |σ) =
⊗
x∈V

νx(· |σ),

where νx(· |σ) is the probability measure on {1, . . . , q}×{0, 1}N(x) given by a Dirac
mass at the assigned spin σx and the product of Bernoulli(p) variables on all edges
xy such that y ∈ N(x) and σx = σy, and a Dirac mass at Axy = 0 if y ∈ N(x) and
σx ̸= σy.

We write Entx(· |σV c
j
), Entx(· |σV c

j
, A), Entx(· |σ) for the entropies with respect

to the distributions νx(· |σV c
j
), νx(· |σV c

j
, A), νx(· |σ) respectively. The next key ob-

servation is that, for every site x, there is a local factorization of entropies in the
following sense. There exists a constant δ1 ∈ (0, 1] such that 1/δ1 = O(β∆eβ∆),
and such that for all functions f ≥ 0 and all σ and x ∈ V ,

νx

[
Entx(f |σ) |σV c

j

]
+ νx

[
Entx(f |σV c

j
, A) |σV c

j

]
≥ δ1 Entx(f |σV c

j
). (5.5.1)

In the case x ∈ Vj this follows exactly as in Lemma 4.3.6 for bipartite graphs and
is thus omitted. If instead x ∈ V c

j then, recalling that by construction νx(· |σV c
j
) is

a Dirac mass on the spin value at x and a product measure on the edge variables
at xy, y ∈ N(x), one has νx(·|σV c

j
) = νx(·|σ) and therefore

Entx(f |σV c
j
) = Entx(f |σ) = νx

[
Entx(f |σ) |σV c

j

]
,

and thus δ1 can be taken to be 1 in this case.

Next, we want to lift inequality (5.5.1) to the product measure ν(· |σV c
j
) =

⊗x∈V νx(· |σV c
j
). Let x = 1, . . . , n denote an arbitrary ordering of the sites x ∈ V .

For all x ∈ V we let Ax ∈ {0, 1}N(x) be the random variable corresponding to
the state of the edges xy such that y ∈ N(x). We write ξx = (σx, Ax) for the
pair of variables corresponding to any x ∈ V . Note that, under the conditional
distribution ν(· |σV c

j
), the random variables ξx, x ∈ V , are independent. Thus, we

may write

Entν(f |σV c
j
) =

n∑
x=1

ν
[
Entx(gx−1 |σV c

j
) |σV c

j

]
, (5.5.2)
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where gx = ν
[
f |σV c

j
, ξx+1, . . . , ξn

]
, g0 = f and gn = ν

[
f |σV c

j

]
. This identity is an

instance of the decomposition in Lemma 2.4.1.
Putting together (5.5.1) and (5.5.2) yields

δ1 Entν(f |σV c
j
) ≤

n∑
x=1

ν
[
νx

[
Entx(gx−1 |σ) |σV c

j

]
+ νx

[
Entx(gx−1 |σV c

j
, A) |σV c

j

]
|σV c

j

]
=

n∑
x=1

ν
[
Entx(gx−1 |σ) + Entx(gx−1 |σV c

j
, A) |σV c

j

]
. (5.5.3)

To conclude the proof we can now proceed exactly as in the proof of Lemma 4.3.4.
We obtain the following two inequalities:

n∑
x=1

ν
[
Entx(gx−1 |σ) |σV c

j

]
≤ ν

[
Entν(f |σ) |σV c

j

]
,

n∑
x=1

ν
[
Entx(gx−1 |σV c

j
, A) |σV c

j

]
≤ ν

[
Entν(f |σV c

j
, A) |σV c

j

]
.

These two inequalities combined with (5.5.3) yield that

δ1 Entν(f |σV c
j
) ≤ ν

[
Entν(f |σ) |σV c

j

]
+ ν

[
Entν(f |σV c

j
, A) |σV c

j

]
. (5.5.4)

The desired result follows by taking expectations with respect to ν in (5.5.4).

Proof of lemma 5.5.4. From the definition of conditional entropy and the fact that
ν(· |σVj , σV c

j
) = ν(· |σ) we get

Entν(f |σV c
j
) = Entν

(
ν [f |σ] |σV c

j

)
+ ν

[
Entν(f |σ) |σV c

j

]
. (5.5.5)

(see eq. (4.3.4),(4.3.5) from Lemma 4.3.5). Now, since the function ν [f |σ] depends
only on the spin configuration σ, one has the identity

k∑
j=1

ν
[
Entν(ν[f |σ] |σV c

j
)
]
=

k∑
j=1

µ
[
Ent(ν[f |σ] |σV c

j
)
]
, (5.5.6)

where the entropy in the right hand side is with respect to µ and not with respect
to ν. Since k-partite factorization holds by assumption,

k∑
j=1

µ
[
Ent(ν[f |σ] |σV c

j
)
]
≥ δ2 Ent (ν [f |σ]) , (5.5.7)

where δ2 = 1/Cpar. By taking functions depending only on σVj for a single Vj one
easily sees that Cpar must be at least 1. Then, taking expectation and summing
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over j in (5.5.5), and combining with (5.5.6) and (5.5.7), we get

k∑
j=1

ν
[
Entν(f |σV c

j
)
]
≥ δ2 Entν (ν [f |σ]) + k ν [Entν(f |σ)] .

Using the simple decomposition Entν(f) = Entν (ν [f |σ])+ν [Entν(f |σ)], and the
fact that δ2 ≤ 1 ≤ k, we conclude that

k∑
j=1

ν
[
Entν(f |σV c

j
)
]
≥ δ2 Entν(f).

5.6 Open problem: block factorization for mean field

spin system

In this section we briefly discuss an open problem regarding the block factoriza-
tion (1.2.4). So far, we discussed its validity for spin systems where the maximum
degree of G is bounded. An interesting question is whether it is possible to re-
move the assumption of bounded degree, that is prove block factorization with a
constant C independent on |V | for Gibbs measures on arbitrary graphs assuming
spectral independence and marginal boundedness only. A well known example
of Gibbs measure on a graph whose maximum degree is n is the Curie-Weiss
model. Let G = (V,E) be the n−complete graph, and Ω = {−1, 1}n; the ferro-
magnetic Curie-Weiss model is described by the following distribution

µ(σ) = exp

β
n

∑
{i,j}∈E

σiσj − h
∑
i∈V

σi

 , σ ∈ Ω,

where β ≥ 0 denote the inverse temperature of the system and h ≥ 0 denotes the
external magnetic field. Here the uniqueness region is β < 1. There are results in
the literature concerning the approximate tensorization statement for this model.
It holds, for example, assuming a version of Dobrushin’s uniqueness condition,
see [101]. More recently, in [3] and [39] have been introduced two powerful tools,
entropic independence and stochastic localization respectively. These techniques
are used to attack the approximate tensorization statement for the Curie Weiss
and also other far more complex models, such as the Sherrington-Kirkpatrick
model. However, as far as we know there isn’t any statement concerning the va-
lidity of the block factorization for these cases, even for the simpler Curie-Weiss.
In this latter case, the best result one has so far is C = O(n) if the Dobrushin’s
uniqueness condition in [101] holds. Note that this condition holds if β < 1,
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so that all the uniqueness regime is covered. Below we prove how to derive
C = O(n) for the Curie-Weiss.

Recall that from Lemma 2.4.2 we have

µ [Entx(f)] ≤ µ [EntB(f)]

for any B ⊂ V and x ∈ B. From this one can deduce that the following inequality

1

|A|
∑
x∈A

µ [Entx(f)] ≤ µ [EntA(f)]

holds for any A ⊂ [n]. By using approximate tensorization we get

γ(α′)

CAT
EntV (f) ≤

∑
x∈[n]

∑
A⊂V

αA
1

|A|
1(x ∈ A)µ [Entx(f)]

≤
∑
A⊂V

αAµ [EntA(f)] ,

so that the best constant C such that (1.2.4) holds is upper bounded by

C ≤ γ(α)

γ(α′)
CAT ≤ nCAT

where γ(α) := infx∈[n]
∑

A⊂V
x∈A

αA, γ(α
′) = infx∈[n]

∑
A⊂V
x∈A

αA

|A| and CAT is the best con-
stant such that approximate tensorization holds, which we know is O(1) thanks
to the main result in [101].

139



Part II

Non-linear recombination models

140



Chapter 6
Introduction

Recombinations are one of the principal components in the analysis of stochastic
genetic algorithms [92, 109]. Nonlinear recombinations provide a simple combi-
natorial setup for quadratic evolutions described by a Boltzmann-like equation
[115]. A particle is represented by a finite string of characters from some finite
alphabet and the binary collision mechanism is given by a recombination, that is
the transposition of a random portion of the two colliding strings. The model be-
longs to the family of symmetric quadratic systems introduced in [116]; see also
[29] for the more general framework of reversible quadratic systems.

Following the strategy introduced by Mark Kac in his seminal 1956 paper [82],
one can approximate the nonlinear evolution of one particle by a linear mean field
type Markov process involving a large number of particles. Roughly speaking, if
one has a good control of this approximation, together with a good control of the
linear particle system, then the difficulties due to the nonlinearity in the original
process can be overcome.

In the context of Boltzmann’s equation and its closely related kinetic models
this line of research has witnessed important progress in recent years [31, 106, 107,
37], see also [34, 52, 83] for related results for mean field diffusions of McKean-
Vlasov type.

The combinatorial setup considered here appears to be less explored; see how-
ever [113, 118, 8] for the analysis of Boltzmann-like equations with discrete veloc-
ities. One advantage of the combinatorial setting is that thanks to the discrete
setup one can avoid a number of technical assumptions, such as regularity and
moments constraints, on the various distributions considered. Moreover, and
perhaps more importantly, in contrast with the well studied case of the Kac-
Boltzmann equation [31, 106, 57, 18], in our setup it is possible to obtain tight
entropy production estimates for the particle system which hold uniformly in the
number of particles. This provides a class of models for which the renowned Kac
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program can be completed in a strong sense.

In the setting of nonlinear recombinations the linear particle system takes the
form of a generalized random transposition dynamics. This yields a natural gen-
eralization of the mean field exchange dynamics that are commonly studied in
the probabilistic literature such as the Bernoulli-Laplace or the random transpo-
sition model [48]. The purpose is twofold. On one hand we establish uniform in
time propagation of chaos. On the other hand we prove tight estimates on the en-
tropy production of the linear system which hold uniformly in the number of particles.
As a corollary we obtain quantitative control on the convergence to stationarity
for the nonlinear model in terms of relative entropy. In particular, this extends
some results previously obtained in [115, 29] by direct analysis of the entropy in
the nonlinear recombination model. We now proceed with a detailed description
of the model and of our main results.

6.1 The nonlinear equation

Let Ω =
∏n

i=1Xi be the set of n-vectors σ = (σ1, . . . , σn) where σi ∈ Xi, and the
Xi are given finite sets. We interpret σ as a particle. Thus, a particle is a string
of n characters each taken from a finite alphabet. A basic example is obtained
by taking Ω = {0, 1}n. Without loss of generality we will assume that each Xi

has the form Xi := {0, 1, 2, . . . , qi}, for some qi ∈ N. Given a subset A ⊂ [n],

[n] = {1, . . . , n}, and σ ∈ Ω, σA denotes the A−component of σ, that is the string
(σi, i ∈ A). If (σ, η) ∈ Ω × Ω is a pair of particles, the recombination at A consists
in exchanging the A-component of σ with the A-component of η. This defines the
map

(σ, η) 7→ (ηAσAc , σAηAc),

where ηAσAc denotes the element of Ω with entries ηi for i ∈ A and σi for i ∈ Ac =

[n] \ A. Let P(Ω) denote the set of probability measures on Ω. If the original pair
(σ, η) is obtained by sampling independently from p ∈ P(Ω), then the new parti-
cle ηAσAc is distributed according to pA⊗ pAc , the product of the two marginals of
p on theA andAc components respectively. By choosing the setA ⊂ [n] according
to some distribution ν, one obtains the quadratic collision kernel

p 7→ Q(p) =
∑
A⊂[n]

ν(A) pA ⊗ pAc .
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The nonlinear evolution is defined by the dynamical system ṗt = Q(pt)− pt, that
is

d

dt
pt =

∑
A⊂[n]

ν(A) (pt,A ⊗ pt,Ac − pt) (6.1.1)

with the initial condition p0 = p ∈ P(Ω). Here pt ∈ P(Ω) is the distribution of
the particle at time t, pt,A denotes its marginal on A and ν is a given probability
measure over the subsets of [n]. The study of this model starts with the pioneering
work of Geiringer [65]; see also [116, 115, 6, 100] for more recent accounts. It is
well known that the Cauchy problem associated to (6.1.1) has a unique solution
for every initial distribution p ∈ P(Ω). Moreover, it is not difficult to see that the
evolution preserves the single site marginals, that is pt,i = pi for all t ≥ 0 and
for all i ∈ [n]. We say that the recombination measure ν is separating if for any
i, j ∈ [n] there is a positive probability that the random set A with distribution ν

separates i and j, namely if r(ν) < 1 where we define

r(ν) := max
i,j∈[n]

Prν ({i, j} ⊂ A or {i, j} ⊂ Ac) . (6.1.2)

It is a classical fact that, under the assumption that ν is separating, the system
converges to the stationary state given by the product of the marginals of the
initial state p; namely, if πi = pi denotes the marginal of p at site i, then

π = ⊗n
i=1 πi (6.1.3)

is the equilibrium distribution and one has the convergence pt → π, t → ∞,
which can be interpreted as the effect of repeated fragmentations of the initial
state. Some of our results will hold for arbitrary separating ν. In some other cases
we consider a slightly stronger assumption on ν. Two examples to which all our
results apply are the following distributions ν, which are commonly considered
in the genetic recombination literature:

1. Uniform crossover: ν(A) = 1
2n

, for all A ⊂ [n];

2. One-point crossover: ν(A) = 1
n+1

∑n
i=0 1A=Ji , where J0 = ∅, Ji = {1, . . . , i},

i ≥ 1.

The quantitavive analysis of the convergence to equilibrium pt → π, t → ∞ has
been initiated in [116, 115], where a “mixing time" bound was obtained for the
discrete time version of the model. The decay to equilibrium in relative entropy
for the continuous time model was studied in [29]. These results were obtained
by direct analysis of the nonlinear problem. Here we shall follow an entirely dif-
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ferent approach, inspired by Kac’s program from kinetic theory. As a byproduct
of our analysis, we shall obtain an alternative proof of the known results men-
tioned above.

6.2 The particle system

Suppose there are N “particles”, described by variables η(j) ∈ Ω, j = 1, . . . , N .
That is, each particle is a single string from Ω and ηi(j) denotes the content of
the j-th particle at site i ∈ [n]. We may picture η ∈ ΩN as a N × n matrix such
that each row is a particle with n entries, and for each i ∈ [n], the i-th column ηi

represents the content of site i for different particles.

Notice that N and n play two very different roles here. The number N of
particles will eventually be taken to +∞ to recover the non linear mean field limit,
in accordance with the general Kac program. The number n should be thought as
a fixed, possibly large quantity describing the size of a single particle space.

The Markov process is given by the following random pair-exchange process.
Pairs of particles {j, ℓ}, 1 ≤ j < l ≤ N are chosen independently according to
a Poisson clock process with rate 1/N . When the pair {j, l} “rings", then a set
A ⊂ [n] is chosen with probability ν(A) and the recombination

(η(l), η(j)) 7→ (ηA(j)ηAc(l), ηA(l)ηAc(j)) (6.2.1)

is performed, that is the A-content is exchanged between particle j and particle l.
For all j, l ∈ [N ], A ⊂ [n], for all η ∈ ΩN , we write ηj,l,A for the new configuration
η′ ∈ Ω defined by

η′(k) = η(k), ∀k ̸= j, l; (6.2.2)

η′(l) = ηA(j)ηAc(l),

η′(j) = ηA(l)ηAc(j).

With this notation (6.2.1) can be rewritten as

(η(l), η(j)) 7→ (ηj,l,A(l), ηj,l,A(j)).

Define also f j,l,A(η) = f(ηj,l,A) for all f : ΩN → R. Then, the infinitesimal genera-
tor of the continuous time Markov process is given by

LNf =
1

N

∑
1≤j<l≤N

∑
A⊂[n]

ν(A)
(
f j,l,A − f

)
, f : ΩN → R.
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Any product measure µN on ΩN of the form µN = µ⊗N , where µ is itself a product
measure µ = µ1 ⊗ · · · ⊗ µn on Ω =

∏n
i=1Xi, defines a reversible measure for the

generator LN . Indeed, for such a measure one has the symmetry µN(η
j,ℓ,A) =

µN(η) for all η ∈ ΩN and therefore LN is self-adjoint in L2(µN). The process is
not irreducible in the state space ΩN since the content at a site for one particle
is always exchanged with the content at the same site for another particle, and
thus the number of particles with a given element x ∈ Xi at a given site i ∈ [n] is
constant in time. To obtain an irreducible process one must fix the densities ϱi,x,
i ∈ [n], x ∈ Xi defined by

ϱi,x =
1

N

N∑
j=1

1(ηi(j) = x).

We call ϱ = (ϱi,x) the corresponding vector. Given a density vector ϱ, consider the
space

Ωϱ :=

{
(η(1), . . . , η(N)) ∈ ΩN

∣∣∣∣∣ ϱi,x =
1
N

∑N
j=1 1(ηi(j) = x),

∀i ∈ [n], x ∈ Xi

}
. (6.2.3)

The set Ωϱ is well defined and non-empty for every vector ϱ = ϱN such that
ϱi,x ∈ [0, 1],

∑
x∈Xi

ϱi,x = 1 for all i ∈ [n], and such that Nϱi,x is an integer for
all i, x. When this holds we say that ϱN is an admissible sequence. Under suitable
assumptions on the recombination measure ν, see Definition 6.5.1, for any given
admissible ϱN , the Markov process with state space ΩϱN and generator LN is irre-
ducible and converges to the uniform distribution on ΩϱN . We will be interested
in quantitative statements about this convergence.

We often use the following procedure to construct admissible sequences. Fix
a given π = (πi,x) satisfying πi,x ∈ [0, 1] for all i, x and

∑
x∈Xi

πi,x = 1 for all i ∈ [n].
Then we call ϱπ = ϱπ(π) the density defined by

ϱπi,x :=
1
N
⌊Nπi,x⌋ , i ∈ [n], x ∈ {1, . . . , qi}, (6.2.4)

and we set ϱπi,0 = 1−
∑qi

x=1 ϱ
π
i,x. We remark that ϱπ = ϱπN is an admissible sequence

satisfying
ϱπi,x = πi,x +O

(
1
N

)
for all i, x. Fixing the probability vector π = (πi,x) is equivalent to fixing the
stationary measure (6.1.3) of the nonlinear evolution, and thus we use the same
symbol for them. From now on it is assumed that the densities π, and thus the
corresponding product measure π, are fixed. Without loss of generality we restrict
to the case where πi,x ∈ (0, 1) for all i ∈ [n], x ∈ Xi since for each i we can
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otherwise discard those letters x ∈ Xi such that πi,x is zero, and thus consider a
new configuration space such that π is everywhere positive.

6.3 Chaos and the propagation of chaos

The chaos property is commonly defined as follows. A measure µN ∈ P
(
ΩN
)

is
symmetric if it is invariant under any permutation of the N particles. We write
PkµN ∈ P(Ωk) for the corresponding k-particle marginal.

Definition 6.3.1 (Kac’s chaos or “Boltzmann property”). A sequence µN ∈ P
(
ΩN
)

of symmetric probabilities on ΩN is µ−chaotic, for a given µ ∈ P(Ω), if for any
k ∈ N one has the weak convergence

PkµN −→ µ⊗k , N → ∞.

A key step in implementing Kac’s program is to construct a correspondence
between probability measures on Ω and probability measures on ΩN . In our set-
ting this can be formulated as follows.

Definition 6.3.2 (Canonical tensor product). Given a probability measure p ∈
P(Ω) and an admissible sequence of density vectors ϱN , we let

γ(p, ϱN) := p⊗N ( · |ΩϱN )

be the tensor product of p conditioned on ΩϱN . When ϱN is given by ϱπ as in
(6.2.4), where the πi,x = p(σi = x) are the marginals of p, we use the notation
γN(p) := γ(p, ϱπ), and call it the canonical tensor product.

To avoid degeneracies we sometimes assume the following property.

Definition 6.3.3 (Irreducibility). A probability measure p ∈ P(Ω) is called ir-
reducible if for any i ∈ [n], any x ∈ {1, . . . , qi}, there exists χ ∈ Ω such that
p(σi = x, σj = χj ∀j ̸= i) > 0 and p(σi = 0, σj = χj ∀j ̸= i) > 0.

If p is irreducible and the sequence ϱN is sufficiently close to the marginals of
p, then the local central limit theorem guarantees that the k-particle marginals of
the symmetric measures γ(p, ϱN) converge to the product p⊗k as N → ∞, that is
γ(p, ϱN) is p-chaotic, see Theorem 7.1.6 for a precise statement. In particular, for
the canonical tensor product γN(p), we will see that

∥PkγN(p)− p⊗k∥TV ≤ C0 k

N
, (6.3.1)
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for some constant C0 = C0(p). Clearly, our reference product measure π ∈ P(Ω)

is irreducible. In fact, γ(π, ϱN) is the uniform probability measure on ΩϱN , for any
admissible sequence ϱN . In particular, it follows that its k-particle marginals con-
verge to π⊗k as N → ∞. One can also show that γ(p, ϱN) is entropically p-chaotic in
the sense defined in [31], namely that on top of the convergence of marginals one
also has

lim
N→∞

1

N
HN(γ(p, ϱN) | γ(π, ϱN)) = H(p |π),

where H(· | ·), HN(· | ·) denote respectively the relative entropy for probability
measures on Ω and on ΩN , see Proposition 7.1.8. Let us recall the following stan-
dard definition.

Definition 6.3.4 (Propagation of chaos). Let µN,t = µNe
tLN , t ≥ 0, denote the

evolution of an initial symmetric distribution µN ∈ P(ΩN) under the Markov
process generated by LN . Suppose that µN is p-chaotic for some p ∈ P(Ω) and let
pt denote the evolution of the initial datum p under the nonlinear process (6.1.1).
If µN,t is pt-chaotic for all fixed t ≥ 0, then we say that propagation of chaos holds.
If the weak convergence PkµN,t −→ p⊗kt , N → ∞, holds uniformly in t ≥ 0 we say
that propagation of chaos holds uniformly in time.

An adaptation of well known arguments, see e.g. [82, 125], shows that the
propagation of chaos (at fixed times) holds in our setting. In fact, the proof of this
does not require the assumption that ν is separating.

6.4 Uniform in time propagation of chaos

Our first main result concerns the validity of propagation of chaos uniformly in
time, with quantitative bounds on the convergence as N → ∞.

Theorem 6.4.1. Assume that ν is separating. The propagation of chaos holds uniformly
in time, that is for any p ∈ P(Ω), if µN is p−chaotic, then for all fixed k ∈ N, asN → ∞,

PkµN,t −→ p⊗kt , uniformly in t ≥ 0,

where pt is the solution to the nonlinear equation (6.1.1) with initial datum p0 = p.
Moreover, if µN is the canonical tensor product µN = γN(p), and p ∈ P(Ω) is irreducible,
then

∥PkµN,t − p⊗kt ∥TV ≤ C√
N
, (6.4.1)

for some constant C = C(k, p) > 0 independent of t, N .
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Remark 6.4.2. Concerning the dependency on N it may be that the optimal decay
in (6.4.1) is O(1/N) rather than O(1/

√
N). This seems natural in light of our esti-

mate (6.3.1) at time zero. Moreover, that would be in agreement with the recent
results in [83], where the O(1/N) bound is obtained for a class of interacting dif-
fusion processes at fixed times. The value of the constant C in (6.4.1) can be in
principle obtained from our more detailed results in Theorem 7.2.1. However, we
have not tried to optimize the dependency of C on k, p.

There are by now several results for kinetic models and for mean field dif-
fusions establishing uniform in time propagation of chaos, see [34, 52, 37, 120].
However, the adaptation to our setting of the different techniques used in these
works does not seem to be straightforward. The proof of Theorem 6.4.1 is based
on some new contractive estimates for the nonlinear model that allow us to im-
plement the main strategy developed in the groundbreaking work of Mischler
and Mouhot [106], see Section 7.2.

6.5 Entropy production for generalized random trans-

positions

Our second main result is about quantitative estimates on the decay to equilib-
rium for the particle system introduced above. The key feature is that these es-
timates hold uniformly in the number of particles N . We shall actually derive such
estimates in the context of the generalized random transposition process defined as
follows.

Let SN,n = SnN denote the n-fold product of the symmetric group SN of the
permutations of [N ] = {1, . . . , N}. Then η ∈ SN,n is a matrix ηi(j), i ∈ [n], j ∈ [N ],
where each η(j) = (η1(j), . . . , ηn(j)) ∈ [N ]n is seen as a particle, and each ηi =

(ηi(1), . . . , ηi(N)) ∈ SN is a permutation of [N ]. Note that SN,n = Ωϱ where Ωϱ is
defined in (6.2.3) when we take the extreme case qi ≡ N − 1, ϱi,x ≡ 1/N for all
i = 1, . . . , n.

The generalized random transposition (GRT) process is defined as the process
generated by the operator LN in this setup, namely the GRT process is the contin-
uous time Markov process with state space SN,n described as follows: every pair
of particles {η(l), η(j)} collides with rate 1/N independently, and when a colli-
sion occurs, a new set A is sampled according to ν and the A-content of η(l), η(j)
is exchanged.

This setting is convenient for proving functional inequalities since by restrict-
ing to classes of functions with suitable symmetries we then recover all possible
cases of processes on ΩϱN with generator LN , for all admissible ϱN . As an exam-
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ple, consider the case qi ≡ 1 and suppose that N(ϱN)i,1 = Ni for some positive
integers Ni, i = 1, . . . , n. Here the process generated by LN can be seen as the
GRT process restricted to functions f : SN,n 7→ R such that, for each i, f only
depends on (ηi(1), . . . , ηi(N)) through the unordered set {ηi(1), . . . , ηi(Ni)}. This
can be seen as a generalized Bernoulli-Laplace process [47]. If no confusion arises
we continue to write LN for the generator of the GRT.

We remark that when n = 1, GRT is just the usual random transposition pro-
cess [48], and that when ν gives positive weight only to A ⊂ [n] such that |A| = 1,
it describes n independent random transposition processes. However, in the gen-
eral case, the recombination measure ν dynamically couples the permutations
and the GRT becomes a nontrivial generalization of the standard random trans-
positions.

In order to guarantee the irreducibility of the GRT process, we make the fol-
lowing assumption on the recombination measure ν, which is easily seen to be
stronger than the separation assumption r(ν) < 1; see also Remark 6.5.4.

Definition 6.5.1. We say that ν is strictly separating if for all i ∈ [n] there existsA ⊂
[n] such that i ∈ A and such that both A and A \ {i} have positive ν-probability.

Note that the uniform crossover and the one-point crossover are both strictly
separating. Let πN denote the uniform distribution on SN,n. The GRT process
is reversible with respect to πN and if the measure ν is strictly separating, then
it is also irreducible, and any initial distribution converges to πN as t → ∞. To
quantify this statement we consider the Dirichlet form of the GRT, defined by

EN,n(f, g) =
1

2N

∑
1≤j<l≤N

∑
A⊂[n]

ν(A)
∑

η∈SN,n

πN(η)
(
f(ηj,l,A)− f(η)

) (
g(ηj,l,A)− g(η)

)
,

where f, g : SN,n 7→ R. The entropy production rate is measured by the constant

α(N, n) = inf
f>0

EN,n(f, log f)
Ent(f)

, (6.5.1)

where the infimum is over f : SN,n 7→ R+ such that Ent(f) ̸= 0 and

Ent(f) = πN(f log f)− πN(f) log πN(f)

is the entropy of f w.r.t. πN . Equivalently, α(N, n) is the best constant α such that
the inequality

Ent(etLNf) ≤ e−αtEnt(f)
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holds for all functions f > 0; see e.g. [46, 17]. Note that when πN(f) = 1 then,
for all t ≥ 0, Ent(etLNf) coincides with the relative entropy HN(µN,t |πN) where
µN,t = (etLNf)πN .

We also consider the entropy production rate restricted to the set of symmetric
functions defined as follows. Let S denote the set of f : ΩN 7→ R such that

f(η) =
1

N !

∑
τ∈SN

f(τ ◦ η),

where the sum runs over all permutations τ ∈ SN and τ ◦ η denotes the config-
uration with particles exchanged according to τ , that is τ ◦ η(j) = η(τ(j)). From
the point of view of Kac’s program [82], S is the relevant space of observables in
the particle system. We call αS(N, n) the constant defined as in (6.5.1), with the
infimum restricted to positive functions f ∈ S.

Our main results for the GRT process are the following estimates independent
of N .

Theorem 6.5.2. Fix n ∈ N and assume that ν is strictly separating. Then there exists
α(ν) > 0 such that for any N ∈ N, N ≥ 2,

α(N, n) ≥ α(ν). (6.5.2)

Moreover, if ν is the one-point crossover, then

α(N, n) ≥ 1

4(n+ 1)
, (6.5.3)

and if ν is the uniform crossover, then

α(N, n) ≥ 1

4n
, αS(N, n) ≥

1

2(n+ 2)
. (6.5.4)

Remark 6.5.3. Consider the entropy production rate α(ΩϱN ) for the process on ΩϱN

associated to any admissible density sequence ϱN . This quantity can be defined as
in (6.5.1) by restricting to invariant classes of functions with suitable symmetries.
The estimates above then immediately provide the lower bound

α(ΩϱN ) ≥ α(ν) .

In particular, in the case of uniform crossover one finds α(ΩϱN ) ≥ 1/4n, for any
admissible ϱN .

Remark 6.5.4. If the recombination measure is only assumed to be separating, then
the GRT process may fail to be irreducible. In particular, some assumption such
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as the strict separation defined above is necessary for the statement in Theorem
6.5.2. For an example of non irreducible process with separating ν consider N =

2, n = 4 and suppose ν(A) = 1
6

for allA ⊂ [4] with |A| = 2. Clearly, ν is separating,
but if we consider the initial configuration η with η(1) = 0000, η(2) = 1111, then
the number of 1’s in each particle remains even at all times.

For the proof of Theorem 6.5.2 we establish some new functional inequali-
ties for permutations which imply a modified logarithmic Sobolev inequality for
the GRT, see Section 7.3. Concerning upper bounds on the constant α(N, n) we
establish an estimate valid for arbitrary ν, which essentially shows that α(N, n)
cannot be larger than 4/n for n large, provided N is taken large enough, possibly
depending on n.

Proposition 6.5.5. For any n ∈ N, any distribution ν on [n],

lim sup
N→∞

α(N, n) ≤ 4

n
+O

(
1

n2

)
.

In this sense, the bounds in (6.5.3) and (6.5.4) can be considered to be optimal
up to constants.

6.6 Kac’s program completed

One of the main motivations behind Kac’s program is the derivation of quantita-
tive bounds on the speed of convergence to equilibrium for the nonlinear equa-
tion. In our setting, as a corollary of our analysis we obtain the following relative
entropy estimates. We refer to [130, 31] for a discussion of related entropy decay
estimates in the context of kinetic models. In particular, in our setup, one can
say that Cercignani’s conjecture holds true. See also [59] for related results in a
discrete setting under positive curvature assumptions.

Theorem 6.6.1. Assume that ν is strictly separating. For any p ∈ P(Ω), let pt denote
the solution of (6.1.1) with p0 = p and let π = ⊗n

i=1pi denote the associated equilibrium.
Then for all t ≥ 0,

H(pt | π) ≤ e−α(ν) tH(p |π), (6.6.1)

where α(ν) > 0 is the constant in Theorem 6.5.2. In particular, α(ν) ≥ 1/4(n + 1) for
one-point crossover, and α(ν) ≥ 1/2(n+ 2) for uniform crossover.

It is interesting to note that the constant α(ν) does not depend on the initial
datum p in any way. We point out that, in the case of the one-point crossover and
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uniform crossover, the above estimates were already obtained in [29] by direct
analysis of the entropy production functional of the nonlinear equation, with a
slightly better constant actually: α(ν) ≥ 1/(n + 1) in both cases. Moreover, [29]
also shows that the 1/n decay of the constant α(ν) in these cases is optimal up to
a constant independent of n. Besides extending the bounds of [29] to all strictly
separating distribution ν, an interesting feature of Theorem 6.6.1 is that its proof
takes a completely different route. Namely, it is based on the implementation in
our setting of Kac’s original idea. More precisely, (6.6.1) is derived from the uni-
form control on entropy production provided by Theorem 6.5.2, see also Remark
6.5.3, together with the approximation, as N → ∞, of both H(p |π) and H(pt | π)
in terms of the corresponding entropies for the N -particle system.

We also obtain the following general bounds on the convergence to equilib-
rium for the nonlinear chain. Recall the definition (6.1.2) of the constant r(ν) ∈
(0, 1).

Theorem 6.6.2. Assume that ν is separating. For any p ∈ P(Ω), let pt denote the
solution of (6.1.1) with p0 = p and let π = ⊗n

i=1pi denote the associated equilibrium.
Then for all t ≥ 0,

H(pt | π) ≤ 1
2
n(n− 1)H(p |π) e−D(ν) t, (6.6.2)

where D(ν) := 1− r(ν). Moreover, for the total variation distance we have

∥pt − π∥TV ≤ 1
4
n2(n− 1) ∥p− π∥TV e

−D(ν) t. (6.6.3)

We note that an estimate similar to (6.6.3) was obtained in [115] for a discrete
time version of the nonlinear process. To prove Theorem 6.6.2 we use a coupling
argument similar to that of [115], together with an explicit construction of the
continuous time solution pt in terms of all possible collision histories, which goes
back to the pioneering works of Wild [133] and McKean [81, 80], see also [30]. It
is interesting to note that in the case of uniform crossover one has r(ν) = 1/2 and
thus (6.6.2) provides an exponential decay which is much faster, as n becomes
large, than the one provided by (6.6.1). Moreover, as mentioned, the 1/n rate is
known to be optimal up to a constant independent of n for the estimate (6.6.1).
This mismatch can be explained by observing that, because of the possibly large
prefactor, (6.6.3) only provides information about the large time behavior while
(6.6.1) expresses a contraction property of the relative entropy at all times, and
that some particular initial distributions p may have a slow start in the relative
entropy decay; see Lemma 7.3.4 for a concrete example.

Finally, we remark that the rate of exponential decay D(ν) = 1 − r(ν) in The-
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orem 6.6.2 is optimal, in the sense that t−1 log ∥pt − π∥TV, as t → ∞, cannot be
smaller than −D(ν), see Remark 7.2.4. We refer to [50] for a related result on the
optimal rate of decay in the context of Kac model.
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Chapter 7
Propagation of chaos and entropy
production

In this chapter we prove the results stated in chapter 6. The organization goes as
follows. In Section 7.1 we present the main preliminary facts concerning the local
central limit theorem and its applications to the proof of chaos results. In Section
7.2 we prove the uniform in time propagation of chaos stated in Theorem 6.4.1.
This section also contains the proof of Theorem 6.6.2. Section 7.3 is devoted to the
proofs of Theorem 6.5.2, Proposition 6.5.5, and Theorem 6.6.1. In the appendix
we give the detailed proof of the local central limit theorem statement used in the
main text.
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7.1 Local Central Limit Theorem and Chaos

A probability measure p ∈ P(Ω) induces a probability µ on X := {0, 1}K where
K =

∑n
i=1 qi, via the map

σ ∈ Ω 7→ ξi,x = 1(σi = x) , i = 1, . . . , n ; x ∈ {1, . . . , qi}. (7.1.1)

That is, µ is the push forward of p by the above map. Note that we did not include
the indicator variable 1(σi = 0) since this is uniquely determined as the indicator
of the event ξi,x = 0 for all x ∈ {1, . . . , qi}. When qi = 1 for all i, then Ω = {0, 1}n

can be identified with X , σ with ξ, and µ with p.
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7.1.1 Central limit theorem

The next results are concerned with the behavior of the sum of independent
copies ξ(1), . . . , ξ(N) of a random variable ξ with values in X and distribution
µ ∈ P(X):

SN =
N∑
j=1

ξ(j).

Thus, SN is a random vector in {0, . . . , N}K . We use the notation

⟨t, s⟩ =
∑
i,x

ti,xsi,x

if t and s are indexed by i = 1, . . . , n and x = 1, . . . , qi. We call V1 the covariance
matrix of µ,

V1(i, x; i
′, x′) = µ(ξi,xξi′,x′)− µ(ξi,x)µ(ξi′,x′), i = 1, . . . , n , x = 1, . . . , qi

Thus V1 is a symmetric nonnegative definite K ×K matrix. If detV1 ̸= 0 we say
that µ is nondegenerate. The central limit theorem asserts that if µ is nondegener-
ate, then as N → ∞ one has the weak convergence

1√
N
V

−1/2
1

(
SN − µ⊗N(SN)

)
−→ N(0,1K) , (7.1.2)

where µ⊗N(SN) ∈ [0, N ]K is the mean of the vector SN under the product measure
µ⊗N , and 1K denotes the K ×K identity matrix, so that N(0,1K) is the standard
normal in K dimensions. Note that when µ is induced by a measure p ∈ P(Ω)

as described in (7.1.1), then µ⊗N(SN)i,x = Nπi,x for all i, x, where πi,x are the
marginals of p.

The statement (7.1.2) clearly requires that µ is nondegenerate. However, one
can obtain similar statements in the case of degenerate measures, provided one
reduces to the nondegenerate modes by eliminating the degenerate ones. More
precisely, one can take the eigenvectors of V1 with nonzero eigenvalues as the
new variables. A simple example is obtained if e.g. qi ≡ 1 and µ gives probability
1/2 to all 1’s and probability 1/2 to all 0’s. Here one simply removes all variables
but one.

7.1.2 Local central limit theorem

We will need a local version of the central limit theorem. For this we assume the
following stronger notion of nondegeneracy, which we refer to as irreducibility.
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Definition 7.1.1. A measure µ ∈ P(X) is called irreducible if for all i = 1, . . . , n,
for all x ∈ {0, . . . , qi}, there exists ξ ∈ X such that µ(ξ) and µ(ξ(i,x)) are both
positive, where ξ(i,x) denotes the vector ξ with the (i, x)-th coordinate flipped,
that is ξ(i,x)j,y = ξj,y for all (j, y) ̸= (i, x), and ξ

(i,x)
i,x = 1− ξi,x.

It is immediate to check that if p ∈ P(Ω) is irreducible in the sense of Definition
6.3.3 then the measure µ induced on X by p as in (7.1.1) is irreducible in the sense
of Definition 7.1.1.

Proposition 7.1.2. Suppose µ ∈ P(X) is irreducible. Then there exists a finite constant
C = C(µ) such that for all N ∈ N,

max
MN

∣∣∣∣∣ µ⊗N (SN =MN) − e−
1
2
⟨zN ,zN ⟩

(2πN)K/2
√
detV1

∣∣∣∣∣ ≤ C

N (K+1)/2
,

where
zN :=

1√
N
V

−1/2
1

(
MN − µ⊗N(SN)

)
,

and the maximum is over all possible values MN ∈ {0, . . . , N}K .

Noting that ΩϱN = {SN =MN} with MN = NϱN , and that in this case

⟨zN , zN⟩ = N⟨ϱN − π, V −1
1 (ϱN − π)⟩,

the following is an immediate corollary of Proposition 7.1.2.

Corollary 7.1.3. Suppose µ ∈ P(X) is irreducible, and let ϱN be an admissible sequence
such that

⟨ϱN − π, ϱN − π⟩ = O(1/N), (7.1.3)

where π = µ(ξ) is the vector of the expected values of µ. Then there exists a constant
c = c(µ) > 0 such that for N sufficiently large

µ⊗N (ΩϱN ) ≥
c

NK/2
.

In particular,

lim
N→∞

1

N
log µ⊗N (ΩϱN ) = 0.

We note that the condition (7.1.3) corresponds to “normal" fluctuations

⟨zN , zN⟩ = O(1),
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and that the corollary applies, in particular, to the canonical sequence ϱN = ϱπ

defined in (6.2.4), since ⟨ϱπ − π, ϱπ − π⟩ = O(1/N2) in that case.

The proof of Proposition 7.1.2 will be given in the appendix. Here we pause
for some remarks on the assumptions we made, and then discuss the main appli-
cations to chaos.

Lemma 7.1.4. If µ is irreducible then it is nondegenerate. The converse does not hold.

Proof. If µ is degenerate, then for any fixed (i, x), the variable ξi,x can be written
µ-a.s. as a nontrivial linear combination of the other variables ξj,y, (j, y) ̸= (i, x).
In particular, the value of ξi,x is µ-a.s. determined by the other variables. But
this is not possible if µ is irreducible since by assumption there is always at least
one value of all the other variables for which both values ξi,x = 0, 1 happen with
positive µ probability. This proves the first assertion. To violate the converse,
consider the following example: n = 3, qi ≡ 1, so that X = {0, 1}3 and suppose
that µ gives probability 1/4 to the following four configurations 101, 110, 011, 000,
and probability 0 to the four remaining configurations. Then one checks that
V1 = 1

4
13. In particular, µ is nondegenerate. However, µ is not irreducible since

the condition in Definition 7.1.1 is violated at i = 1.

Let us remark that some irreducibility assumption is necessary for the local
CLT statement in Proposition 7.1.2. Consider the same counterexample from the
proof of Lemma 7.1.4. In this case one checks easily that if the first component
of SN is even, then the sum of the remaining two components must be even as
well. This shows that the event SN = MN has probability zero for many ad-
missible sequences such that Corollary 7.1.3 would predict µ⊗N (SN =MN) > 0.
Thus, Proposition 7.1.2 does not hold for all nondegenerate µ. The next lemma
elucidates the role of the irreducibility assumption.

Lemma 7.1.5. Suppose µ is irreducible. Then there exists a constant c = c(µ) > 0 such
that the characteristic function ψ(t) = µ(ei⟨t,ξ⟩), t ∈ RK , satisfies

|ψ(t)| ≤ e−c⟨t,t⟩ , for all t ∈ [−π, π]K .

Proof. We write

|ψ(t)|2 =
∣∣µ [ei⟨t,ξ⟩]∣∣2 = µ [cos⟨t, ξ⟩]2 + µ [sin⟨t, ξ⟩]2 =

∑
ξ,ξ′∈X

µ(ξ)µ(ξ′) cos⟨t, ξ − ξ′⟩,

where the last equation uses the identity cos(α−β) = sin(α) sin(β)+cos(α) cos(β).
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If |θ| ≤ π, then cos(θ) ≤ 1− 2θ2/π2, and therefore,

cos⟨t, ξ − ξ′⟩ ≤

1− 2⟨t,ξ−ξ′⟩2
π2 if |ξ − ξ′|1 = 1

1 if |ξ − ξ′|1 ̸= 1

where |ξ − ξ′|1 =
∑

i,x |ξi,x − ξ′i,x|. Since |ξ − ξ′|1 = 1 iff ξ′ = ξ(i,x) for some i, x,

|ψ(t)|2 ≤ 1− 2

π2

∑
i,x

∑
ξ∈X

µ(ξ)µ(ξ(i,x)) t2i,x ≤ 1− 2c⟨t, t⟩,

where
c :=

1

π2
inf
i,x

∑
ξ∈X

µ(ξ)µ(ξ(i,x)).

The irreducibility of µ is equivalent to c > 0. Using x ≤ e
1
2
(x2−1), x ∈ [0, 1], with

x = |ψ(t)|, we conclude

|ψ(t)| ≤ e−c ⟨t,t⟩.

We turn to the applications to Kac chaos and entropic chaos.

7.1.3 Kac chaos

Recall the definition of γ(p, ϱN) and of the canonical tensor product γN(p) in Def-
inition 6.3.2.

Theorem 7.1.6. Suppose p ∈ P(Ω) is irreducible and let ϱN be an admissible sequence
such that

⟨ϱN − π, ϱN − π⟩ = O(1/N).

Then for all k = 1, . . . , N ,

∥Pkγ(p, ϱN)− p⊗k∥TV ≤ C k√
N
, (7.1.4)

for some constant C = C(p). Moreover, when ϱN = ϱπ, the canonical tensor product
γN(p) satisfies the stronger estimate

∥PkγN(p)− p⊗k∥TV ≤ C k

N
. (7.1.5)

Proof. We prove (7.1.4) first, and then show how to obtain (7.1.5). Let ξ̂i,x(j) =
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ξi,x(j)− (ϱN)i,x. We use the shorthand notation γN = γ(p, ϱN) and µN = p⊗N . For
any f : ΩN 7→ R we have

γN(f)− µN(f) =
µN(f(1ΩϱN

− µN(ΩϱN ))

µN(ΩϱN )
,

Since ΩϱN = {SN = NϱN}, using the Fourier transform we write

µN(ΩϱN ) =
1

(2π)K

∫
[−π,π]K

dt µN

(
ei⟨t,ŜN ⟩

)
,

where ŜN =
∑N

j=1 ξ̂(j). Set VN := NV1. The product structure of µN and the
change of variables s = V

1/2
N t =

√
NV

1/2
1 t imply

µN(ΩϱN ) =
1

BN(2π)K

∫
QN,K

ds µN

(
ei⟨V

−1/2
N s,ξ̂(1)⟩

)N
, (7.1.6)

where QN,K = V
1/2
N [−π, π]K and BN =

√
detVN = NK/2

√
detV1.

In the same way, for any f = f(ξ(1), . . . , ξ(k)), we have

µN(f 1ΩϱN
) =

1

BN(2π)K

∫
QN,K

ds µN

(
ei⟨V

−1/2
N s,ξ̂(1)⟩

)N−k
µN

(
f ei⟨V

−1/2
N s,Ŝk⟩

)
.

In conclusion, we have

γN(f)− µN(f) =

∫
QN,K

dsψN(s)
N−kµN

(
f ; ei⟨V

−1/2
N s,Ŝk⟩

)
∫
QN,K

dsψN(s)N
, (7.1.7)

where
ψN(s) = µN

(
ei⟨V

−1/2
N s,ξ̂(1)⟩

)
,

and we use the notation µN(f ; g) = µN(fg) − µN(f)µN(g) for the covariance of
f, g. From Corollary 7.1.3 we known that (7.1.6) is at least cN−K/2, and thus the
denominator in (7.1.7) is at least some constant c′ > 0. Therefore, it suffices to
show that the numerator is bounded by∫

QN,K

ds |ψN(s)|N−k
∣∣∣µN (f ; ei⟨V −1/2

N s,Ŝk⟩
)∣∣∣ ≤ C |f |∞

k√
N
.

From Lemma 7.1.5 we know that |ψN(s)| ≤ e−a⟨s,s⟩/N for some constant a = a(p) >

0. Notice that we can assume without loss of generality that k ≤ N/2, since oth-
erwise the result (7.1.4) is trivial. Thus |ψN(s)|N−k ≤ e−a⟨s,s⟩/2 and it is sufficient
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to show that ∣∣∣µN (f ; ei⟨V −1/2
N s,Ŝk⟩

)∣∣∣ ≤ C |f |∞
k√
N

⟨s, s⟩, (7.1.8)

for all s ∈ QN,K . Recalling that |eiθ−1| ≤ |θ|, θ ∈ R, and using Schwarz’ inequality,

|µN
(
f ; ei⟨V

−1/2
N s,Ŝk⟩

)
| ≤ 1√

N
|f |∞ µN

(
⟨V −1/2

1 s, Ŝk⟩2
)
.

Now we observe that

µN

(
⟨V −1/2

1 s, Ŝk⟩2
)
= k2⟨V −1/2

1 s, π − ϱN⟩2 + k⟨s, s⟩

≤ k2⟨s, V −1
1 s⟩⟨π − ϱN , π − ϱN⟩+ k⟨s, s⟩ ≤ Ck⟨s, s⟩,

where we use µN(Ŝk) = k (π− ϱN), the independence of the ξ̂(j), and ⟨π− ϱN , π−
ϱN⟩ ≤ C/k which follows from the assumption ⟨π − ϱN , π − ϱN⟩ = O(1/N). This
proves (7.1.4).

To prove (7.1.5), note that it is sufficient to prove (7.1.8) with
√
N replaced by

N in the right hand side. For this, we are going to use the fact that ⟨π − ϱN , π −
ϱN⟩ = O(1/N2) when ϱN = ϱπ, see (6.2.4). Let us first consider the function
f̃ = f − g, where

g(ξ(1), . . . , ξ(k)) =
1

k
⟨V −1

1 v, Ŝk⟩, v = µN(f ; Ŝk).

The function g can be seen as a linear approximation of f . Notice that

µN

(
f − g ; ⟨V −1/2

N s, Ŝk⟩
)
= 0. (7.1.9)

Indeed, by independence µN((Ŝk)i,x; (Ŝk)j,y) = kV1(i, x; j, y), and therefore for all
s,

µN

(
g ; ⟨V −1/2

N s, Ŝk⟩
)
= ⟨v, V −1/2

N s⟩ = µN

(
f ; ⟨V −1/2

N s, Ŝk⟩
)
.

Recalling that |eiθ − 1− iθ| = |R(θ)| ≤ 1
2
θ2, θ ∈ R, from (7.1.9) we have∣∣∣µN (f − g ; ei⟨V

−1/2
N s,Ŝk⟩

)∣∣∣2 ≤ 1

N2
(Var(f) + Var(g))µN

(
⟨V −1/2

1 s, Ŝk⟩4
)
,

where we use the inequality |µN(f −g;R)|2 ≤ 2 (Var(f) + Var(g))µN(R
2), and we

use Var for the variance w.r.t. µN . Next, observe that Var(f) ≤ |f |2∞ and

Var(g) =
1

k
⟨V −1v, v⟩ ≤ C Var(f) ≤ C|f |2∞.
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We are going to show that

µN

(
⟨V −1/2

1 s, Ŝk⟩4
)
≤ Ck2⟨s, s⟩2 . (7.1.10)

Suppose for a moment that (7.1.10) holds. Then we conclude that∣∣∣µN (f − g ; ei⟨V
−1/2
N s,Ŝk⟩

)∣∣∣ ≤ C |f |∞
k

N
⟨s, s⟩.

This proves |γN(f̃) − µN(f̃)| ≤ C |f |∞ k/N . However, noting that γN(g) = 0, we
have

|γN(f)− µN(f)| ≤ |γN(f̃)− µN(f̃)|+ |µN(g)|.

The desired conclusion |γN(f)− µN(f)| ≤ C |f |∞ k/N then follows from

|µN(g)| ≤ |⟨V −1
1 v, π − ϱπ⟩| ≤ ⟨V −1

1 v, V −1
1 v⟩1/2⟨π − ϱπ, π − ϱπ⟩1/2 ≤ C|f |∞k

N
,

where we use ⟨π − ϱπ, π − ϱπ⟩ = O(1/N2), and ⟨V −1
1 v, V −1

1 v⟩ ≤ Ck|f |∞.

Thus, it remains to prove (7.1.10). Notice that it is sufficient to prove

µN

(
⟨Ŝk, Ŝk⟩2

)
≤ Ck2 . (7.1.11)

We write ξ̃ = ξ̂ − µ(ξ̂) and S̃k = Ŝk − µN(Ŝk) for the corresponding sums. Then
one checks that

⟨Ŝk, Ŝk⟩2 ≤ ⟨S̃k, S̃k⟩2 + Ck⟨S̃k, S̃k⟩3/2⟨π − ϱπ, π − ϱπ⟩1/2

+ Ck2⟨S̃k, S̃k⟩⟨π − ϱπ, π − ϱπ⟩+ Ck3⟨S̃k, S̃k⟩1/2⟨π − ϱπ, π − ϱπ⟩3/2

+ Ck4⟨π − ϱπ, π − ϱπ⟩2 .

Since ⟨π − ϱπ, π − ϱπ⟩ = O(1/N2) we can restrict to prove (7.1.11) for S̃k instead
of Ŝk. Since ξ̃ are centered the estimate follows easily by expanding ⟨S̃k, S̃k⟩2 and
observing that the dominant terms are of the form ⟨ξ̃(i), ξ̃(j)⟩2, and their contri-
bution is of order k2.

We notice that the trick of replacing f by f − g in the proof of Theorem 7.1.6
allowed us to obtain the decay rate O(1/N) instead of O(1/

√
N). This idea was

used in [24] for the proof of a related “equivalence of ensembles" result.

Corollary 7.1.7. For any irreducible p ∈ P(Ω), if η ∈ ΩN is distributed according to
the canonical tensor product γN(p), letting λη = 1

N

∑N
j=1 δη(j) denote the corresponding
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empirical measure,

E
[
∥p− λη∥TV

]
≤ C√

N
, (7.1.12)

for some constant C = C(p). Moreover, the same estimate holds with
√
N replaced by

N1/4 if η is distributed according to γ(p, ϱN), for any admissible sequence ϱN satisfying
(7.1.3).

Proof. We write

E [∥p− λη∥TV] =
1

2

∑
σ∈Ω

E [|λη(σ)− p(σ)|]

≤ 1

2

(∑
σ∈Ω

p(σ)E
[
(hη(σ)− 1)2

])1/2

, (7.1.13)

where hη(σ) =
λη(σ)

p(σ)
and we have used Schwarz’ inequality for the product mea-

sure p× E. Now,

∑
σ

p(σ)E
[
(hη(σ)− 1)2

]
= −1 +

1

N
E
[

1

p(η(1))

]
(7.1.14)

+
N(N − 1)

N2
E
[
1η(1)=η(2)
p(η(1))

]
,

where we use

E
[

1

p(η(1))

]
=
∑
σ

P(η(1) = σ)

p(σ)
, E

[
1η(1)=η(2)
p(η(1))

]
=
∑
σ

P(η(1) = η(2) = σ)

p(σ)
.

Since E [1/p(η(1))] ≤ 1/p∗, where p∗ = minσ: p(σ)>0 p(σ) we see that the second term
in (7.1.14) is bounded by 1/(p∗N). Next, consider the function f(η(1), η(2)) =

1η(1)=η(2)/p(η(1)). Note that p⊗2(f) = 1. Then, Theorem 7.1.6 implies∣∣∣∣∣−1 +
∑
σ

P(η(1) = η(2) = σ)

p(σ)

∣∣∣∣∣ ≤ C

p∗N
.

SinceN(N−1)/N2 = 1−1/N , we have shown that (7.1.14) is bounded by C/N for
some new constant C depending only on p. Together with (7.1.13) this concludes
the proof of (7.1.12). Finally, if instead η is distributed according to γ(p, ϱN), for
an arbitrary admissible sequence ϱN satisfying (7.1.3) we may repeat all the steps
above and use the first part of Theorem 7.1.6 to conclude that (7.1.14) this time
is bounded by C/

√
N , which implies the claimed bound with N1/4 in place of√

N .
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7.1.4 Entropic chaos and Fisher chaos

The next result shows how to use the local CLT to obtain convergence of the
relative entropy of tensor products. Following [31] we refer to this as entropic
chaos.

Proposition 7.1.8. Suppose p ∈ P(Ω) is irreducible and let ϱN be an admissible sequence
such that

⟨ϱN − π, ϱN − π⟩ = O(1/N).

Then

lim
N→∞

1

N
HN(γ(p, ϱN) | γ(π, ϱN)) = H(p |π).

Proof. We write

HN(γ(p, ϱN) | γ(π, ϱN)) = γ(p, ϱN)

[
log

(
p⊗N

π⊗N

)]
+ log

(
π⊗N(ΩϱN )

p⊗N(ΩϱN )

)
. (7.1.15)

From Corollary 7.1.3 we obtain

lim
N→∞

1

N
log

(
π⊗N(ΩϱN )

p⊗N(ΩϱN )

)
= 0.

By symmetry, the first term in (7.1.15) equals

N P1γ(p, ϱN)
[
log
( p
π

)]
.

Therefore the result follows from Theorem 7.1.6.

Another consequence of the local CLT is the following upper semi-continuity
property, see [31] for a similar statement in the kinetic setting.

Proposition 7.1.9. For each N, let µ(N) be a symmetric probability on ΩϱN and let µk be
a probability Ωk such that

Pkµ
(N) −→ µk

weakly for some integer k. Then, for any admissible sequence satisfying (7.1.3),

H(µk |π⊗k)

k
≤ lim inf

N→∞

HN(µ
(N)|γ(π, ϱN))
N

.
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Proof. An application of the Shearer inequality (2.4.5) with respect to the measure
π⊗N yields ∑

A∈A

H
(
PAµ

(N)|PAπ⊗N) ≤ n+(A)H
(
µ(N) |π⊗N) ,

where A is any family of sets covering [N ] = {1, . . . , N}, n+(A) = maxj #{A ∈
A : A ∋ j}, and PAν denotes the marginal on the variables {η(j), j ∈ A} of a
probability ν ∈ P(ΩN). If we take A = {A ⊂ [N ] : |A| = k}, then n+(A) =

(
N−1
k−1

)
.

Moreover, by symmetry PAµ(N) = Pkµ
(N) for all A ∈ A. Since

(
N
k

)
/
(
N−1
k−1

)
= N/k,

this proves

H
(
Pkµ

(N) | π⊗k) ≤ k

N
H
(
µ(N) | π⊗N) . (7.1.16)

See also Lemma 3.9 in [105], where (7.1.16) was derived with k
N

replaced by k
N
(1+

O( k
N
)) in the right hand side. On the other hand,

HN

(
µ(N) | π⊗N) = HN(µ

(N) | γ(π, ϱN))− log
(
π⊗N(ΩϱN )

)
.

The left hand side of (7.1.16) converges by assumption to H
(
µk | π⊗k). The de-

sired conclusion then follows from Corollary 7.1.3.

Remark 7.1.10. Both Proposition 7.1.8 and Proposition 7.1.9 hold with π replaced
by any irreducible p′ ∈ P(Ω) with the same marginals as π.

One can also establish the following analogue of the Fisher chaos property
discussed in [75]. Observe that if µN,t = µNe

tLN , for some µN ∈ P(ΩϱN ), then

d

dt
H (µN,t|γ(π, ϱN))|t=0+

= DN(fN) ,

where fN := µN/γ(π, ϱN), and

DN(fN) =
1

2N

∑
j<l

∑
A

ν(A) γ(π, ϱN)

[
(f j,l,AN − fN) log

f j,l,AN

fN

]
.

Here we use the notation f j,l,AN (η) = fN(η
j,l,A), where ηj,l,A is defined in (6.2.2). On

the other hand, for the nonlinear equation (6.1.1) one has

d

dt
H (pt |π)|t=0+

= Dπ(f) ,
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where f := p/π, and

Dπ(f) =
∑
A

ν(A) π

[
(fAfA

c − f) log
fAfA

c

f

]
,

where fA(σ) = pA(σ)/πA(σ) is the density of the marginal on A of p with respect
to π.

Proposition 7.1.11. Under the same assumptions of Proposition 7.1.8,

lim
N→∞

DN(fN)

N
= Dπ(f),

where fN := γ(p, ϱN)/γ(π, ϱN), and f := p/π.

Proof. Since

DN(fN) = − 1

N

∑
j<l

∑
A

ν(A) γ(π, ϱN)
[
(f j,l,AN − fN) log fN

]
.

and

Dπ(f) = −2
∑
A

ν(A) π
[
(fAfA

c − f) log f
]
,

it suffices to show that for every j, l ∈ [N ] and A ⊂ [n] one has

lim
N→+∞

∑
η∈ΩϱN

γ(π, ϱN)(η)
(
fN(η

j,l,A)− fN(η)
)
log (fN(η))

= 2
∑
σ∈Ω

(pA(σA)pAc(σAc)− p(σ)) log

(
p(σ)

π(σ)

)
.

Note that∑
η∈ΩϱN

πN(η) (fN(ηj,l,A)− fN(η)) log (fN(η))

=
∑
η∈ΩϱN

∏
ℓ̸=j,l p(η(l))

p⊗N (ΩϱN )

(
p(ηj,l,A(j))p(ηj,l,A(l))− p(η(l))p(η(j))

)
×

× log
N∏
r=1

p(η(r))

π(η(r))

=
∑

η(l),η(j)

p⊗(N−2)
(
Ω
η(j),η(l)
ϱN

)
p⊗N (ΩϱN )

(
p(ηj,l,A(j))p(ηj,l,A(l))− p(η(l))p(η(j))

)
×

× log
p(η(l))p(η(j))

π(η(l))π(η(j))
,
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where Ω
η(j),η(l)
ϱN is the event∑

ℓ̸=j,l

1(ηi(ℓ) = x) = (N − 2)(ϱ̃N)i,x , ∀i, x

and, for any fixed η(j), η(l), ϱ̃N denotes the density

(ϱ̃N)i,x =
N

N − 2
(ϱN)i,x −

1

N(N − 2)
(1(ηi(j) = x) + 1(ηi(l) = x)) .

Therefore, it is sufficient to show that

p⊗(N−2)
(
Ω
η(j),η(l)
ϱN

)
p⊗N (ΩϱN )

→ 1, (7.1.17)

for all i, j ∈ [N ], for all fixed values of η(j), η(l) ∈ Ω. We note that both ϱN , ϱ̃N

satisfy condition (7.1.3). Moreover, using ϱ̃N = (1+O(1/N))ϱN +O(1/N2) we see
that

zN =
√
N V

−1/2
1 (ϱN − π) , z̃N =

√
N V

−1/2
1 (ϱ̃N − π)

satisfy
⟨zN , zN⟩ − ⟨z̃N , z̃N⟩ → 0 , N → ∞,

for all fixed values of η(j), η(l). The desired claim (7.1.17) then follows from
Proposition 7.1.2.

7.2 Uniform in time propagation of chaos

The main goal in this section is to prove Theorem 6.4.1. We first introduce some
notation. Let λη ∈ P(Ω) be the empirical measure λη := 1

N

∑N
i=1 δη(i), where η :=

(η(1), . . . , η(N)) ∈ ΩN . We consider the Wasserstein distance on P(Ω) associated
to the Hamming distance on Ω:

W (p, q) := inf
Γ∈Π(p,q)

∑
σ,σ′∈Ω

Γ(σ, σ′)
n∑
i=1

1σi ̸=σ′
i
,

where p, q ∈ P(Ω), and Π(p, q) denotes the set of all couplings of p and q. We re-
mark that the total variation distance ∥p−q∥TV is defined as above with

∑n
i=1 1σi ̸=σ′

i

replaced by 1σ ̸=σ′ and thus one has

∥p− q∥TV ≤ W (p, q) ≤ n ∥p− q∥TV. (7.2.1)
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In contrast with the total variation distance, the distance W has a convenient
monotonicity along the evolution, see Lemma 7.2.8 and Remark 7.2.9 below. Re-
call the definition of the non-separation probability r(ν) from (6.1.2).

Theorem 7.2.1. Assume that µN ∈ P(ΩN) is p−chaotic and the measure ν is separating.
Then for all k ∈ N and any function of the form φk := φ1 ⊗ · · · ⊗ φk : Ωk 7→ R, where
φi : Ω 7→ R, and such that ∥φk∥∞ ≤ 1, the following inequality holds

|PkµN,t(φk)− p⊗kt (φk)| ≤
2k(k − 1)

N
+

k2n5

D(ν)N
(1− e−D(ν) t) + 2k µN [W (p, λχN

)] ,

where χN ∈ ΩN has distribution µN , and D(ν) := 1− r(ν).

The proof of Theorem 7.2.1 follows the steps of a general approach, the so
called “abstract theorem”, see [69, 106, 107], see also [37] for a review. In our
discrete setting many aspects of this approach take a simpler form, and no extra
assumption on the initial distribution is needed besides the p-chaoticity for some
p ∈ P(Ω). This general approach requires however several model-specific inputs.
Our main original contribution here consists in establishing the key estimates
stated in Theorem 7.2.2 and Theorem 7.2.5 below, where we prove new contrac-
tion inequalities for both the non linear and the linearized evolutions associated
to (6.1.1). Before proving Theorem 7.2.1, let us show that it implies Theorem 6.4.1.

7.2.1 Proof of Theorem 6.4.1

It is well known that
µN [W (p, λχN

)] → 0

if and only if µN is p-chaotic; see e.g. Lemma 3.34 in [37]. This, combined with the
estimate from Theorem 7.2.1, proves the uniform in time propagation of chaos
asserted in Theorem 6.4.1. To prove the quantitative statement (6.4.1), it suffices
to show that when µN = γN(p, ϱN), then

µN [W (p, λχN
)] ≤ C1√

N
,

where C1 is a constant depending on p and n. This statement follows from Corol-
lary 7.1.7 by noting that W (p, q) ≤ n∥p− q∥TV, for any p, q ∈ P(Ω), see (7.2.1). We
remark that as in Corollary 7.1.7 one has the same estimate with

√
N replaced by

N1/4 if instead of γN(p) we take γ(p, ϱN) with an arbitrary admissible ϱN satisfying
(7.1.3).

We turn to the proof of Theorem 7.2.1. We start with some preliminary facts.
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7.2.2 Wild sums and McKean trees

Given f, g : Ω → R, we adopt the notation

(f ◦ g)A :=
1

2
(fA ⊗ gAc + gA ⊗ fAc) , (7.2.2)

f ◦ g :=
∑
A⊂[n]

ν(A)(f ◦ g)A,

where fA(σA) :=
∑

σAc
f(σAσAc). Then the nonlinear equation (6.1.1) is given by

d

dt
pt = pt ◦ pt − pt. (7.2.3)

The convolution product defined by f ◦g is commutative and distributive, but not
associative. Following Wild’s original construction [133] we write the solution of
(7.2.3) with initial datum p0 = p, as

pt = e−t
∞∑
k=1

(1− e−t)k−1p(k), (7.2.4)

where the {p(k)}k≥1 are probability measures on Ω defined inductively by

p(1) = p, p(k) =
1

k − 1

k−1∑
j=1

p(j) ◦ p(k−j) , k ≥ 2. (7.2.5)

The validity of (7.2.4) can be easily checked by direct inspection, see e.g. the ar-
gument after (7.2.32) below for a similar computation.

Moreover, following McKean [81], we may express p(k) as a weighted sum
over rooted binary trees γ with k leaves. We now recall the details of this con-
struction, and refer the reader to [30] for further background. Let Γ(k) denote the
set of rooted binary trees with k leaves and call αk(γ), γ ∈ Γ(k), the probability
over Γ(k) obtained by the following procedure. Γ(1) = {γ1} is just the empty tree
with only the root with α1(γ1) = 1, and Γ(2) = {γ2} where γ2 is the unique tree ob-
tained by adding two children to the root, with α2(γ2) = 1. Then, recursively, for
any γk−1 ∈ Γ(k−1), consider all possible trees γik ∈ Γ(k), i = 1, . . . , k−1, obtained
by adding two children to the i-th leaf of γk−1, and set αk(γik) =

1
k−1

αk−1(γk−1) for
each one of them. This defines the weights αk(γ) for any γ ∈ Γ(k) and one checks,
recursively, that

∑
γ∈Γ(k) αk(γ) = 1 for all k ≥ 1 and that for all k ≥ 2,

αk(γ) =
1

k − 1
αj(γl)αk−j(γr), (7.2.6)

where γl and γr denote respectively the subtree of γ rooted at the left child of the
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p p p p

p ◦ p p ◦ p

(p ◦ p) ◦ (p ◦ p)

p p

p ◦ p p

p(p ◦ p) ◦ p

((p ◦ p) ◦ p) ◦ p

Figure 7.2.1: Two possible trees γ, γ′ ∈ Γ(4), and the corresponding distributions
Cγ(p) = (p ◦ p) ◦ (p ◦ p) and Cγ′(p) = ((p ◦ p) ◦ p) ◦ p.

root and the subtree of γ rooted at the right child of the root, while j denotes the
number of leaves in γl. Then, by induction over k it follows that for all k ∈ N,

p(k) =
∑
γ∈Γ(k)

αk(γ)Cγ(p), (7.2.7)

where Cγ(p) ∈ P(Ω) is described as follows. Each internal node of γ represents a
collision and the tree γ describes the collision history. Then Cγ(p) represents the
distribution obtained at the root after all collisions from γ have been performed,
starting with the distribution p at each leaf of γ.

For example, if k = 3, there are only two trees γ, γ′ ∈ Γ(3), with α3(γ) =

α3(γ
′) = 1/2 and

Cγ(p) = (p ◦ p) ◦ p = p ◦ (p ◦ p) = Cγ′(p). (7.2.8)

We refer to Figure 7.2.1 for two examples of Cγ(p) for γ ∈ Γ(4).

Since each collision is of the form q ◦ q′ for some q, q′ ∈ P(Ω) and since by
(7.2.2) one has

p ◦ q =
∑
A⊂[n]

ν̄(A) pA ⊗ qAc ,

where ν̄(A) = 1
2
(ν(A) + ν(Ac)), one can write the following expansion for the

resulting measure at the root:

Cγ(p) =
∑

A⃗∈Vk−1
n

ν(A⃗)CA⃗
γ (p), (7.2.9)

where Vn is the set of subsets of [n], so that A⃗ ∈ Vk−1
n represents a pattern A⃗ =
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(A1, . . . , Ak−1),

ν(A⃗) =
k−1∏
i=1

ν̄(Ai) (7.2.10)

and CA⃗
γ (p) ∈ P(Ω) is the distribution computed as follows. Each internal node vi,

i = 1, . . . , k − 1, in γ (in some fixed order) is associated with the set Ai, and we
attach the mark Ai to the edge connecting vi to its left child and the mark Aci to
the edge connecting vi to its right child in γ. In this way we obtain a tree γ with
marks on all its edges. Let di denote the depth of the i-th leaf of γ (e.g. counting
from the leftmost leaf), and consider pVi(A⃗), the marginal of the measure p on the
subset

Vi(A⃗) := ∩dij=1A
i
j, (7.2.11)

where Ai1, . . . , Aidi are the marks encountered along the edges of the unique path
from the root to the i-th leaf. Then CA⃗

γ (p) is given by

CA⃗
γ (p) = pV1(A⃗) ⊗ · · · ⊗ pVk(A⃗). (7.2.12)

Note that some of the Vi(A⃗) may be empty. However, they form a partition of [n],
namely Vi(A⃗) ∩ Vj(A⃗) = ∅ for i ̸= j and ∪ki=1Vi(A⃗) = [n], which can be seen as the
result of a fragmentation process

[n] → (A1, A
c
1) → (A1 ∩ A2, A1 ∩ Ac2, Ac1) → · · · → (V1(A⃗), · · · , Vk(A⃗)).

As an example, in the case (7.2.8) we have A⃗ = (A1, A2), and

(p ◦ p) ◦ p =
∑

A1,A2⊂[n]

ν̄(A1)ν̄(A2)pA1∩A2 ⊗ pA1∩Ac
2
⊗ pAc

1
.

The proof of (7.2.7)-(7.2.9) can be easily done by induction, by splitting the tree
γ ∈ Γ(k) into the left and right subtrees γl, γr and using the relation (7.2.6), see
the proof of (7.2.34) below for a closely related explicit computation.

In conclusion, from (7.2.4), (7.2.7) and (7.2.9) we obtain the following repre-
sentation of the distribution pt as a convex combination of distributions CA⃗

γ (p):

pt =
∞∑
k=1

βt(k)
∑
γ∈Γ(k)

αk(γ)
∑

A⃗∈Vk−1
n

ν(A⃗)CA⃗
γ (p), (7.2.13)

where βt(k) := e−t(1 − e−t)k−1 is a probability on N for each t ≥ 0, αk(γ) is a
probability on Γ(k) for all k, and ν(A⃗) is a probability on Vk−1

n for all k.

170



7.2. UNIFORM IN TIME PROPAGATION OF CHAOS

7.2.3 Contractive estimates for the nonlinear semigroup

It is convenient to use the notation St(p) = pt for the solution of (7.2.3) with initial
datum p0 = p, so that St+s = StSs = SsSt, for all s, t ≥ 0. This defines the
nonlinear semigroup {St, t ≥ 0}. We show a contraction property for St when
the two initial distributions p, q have the same marginals, that is pi = qi for all
i ∈ [n].

Theorem 7.2.2. For any probability measure p, q ∈ P(Ω) such that pi = qi for all
i ∈ [n], all t ≥ 0,

∥St(p)− St(q)∥TV ≤ 1
2
n(n− 1) ∥p− q∥TV e

−D(ν)t (7.2.14)

where D(ν) = 1− r(ν).

Proof. From (7.2.13) we write

St(p)− St(q) =
∞∑
k=1

βt(k)s
(k), (7.2.15)

where

s(k) =
∑
γ∈Γ(k)

αk(γ)
∑

A⃗∈Vk−1
n

ν(A⃗)
[
CA⃗
γ (p)− CA⃗

γ (q)
]
. (7.2.16)

We introduce some further notation in order to handle more explicitly the dif-
ference of probability measures CA⃗

γ (p) − CA⃗
γ (q). For any given γ ∈ Γ(k), and

A⃗ ∈ Vk−1
n , φ : Ω 7→ R, we may write

⟨CA⃗
γ (p)− CA⃗

γ (q), φ⟩

=
∑

(x,y)∈Ωk×Ωk

µ(x, y)
∑
z∈Ω

φ(z)
(
1(z = u(y, A⃗))− 1(z = u(x, A⃗))

)
, (7.2.17)

where x = (xi, i = 1, . . . , k) ∈ Ωk stands for the configurations sampled with
q⊗k over the leaves of γ, y = (yi, i = 1, . . . , k) ∈ Ωk stands for the configurations
sampled with p⊗k over the leaves of γ, and µ(x, y) =

∏k
i=1 µ1(x

i, yi) denotes a
coupling of these two product measures, such that for every i = 1, . . . , k, µ1(x

i, yi)

is the optimal coupling of (q, p):

∥p− q∥TV =
∑

(x,y)∈Ωk×Ωk

µ(x, y)1(xi ̸= yi)

=
∑

xi,yi∈Ω

µ1(x
i, yi)1(xi ̸= yi). (7.2.18)
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The notation u(x, A⃗) in (7.2.17) is defined as follows. Note that xi ∈ Ω is a vector
xi = (xi1, . . . , x

i
n), for every i, with xiℓ ∈ {0, . . . , qℓ}, and write xiA = (xiℓ)ℓ∈A for

the content of xi on A ⊂ [n]. With this notation, given x ∈ Ωk and A⃗ ∈ Vk−1
n ,

u(x, A⃗) ∈ Ω is defined as the unique configuration such that

u(x, A⃗)Vi(A⃗) = xi
Vi(A⃗)

for every i = 1, . . . , k. In words, for each i ∈ [k], the content of the configuration
u(x, A⃗) on the set Vi(A⃗) ⊂ V is taken from the configuration xi at the i-th leaf. The
validity of (7.2.17) is thus a consequence of (7.2.12).

Let ∂γ denote the set of leaves of γ. Notice that

1(z = u(x, A⃗)) =
∏
i∈∂γ

1(zVi(A⃗) = xi
Vi(A⃗)

)

Let F = F (A⃗, γ) ⊂ ∂γ denote the set of leaves i ∈ ∂γ such that |Vi(A⃗)| > 1, and
write

1(z = u(x, A⃗)) = wF (x, z, A⃗)wF c(x, z, A⃗) ,

where for any S ⊂ ∂γ we write

wS(x, z, A⃗) =
∏
i∈S

1(zVi(A⃗) = xi
Vi(A⃗)

).

We writeX = (X i)i=1,...,k and Y = (Y i)i=1,...,k for the random variables with distri-
bution q⊗k and p⊗k respectively. Using the fact that µ is a product over the leaves,
and the fact that p, q have the same marginals, for fixed z ∈ Ω we have

µ[wF c(X, z, A⃗)] =
∑
(x,y)

µ(x, y)
∏
i∈F c

1(zVi(A⃗) = xi
Vi(A⃗)

)

=
∑
(x,y)

µ(x, y)
∏
i∈F c

1(zVi(A⃗) = yi
Vi(A⃗)

)

= µ[wF c(Y, z, A⃗)], (7.2.19)

and

µ[w∂γ(Y, z, A⃗)] =
∑
(x,y)

µ(x, y)1(z = u(y, A⃗))

= µ[wF c(X, z, A⃗)]µ[wF (Y, z, A⃗)]. (7.2.20)
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With this notation we rewrite (7.2.17) as

⟨CA⃗
γ (p)− CA⃗

γ (q), φ⟩ =
∑
z∈Ω

φ(z)
[
µ[w∂γ(Y, z, A⃗)]− µ[w∂γ(X, z, A⃗)

]
=
∑
z∈Ω

φ(z)µ[wF c(X, z, A⃗)]µ
[
wF (Y, z, A⃗)− wF (X, z, A⃗)

]
.

Note that wF (Y, z, A⃗)] ̸= wF (X, z, A⃗) implies that there exists i ∈ F such that
X i ̸= Y i. Therefore, from (7.2.18) we see that∑

z∈Ω

µ[wF c(X, z, A⃗)]
∣∣∣µ [wF (Y, z, A⃗)]− wF (X, z, A⃗)

]∣∣∣
≤
∑
i∈F

∑
z∈Ω

µ[wF c(X, z, A⃗)]µ
[
|wF (Y, z, A⃗)− wF (X, z, A⃗)|1(X i ̸= Y i)

]
≤ 2

∑
i∈F

µ
[
X i ̸= Y i

]
= 2|F | ∥p− q∥TV.

Therefore, we have shown that (7.2.16) satisfies

|⟨s(k), φ⟩| ≤ 2 ∥φ∥∞ ∥p− q∥TV

∑
γ∈Γ(k)

αk(γ)
∑

A⃗∈Vk−1
n

ν(A⃗) |F |. (7.2.21)

To estimate (7.2.21), let us call Aj = Aj(γ) the set of A⃗ ∈ Vk−1
n such that |Vj(A⃗)| ≥

2, and let A = ∪kj=1Aj . We have

∑
A⃗∈Vk−1

n

ν(A⃗) |F | =
k∑
j=1

∑
A⃗∈Vk−1

n

ν(A⃗)1(j ∈ F )

=
k∑
j=1

∑
A⃗∈Vk−1

n

ν(A⃗)1(|Vj(A⃗)| ≥ 2)

=
k∑
j=1

ν(Aj).

To estimate the probability ν(Aj), observe that the event Aj implies that there
exists i1 < i2 ∈ [n] such that {i1, i2} ∈ Vj(A⃗). Moreover, recalling (7.2.11),

ν
(
{i1, i2} ∈ Vj(A⃗)

)
= ν

(
{i1, i2} ∈ ∩djl=1A

j
l

)
= ν̄ ({i1, i2} ∈ A)dj ≤

(
r(ν)

2

)dj
,

where we use the fact that for any i1 < i2, the probability under ν̄ that {i1, i2} ∈ A

is bounded by r(ν)/2. Indeed, conditionally on not being separated the probabil-
ity that both i1, i2 belong to A under ν̄ is 1/2 by symmetry. A union bound then
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shows that

ν(Aj) ≤ 1
2
n(n− 1)

(
r(ν)

2

)dj
.

In conclusion, if we define

ω(γ) :=
k∑
j=1

(
r(ν)

2

)dj
, (7.2.22)

we obtain, for all k ∈ N,

|⟨s(k), φ⟩| ≤ n(n− 1) ∥φ∥∞ ∥p− q∥TV

∑
γ∈Γ(k)

αk(γ)ω(γ). (7.2.23)

From [30, Lemma 1.4], one has, for all ε > 0,∑
γ∈Γ(k)

αk(γ)ω(γ) ≤ Bεe
−aε log k.

with aε = (1 − r(ν))/(1 + ε) and Bε = Bε(r(ν), ε). One could use this estimate
to obtain an almost optimal decay rate aε. However, here we obtain the optimal
exponential decay rate by computing the expectation of ω(γ).

Lemma 7.2.3. For any t ≥ 0,

∞∑
k=1

βt(k)
∑
γ∈Γ(k)

αk(γ)ω(γ) = e−(1−r(ν))t. (7.2.24)

Assuming the validity of (7.2.24), and using ∥µ−µ′∥TV = 1
2
maxf : ∥f∥∞≤1 |µ(f)−

µ′(f)|, from (7.2.15) and (7.2.23) we obtain

∥St(p)− St(q)∥TV ≤ 1
2
n(n− 1) ∥p− q∥TV e

−(1−r(ν))t, (7.2.25)

which concludes the proof of Theorem 7.2.2.

It remains to prove (7.2.24). For any γ ∈ ∪∞
k=1Γ(k), define Pt(γ) = βt(k)αk(γ),

where k is such that γ ∈ Γ(k). Notice that for any γ ∈ ∪∞
k=1Γ(k),

Pt(γ) = 1γ=∅ e
−t + 1γ ̸=∅

∫ t

0

e−sPt−s(γl)Pt−s(γr)ds, (7.2.26)

where ∅ denotes the empty tree with one leaf (given by the root), while for γ ̸= ∅
we write γl, γr for the left and right subtrees. Indeed, for γ = ∅ (7.2.26) is imme-
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diate, while for γ ̸= ∅, supposing γ ∈ Γ(k), and recalling (7.2.6) one has

Pt(γ) = e−t(1− e−t)k−1αk(γ)

= e−t
∫ t

0

e−(t−s)(1− e−(t−s))k−2(k − 1)αk(γ)ds

=

∫ t

0

e−se−2(t−s)(1− e−(t−s))k−2αj(γl)αk−j(γr)ds

=

∫ t

0

e−sPt−s(γl)Pt−s(γr)ds.

To prove Lemma 7.2.3, note that the left hand side of (7.2.24) is given by∑
γ

Pt(γ)ω(γ).

Using (7.2.26) and ω(∅) = 1, we see that

ζ(t) : =
∑
γ

Pt(γ)ω(γ)

= e−t +
r(ν)

2

∑
γ ̸=∅

∫ t

0

e−sPt−s(γl)Pt−s(γr)(ω(γl) + ω(γr))ds

= e−t + r(ν)
∑
γ

∫ t

0

e−sPt−s(γ)ω(γ)ds

= e−t + r(ν)

∫ t

0

e−sζ(t− s)ds.

Differentiating, and integrating by parts the resulting expression one finds ζ̇(t) =
−(1− r(ν))ζ(t). Since ζ(0) = 1 we obtain ζ(t) = e−(1−r(ν))t, t ≥ 0.

With a similar argument we obtain Theorem 6.6.2.

Proof of Theorem 6.6.2. The statement about the total variation distance is contained
in Theorem 7.2.2. To prove the statement (6.6.2) about the relative entropy, we ob-
serve that by (7.2.9), (7.2.13), and convexity of the relative entropy,

H(pt |π) ≤
∞∑
k=1

βt(k)
∑
γ∈Γ(k)

αk(γ)
∑

A⃗∈Vk−1
n

ν(A⃗)H
(
CA⃗
γ (p) |π

)
.

Since π is a product measure, using (7.2.12) we see that for any γ ∈ Γ(k),

H
(
CA⃗
γ (p) | π

)
=

k∑
j=1

H
(
pVj(A⃗) |πVj(A⃗)

)
=

∑
j:|Vj(A⃗)|>1

H
(
pVj(A⃗) | πVj(A⃗)

)
,
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where use the fact that if |Vj(A⃗)| = 1 then H(pVj(A⃗) |πVj(A⃗)) = 0 since p, π have the
same marginals. Furthermore, the monotonicity property of entropy implies that

H
(
pVj(A⃗) |πVj(A⃗)

)
≤ H(p | π).

Therefore, repeating the argument in (7.2.23)-(7.2.24) we obtain

H(pt |π) ≤ 1
2
n(n− 1)H(p | π) e−(1−r(ν)) t.

Remark 7.2.4. The constant D(ν) = 1 − r(ν) in Theorem 6.6.2 is optimal in the
sense that, for any recombination measure ν, there are initial distributions p with
the same marginals as π such that

lim inf
t→∞

1

t
log ∥pt − π∥TV ≥ −D(ν). (7.2.27)

To see this, pick i1, i2 ∈ [n] such that r(ν) = Prν (A does not separate i1 and i2),
see (6.1.2). For simplicity, take Ω = {0, 1}n, π uniform over Ω and p = 1

2
δ0 +

1
2
δ1.

Consider the event {σi1 = σi2}, and let Bt denote the event that i1 and i2 are not
separated by the fragmentation process at time t. From (7.2.13) we write pt as an
average over the fragmentation process and note that conditionally on the event
Bt one has pt(σi1 = σi2 | Bt) = 1, while conditionally on the event Bct one has
pt(σi1 = σi2 | Bct ) = 1/2. Moreover π(σi1 = σi2) = 1/2 and therefore

∥pt − π∥TV ≥ pt(σi1 = σi2)− π(σi1 = σi2) = P(Bt) + 1
2
P(Bct )− 1

2
= 1

2
P(Bt).

On the other hand, with the notation from (7.2.22) and (7.2.24),

P(Bt) =
∑
γ

Pt(γ)ω(γ) = e−D(ν) t,

which implies (7.2.27).

7.2.4 Contraction for the linearized equation

Consider the symmetric bilinear form Q̂(f, g) defined by

Q̂(f, g)(η) =
1

2

∑
A,σ

ν(A)
(
f(σAηAc)g(ηAσAc) + g(σAηAc)f(ηAσAc)

− f(σ)g(η)− g(σ)f(η)
)
,
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where η ∈ Ω, f, g : Ω 7→ R, and the sum extends to all A ⊂ [n] and σ ∈ Ω. If
p ∈ P(Ω), then Q̂(p, p) = Q(p), where

Q(p) =
∑
A

ν(A)(pA ⊗ pAc − p)

is the generator associated to (6.1.1), that is the non linear semigroup {St, t ≥ 0}
satisfies S0(p) = p and ∂tSt(p) = Q(St(p)), t ≥ 0. Next, consider the differential
equation

∂tht = 2Q̂(qt, ht), h0 = h, (7.2.28)

where qt = St(q) for some fixed q ∈ P(Ω). Note that it is linear in h. We write its
unique solution as

ht = S̄t(q)(h),

that is S̄t(q)(h) verifies ∂tS̄t(q)(h) = 2Q̂(qt, S̄t(q)(h)), S̄0(q)(h) = h and

S̄t(q)(S̄s(q)(h)) = S̄s(q)(S̄t(q)(h)) = S̄t+s(q)(h).

Our main result concerning the linearized equation reads as follows.

Theorem 7.2.5. For all p, q ∈ P(Ω) such that pi = qi for all i ∈ [n], and φ : Ω 7→ R, for
all ε > 0,

⟨S̄t(q)(p− q), φ⟩ ≤ 1
2
n(n− 1)∥φ∥∞e−D(ν) t ∥p− q∥TV, (7.2.29)

⟨St(p)− St(q)− S̄t(q)(p− q), φ⟩

≤ 1
16
n3(n− 1)(n− 2)∥φ∥∞e−D(ν) t ∥p− q∥2TV (7.2.30)

where D(ν) = 1− r(ν).

The proof of Theorem 7.2.5 requires several steps. We start by giving an ex-
plicit representation of the solution S̄t(q)(p− q) to (7.2.28) when h = p− q. To this
end let us define, for any k ≥ 2, γ ∈ Γ(k), the distribution Cγ,p(q) as the measure
defined in (7.2.9) with the only difference that we take the distribution p instead
of q at the rightmost leaf of γ, all other leafs remaining with the distribution q.
Formally,

Cγ,p(q) =
∑

A⃗∈Vk−1
n

ν(A⃗)CA⃗
γ,p(q), CA⃗

γ,p(q) = qV1(A⃗) ⊗ · · · ⊗ qVk−1(A⃗)
⊗ pVk(A⃗).

In what follows we denote by dr(γ) the depth of the rightmost leaf in γ.
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Lemma 7.2.6. For all p, q ∈ P(Ω), t ≥ 0,

S̄t(q)(p− q) =
∞∑
k=1

βt(k)
∑
γ∈Γ(k)

αk(γ)(Cγ,p(q)− Cγ(q))2
dr(γ). (7.2.31)

Proof. Fix p, q ∈ P(Ω). If ht = S̄t(q)(p), then

∂t
∑
σ

ht(σ) = 2
∑
σ

Q̂(qt, ht)(σ) = 0.

Thus
∑

σ ht(σ) = 1, and 2Q̂(qt, ht) = 2qt ◦ ht − qt − ht. Therefore ht satisfies

ht = qe−t +

∫ t

0

e−(t−s) (2qs ◦ hs − qs) ds.

By linearity, S̄t(q)(p− q) = S̄t(q)(p)− S̄t(q)(q) satisfies S̄t(q)(p− q) = ut−vt, where

ut = pe−t +

∫ t

0

e−(t−s)2qs ◦ usds,

vt = qe−t +

∫ t

0

e−(t−s)2qs ◦ vsds. (7.2.32)

Wild’s construction then shows that

ut = e−t
∞∑
k=1

(1− e−t)k−1u(k), vt = e−t
∞∑
k=1

(1− e−t)k−1v(k), (7.2.33)

where u(1) = p, v(1) = q, and for k ≥ 2,

u(k) =
1

k − 1

k−1∑
j=1

2q(j) ◦ u(k−j) , v(k) =
1

k − 1

k−1∑
j=1

2q(j) ◦ v(k−j).

respectively, and q(j) is defined by (7.2.5) with p replaced by q. To check that this
representation of the solution holds, let ut be defined by (7.2.33). Then

∫ t

0

e−(t−s)2qs ◦ usds =
∞∑

ℓ,k=1

∫ t

0

βs(k)βs(ℓ)e
−(t−s)2q(ℓ) ◦ u(k)ds

=
∑
ℓ<k

∫ t

0

e−2s(1− e−s)k−2e−(t−s)2q(ℓ) ◦ u(k−ℓ)ds

=
∑
k≥2

∫ t

0

(k − 1)e−s(1− e−s)k−2e−tu(k)ds

=
∑
k≥2

(1− e−t)k−1e−tu(k) = ut − e−tu(1) = ut − e−tp.
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Thus ut solves (7.2.32). The same applies to vt. This proves (7.2.33).

Next, we prove that

u(k) =
∑
γ∈Γ(k)

αk(γ)Cγ,p(q)2
dr(γ) , v(k) =

∑
γ∈Γ(k)

αk(γ)Cγ(q)2
dr(γ) (7.2.34)

for all k ≥ 2. Let us prove this by using induction over k. If k = 2 then u(2) = 2q◦p
and thus the claimed identity holds. If the formula holds for j ≤ k−1, then using
(7.2.9) and (7.2.6),

u(k) =
1

k − 1

k−1∑
j=1

2q(j) ◦ u(k−j)

=
1

k − 1

k−1∑
j=1

∑
γl∈Γ(j)

γr∈Γ(k−j)

αj(γl)αk−j(γr)Cγl(q) ◦ Cγr,p(q)2dr(γr)+1

=
∑
γ∈Γ(k)

αk(γ)Cγ,p(q)2
dr(γ).

This proves the identity (7.2.34) for u, and the same argument proves the one for
v. The identities (7.2.33) and (7.2.34) imply (7.2.31).

Next, for any k ≥ 2, γ ∈ Γ(k), j ∈ [k], we define

Cγ,p,j(q) =
∑

A⃗∈Vk−1
n

ν(A⃗)CA⃗
γ,p,j(q) , CA⃗

γ,p,j(q) := pVj(A⃗) ⊗ℓ ̸=j qVℓ(A⃗),

which denotes the distribution obtained from the tree γ ∈ Γ(k) when all leaves
are given the distribution q except for the j-th leaf which takes the distribution p.
When j = k, that is j is the rightmost leaf, then we have Cγ,p,k(q) = Cγ,p(q).

Lemma 7.2.7. For any k ≥ 2, for all p, q:

∑
γ∈Γ(k)

αk(γ)2
drCγ,p(q) =

k∑
j=1

∑
γ∈Γ(k)

αk(γ)Cγ,p,j(q) . (7.2.35)

Proof. By symmetry, it holds for k = 2, since in this case (7.2.35) says 2q ◦ p =
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q ◦ p+ p ◦ q. Assume that (7.2.35) holds for all j ≤ k − 1. Then

∑
γ∈Γ(k)

αk(γ)2
dr(γ)Cγ,p(q) =

2

k − 1

k−1∑
j=1

∑
γ∈Γ(j)

αj(γ)Cγ(q)

◦

 ∑
γ′∈Γ(k−j)

αk−j(γ
′)2dr(γ

′)Cγ′,p(q)


=

2

k − 1

k−1∑
j=1

∑
γ∈Γ(j)

αj(γ)Cγ(q)

◦

k−j∑
i=1

∑
γ′∈Γ(k−j)

αk−j(γ
′)Cγ′,p,i(q)


= 2

∑
γ∈Γ(k)

αk(γ)
k∑

i=j(γ)+1

Cγ,p,i(q), (7.2.36)

where j(γ) is the number of leaves in the left subtree of γ, and we have used
(7.2.6). By symmetry,

∑
γ∈Γ(k)

αk(γ)
k∑

i=j(γ)+1

Cγ,p,i(q) =
∑
γ∈Γ(k)

αk(γ)

j(γ)∑
i=1

Cγ,p,i(q) .

Therefore,

2
∑
γ∈Γ(k)

αk(γ)
k∑

i=j(γ)+1

Cγ,p,i(q) =
∑
γ∈Γ(k)

αk(γ)

j(γ)∑
i=1

Cγ,p,i(q)

+
∑
γ∈Γ(k)

αk(γ)
k∑

i=j(γ)+1

Cγ,p,i(q)

=
k∑
i=1

∑
γ∈Γ(k)

αk(γ)Cγ,p,i(q). (7.2.37)

The desired identity follows from (7.2.36) and (7.2.37).

We can now turn to the proof Theorem of 7.2.5.

Proof of (7.2.29). From Lemma 7.2.6 and Lemma 7.2.7, we write

S̄t(q)(p− q) =
∞∑
k=1

βt(k) s̄
(k), (7.2.38)
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where

s̄(k) =
k∑
j=1

∑
γ∈Γ(k)

αk(γ)
∑

A⃗∈Vk−1
n

ν(A⃗)
[
CA⃗
γ,p,j(q)− CA⃗

γ (q)
]
.

Let Aj denote the set of A⃗ ∈ Vk−1
n such that |Vj(A⃗)| ≥ 2. Since p, q have the same

marginals, arguing as in the proof of Theorem 7.2.2, we obtain, or all φ : Ω 7→ R,

|⟨CA⃗
γ,p,j(q)− CA⃗

γ (q), φ⟩| ≤ 2∥φ∥∞∥p− q∥TV 1(Aj) .

Therefore, as in (7.2.23) we obtain

|⟨s̄(k), φ⟩| ≤ n(n− 1) ∥φ∥∞ ∥p− q∥TV

∑
γ∈Γ(k)

αk(γ)ω(γ).

From (7.2.38) and Lemma 7.2.3 we conclude the proof of (7.2.29).

Proof of (7.2.30). The proof of (7.2.30) requires a bit more work. Let us define

rt := St(p)− St(q)− S̄t(q)(p− q).

From Lemma 7.2.6 and Lemma 7.2.7 we see that

rt =
∞∑
k=1

βt(k)r
(k),

where

r(k) =
∑
γ∈Γ(k)

αk(γ)

[
Cγ(p)− Cγ(q)−

k∑
i=1

(Cγ,p,i(q)− Cγ(q))

]
,

We are going to prove that for any φ : Ω 7→ R,

⟨r(k), φ⟩ ≤ 1
16
n3(n− 1)(n− 2)∥φ∥∞∥p− q∥2TV

∑
γ∈Γ(k)

αk(γ)ω(γ). (7.2.39)

By the argument in (7.2.25) and Lemma 7.2.3 this is sufficient to end the proof.
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With the notation from the proof of Theorem 7.2.2 we write

⟨r(k), φ⟩ =
∑
γ∈Γ(k)

αk(γ)
∑

(x,y)∈Ωk×Ωk

∑
A⃗∈Vk−1

n

µ(x, y)ν(A⃗)× (7.2.40)

×
∑
z∈Ω

φ(z)

(
1(z = u(y, A⃗))− 1(z = u(x, A⃗))

−
k∑
i=1

(
1(z = u(x, y, A⃗, i)− 1(z = u(x, A⃗))

))
,

where we call u(x, y, A⃗, j) the unique configuration in Ω such that

u(x, y, A⃗, j)Vj(A⃗) = yj
Vj(A⃗)

, u(x, y, A⃗, j)Vi(A⃗) = xi
Vi(A⃗)

, for every i ̸= j.

That is, u(x, y, A⃗, j) coincides with u(x, A⃗) except that on Vj(A⃗) its content (if not
empty) is taken from yj . It follows that

1(z = u(x, A⃗)) =
∏
i∈∂γ

1(zVi(A⃗) = xi
Vi(A⃗)

) ,

1(z = u(x, y, A⃗, j)) = 1(zVj(A⃗) = yj
Vj(A⃗)

)
∏

i∈∂γ: i ̸=j

1(zVi(A⃗) = xi
Vi(A⃗)

) ,

where ∂γ denotes the set of leaves of γ. As in the proof of Theorem 7.2.2, we let
F = F (A⃗, γ) ⊂ ∂γ denote the set of leaves i ∈ ∂γ such that |Vi(A⃗)| > 1, and recall
that since µ is a product over the leaves, and p, q have the same marginals one has
the identities (7.2.19) and (7.2.20). With this notation we rewrite (7.2.40) as

⟨r(k), φ⟩ =
∑
γ∈Γ(k)

αk(γ)
∑

A⃗∈Vk−1
n

ν(A⃗)
∑
z∈Ω

φ(z)× (7.2.41)

×

[
µ[w∂γ(Y, z, A⃗)]− µ[w∂γ(X, z, A⃗)]

−
k∑
i=1

(
µ[w∂γ(X(i, y), z, A⃗)]− µ[w∂γ(X, z, A⃗)]

)]
,

where X(i, y) ∈ Ωk denotes the vector whose i-th component is Y i while all other
components are Xj . Moreover, for a given choice of γ, A⃗, z, the square bracket in
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(7.2.41) is also equal to

µ[w∂γ(Y, z, A⃗)]− µ[w∂γ(X, z, A⃗)] (7.2.42)

−
k∑
i=1

(
µ[w∂γ(X(i, y), z, A⃗)]− µ[w∂γ(X, z, A⃗)]

)
= µ[wF c(X, z, A⃗)] µ

[
wF (Y, z, A⃗)− wF (X, z, A⃗)

−
∑
i∈F

(
wF (X(i, y), z, A⃗)− wF (X, z, A⃗)

)]
.

In particular, if γ, A⃗ are such that F = F (γ, A⃗) = ∅, then (7.2.42) vanishes. More-
over, (7.2.42) vanishes also when F is a single leaf. Indeed, if e.g. F = {j}, then

wF (Y, z, A⃗)− wF (X, z, A⃗)−
∑
i∈F

(
wF (X(i, y), z, A⃗)− wF (X, z, A⃗)

)
= wF (Y, z, A⃗)− wF (X(j, y), z, A⃗) = 0.

Thus, we may restrict to the case of |F | > 1. Therefore,

|⟨r(k), φ⟩| ≤ ∥φ∥∞
∑
γ∈Γ(k)

αk(γ)
∑

A⃗∈Vk−1
n

ν(A⃗)1(|F | > 1)µ
[
Γ(γ, A⃗,X, Y )

]
,

where we use the notation

Γ(γ, A⃗,X, Y ) =
∑
z∈Ω

wF c(X, z, A⃗)

∣∣∣∣∣wF (Y, z, A⃗)− wF (X, z, A⃗)

−
∑
i∈F

(
wF (X(i, y), z, A⃗)− wF (X, z, A⃗)

) ∣∣∣∣∣.
Clearly, if X = Y the expression within absolute values above vanishes. More-
over, the same applies if (X, Y ) is such that X i = Y i for all i ∈ F except one leaf
j ∈ F where Xj ̸= Y j . Indeed, in this case X(i, y) = X for all i ∈ F , i ̸= j, and
X(j, y) = Y . Given X, Y we write E = E(X, Y ) ⊂ F for the set of leaves i ∈ F
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where X i ̸= Y i. Then

Γ(γ, A⃗,X, Y ) =
∑
z

wEc∪F c(X, z, A⃗)

∣∣∣∣∣wE(Y, z, A⃗)− wE(X, z, A⃗)

−
∑
i∈E

(
wE(X(i, y), z, A⃗)− wE(X, z, A⃗)

) ∣∣∣∣∣
≤
∑
z

wEc(X, z, A⃗)

∣∣∣∣∣wE(Y, z, A⃗)−∑
i∈E

wE(X(i, y), z, A⃗)

∣∣∣∣∣1(|E| > 1)

+ (|E| − 1)1(|E| > 1)

≤ (|E|+ 1)1(|E| > 1) + (|E| − 1)1(|E| > 1)

= 2|E|1(|E| > 1)

≤ 2|F |1(|E| > 1).

Next, we use |F | ≤ n/2, since ∪i∈FVi(A⃗) ⊂ [n] and |Vi(A⃗)| ≥ 2 for all i ∈ F .
Therefore,

|⟨r(k), φ⟩| ≤ n∥φ∥∞
∑
γ∈Γ(k)

αk(γ)ν(|F | > 1)µ [|E| > 1] .

Since µ is a product over leaves and on each leaf it satisfies (7.2.18), a union bound
over the set of pairs in F shows that

µ [|E| > 1] ≤ 1
2
|F |(|F | − 1)∥p− q∥2TV ≤ 1

8
n(n− 2) ∥p− q∥2TV.

Summarizing,

|⟨r(k), φ⟩| ≤ 1
8
n2(n− 2) ∥φ∥∞ ∥p− q∥2TV

∑
γ∈Γ(k)

αk(γ)ν(|F | > 1).

For a given tree γ, the argument in (7.2.23) shows that

ν(|F | > 1) ≤ ν(|F | ≥ 1) ≤ 1
2
n(n− 1)

k∑
i=1

(
r(ν)

2

)di(γ)
= 1

2
n(n− 1) ω(γ),

where we use the fact that the event F ≥ 1 coincides with ∪ki=1Ai from the proof of
(7.2.23). This ends the proof of (7.2.39), which completes the proof of (7.2.30).
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7.2.5 Monotonicity of W along the nonlinear evolution

Before proving Theorem 7.2.1, we show that the distance W appearing in that
statement is monotone along the semigroup. We refer to [126] for a similar ar-
gument in the case of kinetic models. It will be convenient to work with a more
symmetric version of (7.2.9). Since p ◦ q =

∑
A ν̄(A)(p ◦ q)A we may rewrite (7.2.9)

as

Cγ(p) =
∑

A⃗∈Vk−1
n

ν(A⃗)ĈA⃗
γ (p) (7.2.43)

where ν(A⃗) is defined as in (7.2.10), and ĈA⃗
γ (p) represents the symmetric convo-

lutions associated to the sampled sets (A1, . . . , Ak−1). In other words, ĈA⃗
γ (p) is

defined recursively by the following relations. If γ ∈ Γ(k) then, decomposing γ
into the left and right subtrees γl, γr as in (7.2.6), one has

ĈA⃗
γ (p) = (ĈA⃗l

γl
(p) ◦ ĈA⃗r

γr (p))A1

whereA1 is the set attached to the root, and A⃗l := (A2, . . . , Aj), A⃗r := (Aj+1, . . . , Ak−1)

are the sets associated to the left and right subtrees respectively. For example, in
the case where Cγ(p) = ((p ◦ p) ◦ p) ◦ p as in Figure 7.2.1, one has

Cγ(p) =
∑

A1,A2,A3⊂[n]

ν̄(A1)ν̄(A2)ν̄(A3)Ĉ
A1,A2,A3
γ (p)

where ĈA1,A2,A3
γ (p) = (((p ◦ p)A3 ◦ p)A2)◦ p)A1 . Therefore, as in (7.2.13) one obtains

the decomposition

pt =
∞∑
k=1

βt(k)
∑
γ∈Γ(k)

αk(γ)
∑

A⃗∈Vk−1
n

ν(A⃗) ĈA⃗
γ (p). (7.2.44)

Lemma 7.2.8. For any p, q ∈ P(Ω), any k ∈ N, any γ ∈ Γ(k), and any A⃗ ∈ Vk−1
n , one

has

W
(
ĈA⃗
γ (p), Ĉ

A⃗
γ (q)

)
≤ W (p, q) . (7.2.45)

In particular, W (St(p), St(q)) ≤ W (p, q) for any t ≥ 0.

Proof. First we show

W ((p1 ◦ p2), (q1 ◦ q2)) ≤ 1
2
W (p1, q1) +

1
2
W (p2, q2) (7.2.46)

for all p1, p2, q1, q2 ∈ P(Ω). For a fixed A ⊂ [n] and configurations x1, x2 ∈ Ω we
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define

Πx1,x2,A(z) :=
1
2
(1(zA = x1,A, zAc = x2,Ac) + 1(zA = x2,A, zAc = x1,Ac)) , z ∈ Ω.

Now we choose {X1, Y1}, {X2, Y2} random variables such that

• E [d (X1, Y1)] = W (p1, q1),E [d (X2, Y2)] = W (p2, q2).

• Xi is distributed with pi and Yi is distributed with qi, i = 1, 2.

• {X1, Y1} and {X2, Y2} are independent.

Note that

E [ΠX1,X2,A] = (p1 ◦ p2)A .

Now, given x1, x2, y1, y2 ∈ Ω and A ⊂ [n], we consider the following probability
measure

π(z1, z2) :=
1
2

(
1(z1,A = x1,A, z1,Ac = x2,Ac , z2,A = y1,A, z2,Ac = y2,Ac)

+ 1(z1,A = x2,A, z1,Ac = x1,Ac , z2,A = y2,A, z2,Ac = y1,Ac)
)
.

Note that this is a coupling of Πx1,x2,A and Πy1,y2,A. Therefeore

W (Πx1,x2,A,Πy1,y2,A) ≤
∑
z1,z2

π(z1, z2)d(z1, z2)

= 1
2
(d(x1,Ax2,Ac , y1,Ay2,Ac) + d(x2,Ax1,Ac , y2,Ay1,Ac))

= 1
2
(d(x1, y1) + d(x2, y2)) .

Moreover, by convexity

W ((p1 ◦ p2), (q1 ◦ q2)) ≤
∑
A⊂[n]

ν(A)W ((p1 ◦ p2)A, (q1 ◦ q2)A)

and, for each A ⊂ [n],

W ((p1 ◦ p2)A, (q1 ◦ q2)A) ≤ E [W (ΠX1,X2,A,ΠY1,Y2,A)] (7.2.47)

= 1
2
W (p1, q1) +

1
2
W (p2, q2).

Combining the last two inequalities we obtain (7.2.46).
We now prove (7.2.45) by induction over k ≥ 1. Clearly, k = 1 is trivial. The

case k = 2 follows by (7.2.47). Suppose that (7.2.45) holds for any j ≤ k − 1,
γ ∈ Γ(j), A⃗ ∈ Vj−1

n and let A1 be the set attached to the root of γ. If γ ∈ Γ(k) then

186



7.2. UNIFORM IN TIME PROPAGATION OF CHAOS

we decompose γ into the left and right subtrees γl, γr as in (7.2.6), so that

ĈA⃗
γ (p) = (ĈA⃗l

γl
(p) ◦ ĈA⃗r

γr (p))A1

ĈA⃗
γ (q) = (ĈA⃗l

γl
(q) ◦ ĈA⃗r

γr (q))A1 .

where A⃗l := (A2, . . . , Aj) and A⃗r := (Aj+1, . . . , Ak−1) , and j is the number of
leaves of γl. Then, using (7.2.47) again and the inductive hypothesis we have

W (ĈA⃗
γ (p), Ĉ

A⃗
γ (q)) = W ((ĈA⃗l

γl
(p) ◦ ĈA⃗r

γr (p))A1 , (Ĉ
A⃗l
γl
(q) ◦ ĈA⃗r

γr (q))A1)

≤ 1
2
W (ĈA⃗l

γl
(p), ĈA⃗l

γl
(q)) + 1

2
W (ĈA⃗r

γr (p), Ĉ
A⃗r
γr (q)) ≤ W (p, q).

This proves (7.2.45).

By (7.2.43) and convexity,

W (Cγ(p), Cγ(q)) ≤ W (p, q).

Finally, using the expression (7.2.44) for St(p) = pt, again by convexity we obtain

W (St(p), St(q)) ≤ W (p, q),

for all t ≥ 0.

Remark 7.2.9. We note that (7.2.46) shows in particular that

W (p ◦ p, q ◦ q) ≤ W (p, q) .

This monotonicity is not satisfied by the total variation distance. For example
let us consider Ω = {0, 1}2, p := 1(1,1), q := 1

2
(1(1,1) + 1(0,0)) and suppose ν is the

uniform crossover. Then one can check that p ◦ p = 1(1,1) and q ◦ q = 3
8
(1(1,1) +

1(0,0)) +
1
8
(1(1,0) + 1(0,1)), and therefore ∥p ◦ p− q ◦ q∥TV = 5

8
> 1

2
= ∥p− q∥TV.

7.2.6 Proof of Theorem 7.2.1

For k ∈ N, the moment measures F k,N
t ∈ P(Ωk) and F̄ k,N

t ∈ P(Ωk) are defined by

F k,N
t =

∑
η∈ΩN

µN,t(η)(λη)
⊗k, F̄ k,N

t =
∑
η∈ΩN

µN(η)(Stλη)
⊗k.

By the triangular inequality we have

|PkµN,t(φk)− p⊗kt (φk)| ≤ T1 + T2 + T3 ,
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where

T1 := |PkµN,t(φk)− F k,N
t (φk)|,

T2 := |F k,N
t (φk)− F̄ k,N

t (φk)|,

T3 := |F̄ k,N
t (φk)− p⊗kt (φk)|.

We are going to estimate each term separately.

The term T1 can be estimated by using a simple combinatorial argument, and
one obtains

T1 ≤
2k(k − 1)

N
∥φk∥∞.

Since the proof is identical to that in [37, Lemma 3.11] we omit the details.

The last term T3 is estimated using the initial chaos. Note that

p⊗kt (φk)− F̄ k,N
t (φk) =

∑
η∈ΩN

µN(η)

(
k∏
i=1

⟨St(p), φi⟩ −
k∏
i=1

⟨St(λη), φi⟩

)
.

Using
∏k

i=1 ai −
∏k

i=1 bi =
∑k

i=1(
∏

1≤j<i aj)(ai − bi)(
∏

i<j≤k bj), we obtain

T3 ≤
∑
η∈ΩN

µN(η)
k∑
i=1

( ∏
1≤j<i

|⟨St(p), φj⟩|

)∣∣⟨St(p)− St(λη), φ
i⟩
∣∣×

×

( ∏
i<j≤k

|⟨St(λη), φj⟩|

)
≤ 2k∥φk∥∞ µN

[
W
(
St(p), St(λχN )

)]
≤ 2k∥φk∥∞ µN

[
W
(
p, λχN

)]
,

where χN has distribution µN , and we have used

|⟨µ− µ′, f⟩| ≤ 2∥f∥∞∥µ− µ′∥TV ≤ 2∥f∥∞W (µ, µ′),

for any µ, µ′ ∈ P(Ω), f : Ω 7→ R, and the monotonicity from Lemma 7.2.8.

The estimate of the second term T2 is more delicate. Here we use the contrac-
tion proved in Theorem 7.2.2 and Theorem 7.2.5. Define, for s ∈ [0, t],

Ψk
s =

∑
η∈ΩN

µN,t−s(η)(Ss(λη))
⊗k.

Then Ψk
s ∈ P(Ωk) for all s ∈ [0, t], and

F k,N
t (φk) = Ψk

0(φk) , F̄ k,N
t (φk) = Ψk

t (φk).
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Therefore,

F̄ k,N
t (φk)− F k,N

t (φk) =

∫ t

0

∂s
[
Ψk
s(φk)

]
ds .

Now,

∂s
[
Ψk
s(φk)

]
=
∑
η∈ΩN

(∂sµN,t−s(η))(Ss(λη))
⊗k(φk) (7.2.48)

+
∑
η∈ΩN

µN,t−s(η)∂s(Ss(λη))
⊗k(φk)

= −
∑
η∈ΩN

µN,t−s(η)LN
k∏
ℓ=1

⟨Ss(λη), φℓ⟩

+
∑
η∈ΩN

µN,t−s(η)
k∑
i=1

⟨Q(Ss(λη)), φi⟩
∏
ℓ ̸=i

⟨Ss(λη, φℓ⟩.

Next, we show that

Q(Ss(λη)) =
1

N

∑
i<j

∑
A

ν(A)S̄s(λη)(ληi,j,A − λη). (7.2.49)

Consider the linearized equation (7.2.28). Taking q ∈ P(Ω) and h = Q(q) one has
that the solution ht = S̄t(q)(h) satisfies ht = Q (St(q)), that is

S̄t(q)(Q(q)) = Q (St(q)) , t ≥ 0, (7.2.50)

for all q ∈ P(Ω). To see this note that for all t ≥ 0,∑
σ∈Ω

St(q)(σ) = 1 ,
∑
σ∈Ω

Q(St(q))(σ) = 0 ,

and therefore

∂tQ (St(q)) (σ
′) =

∑
A⊂[n]
σ∈Ω

ν(A)

(
Q(St(q))(σAcσ′

A)St(q)(σAσ
′
Ac)

+ St(q)(σAcσ′
A)Q(St(q))(σAσ

′
Ac)−Q(St(q))(σ

′)St(q)(σ)

)
=
∑
A⊂[n]
σ∈Ω

ν(A)

(
Q(St(q))(σAcσ′

A)St(q)(σAσ
′
Ac) + St(q))(σAcσ′

A)Q(St(q))(σAσ
′
Ac)

−Q(St(q))(σ
′)St(q)(σ)−Q(St(q))(σ)St(q)(σ

′)

)
= 2Q̂(St(q), Q(St(q)))(σ

′).
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This proves (7.2.50). If q = λη for some η ∈ ΩN , then

Q(λη) =
∑
A

ν(A) ((λη)A ⊗ (λη)Ac − λη) .

Moreover, for any A ⊂ [n],

(λη)A ⊗ (λη)Ac − λη =
1

2N2

N∑
i,j=1

(1ηi,j,A(i) + 1ηi,j,A(j) − 1η(i) − 1η(j))

=
1

N

∑
i<j

(ληi,j,A − λη).

It follows that

Q(λη) =
1

N

∑
i<j

∑
A

ν(A)(ληi,j,A − λη).

Thus, using (7.2.50) and the linearity of S̄s(λη)(·) we obtain (7.2.49). On the other
hand,

LN
k∏
ℓ=1

⟨Ss(λη), φℓ⟩ =
1

N

∑
i<j

∑
A

ν(A)

(
k∏
ℓ=1

⟨Ss(ληi,j,A), φℓ⟩ −
k∏
ℓ=1

⟨Ss(λη), φℓ⟩

)
.

Suppose we can show that

∣∣∣ k∏
ℓ=1

⟨Ss(ληi,j,A), φℓ⟩ −
k∏
ℓ=1

⟨Ss(λη), φℓ⟩

−
k∑

u=1

⟨S̄s(λη)(ληi,j,A − λη), φ
u⟩
∏
ℓ ̸=u

⟨Ss(λη, φℓ⟩
∣∣∣ ≤ Ks, (7.2.51)

for some function Ks, s ∈ [0,∞), independent of η, i, j, A . Then by (7.2.48) and
(7.2.49) we would have T2 ≤ N

2

∫ t
0
Ksds. Thus the proof will be completed by

proving (7.2.51) for a suitable Ks.
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Observe that

k∏
ℓ=1

aℓ −
k∏
ℓ=1

bℓ −
k∑

u=1

cu
∏
j ̸=u

bj =
k∑

u=1

[
(
∏

1≤j<u

aj)(au − bu)− (
∏

1≤j<u

bj)cu

]∏
j>u

bj

=
k∑

u=1

(au − bu − cu)
∏
j ̸=u

bj +
k∑

u=1

[
(
∏

1≤j<u

aj)− (
∏

1≤j<u

bj)

]
(au − bu)

∏
j>u

bj

=
k∑

u=1

(au − bu − cu)
∏
j ̸=u

bj +
k∑

u=1

u−1∑
v=1

(
∏
j<v

aj)(
∏

v<j<u

bj)(av − bv)(au − bu)
∏
j>u

bj.

Define aℓ = ⟨Ss(ληi,j,A), φℓ⟩, bℓ = ⟨Ss(λη), φℓ⟩, and cℓ = ⟨S̄s(λη)(ληi,j,A − λη), φ
ℓ⟩.

Noticing that

∥ληi,j,A − λη∥TV ≤ 2

N
,

and that ληi,j,A , λη have the same marginals, it follows from Theorem 7.2.5 that

|au − bu − cu| ≤ n5 ∥φu∥∞e−D(ν) s 4

N2
.

Moreover, Theorem 7.2.2 shows that for all u, v,

|av − bv||au − bu| ≤ n4 ∥φv∥∞ ∥φu∥∞e−2D(ν) s 4

N2
.

These bounds hold uniformly in η ∈ ΩN , 1 ≤ i < j ≤ n,A ⊂ [n]. This proves
(7.2.51) with

Ks = ke−D(ν) s(n5 + (k − 1)n4e−D(ν) s)
∥φk∥∞
N2

.

Therefore,

T2 ≤
N

2

∫ t

0

Ks ≤
k2n5

D(ν)N
∥φk∥∞(1− e−D(ν) t).

The proof of Theorem 7.2.1 is complete.

7.3 Relative entropy decay

The goal of this section is to prove Theorem 6.5.2, Proposition 6.5.5, and Theorem
6.6.1. To simplify our notation we write µ = πN for the uniform distribution over
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SN,n. For any A ⊂ [n], f : SN,n 7→ R, we are going to use the notation

µAf = µ(f | ηAc),

where µ(· | ηAc) denotes the conditional expectation given the variables

ηAc := {ηi(j), i ∈ Ac, j = 1, . . . , N}.

The function µAf thus depends on η only through the variabes ηAc . When A = [n]

we have the global expectation µ[n]f = µ(f). With this notation, µA is the or-
thogonal projection, in L2(SN,n, µ), onto the space of functions that do not de-
pend on the A-component of η ∈ SN,n. Notice the relations µ(f) = µ(µAf), and
µB(f) = µB(µAf), for all A ⊂ B ⊂ [n]. We also use the notation EntA(f) for the
entropy of f : SN,n 7→ R+ with respect to µA, that is

EntA(f) = µA [f log(f/µAf)] .

Thus EntA(f) is a function that depends on η through the variables ηAc only. Its
expectation satisfies

µ [EntA(f)] = Ent(f)− Ent[µAf ] ,

where Ent(f) = Ent[n](f) = µ [f log(f/µ(f))].
We recall the following well known tensorization property, which is an imme-

diate consequence of Lemma 2.4.4:

Ent(f) ≤
n∑
i=1

µ [Enti(f)] . (7.3.1)

7.3.1 The case n = 1

A key ingredient of our proof is the control of the base case n = 1. Here the prob-
lem reduces to standard random transpositions and one can use a well known
bound that was first derived in [66, 64]. In our setting it can be summarized as
follows, see [64, Theorem 1] or [66, Corollary 3.1] for a proof. Note that for n = 1

we have SN,n = SN .

Lemma 7.3.1. for all N ≥ 2, for all g : SN 7→ R+, for any i = 1, . . . , n,

∑
τ∈SN

g(τ) log(g(τ)/ḡ) ≤ 1

N

∑
j<ℓ

∑
τ∈SN

(
g(τ j,ℓ)− g(τ)

)
log

g(τ j,ℓ)

g(τ)
,

where ḡ = 1
N !

∑
τ∈SN

g(τ), and τ j,ℓ denotes τ composed with the transposition at {j, ℓ}.
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The proof of Theorem 6.5.2 is based on Lemma 2.4.4, Lemma 7.3.1 and the
following analysis of the entropy associated to partial random permutations of
the particle configuration, which is the main novelty in this section.

7.3.2 Permutation entropies

For any A ⊂ [n], g : SN,n 7→ R, define PAg : SN,n 7→ R, as

PAg(η) =
1

N !

∑
τ∈SN

g((τη)A ηAc),

where τη := τ ◦ η denotes the element of SN,n obtained from η by permuting the
particle labels according to τ :

(τη)(j) = η(τ(j)).

The linear operator PA is the orthogonal projection, in L2(SN,n, µ), onto the space
of functions that are symmetric w.r.t. permutations restricted to the subset A.
When A = {i} we write P{i} = Pi, and note that Pig = µ(g | η{i}c) = µig for all
i. Note also that PA, PB do not commute for general A,B ⊂ [n], but if A ∩ B = ∅
then PAPB = PBPA. Moreover, one easily checks that if A ⊂ B ⊂ [n], then

PAPB = PB\APA = PAPB\A = PBPA, A ⊂ B. (7.3.2)

Also, observe that the orthogonal projection µA defined above satisfies

µA =
∏
i∈A

Pi.

Notice that P[n]g = g iff g ∈ S, and that in this case

PAg = PAcg = PAPAcg = PAcPAg , g ∈ S. (7.3.3)

For any fixed f ≥ 0, and A ⊂ [n], define

φ(A; f) = µ [f log(f/PAf)] .

The function φ is a suitable conditional entropy of f on A. Namely, φ(A; f) is the
expected value with respect to µ of the entropy

PA [f log(f/PAf)] .
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In particular, φ(A; f) ≥ 0. We call φ(A; f) the permutation entropy of f on A. When
there is no risk of confusion we write simply φ(A) for φ(A; f). In general, one has

Lemma 7.3.2. Fix a function f ≥ 0. For any i ∈ [n], φ({i}) = µ [Enti(f)], and for all
A ⊂ [n]:

φ(A) = µ [EntA(f)]− µ [EntA(PAf)] . (7.3.4)

Moreover, for all A ⊂ [n]

φ(A) ≤ 2EA(f, log f), (7.3.5)

where

EA(f, log f) =
1

2

1

N

∑
j<ℓ

µ

[(
f j,ℓ,A − f

)
log

f j,ℓ,A

f

]
.

Proof. If A = {i}, then PAf = µif and therefore φ({i}) = µ [Enti(f)]. In general,
for any A,

µ [EntA(f)] = µ [f log(f/µAf)]

= µ [f log(f/PAf)] + µ [f log(PAf/µAf)] .

The second term above satisfies

µ [f log(PAf/µAf)] = µ [PAf log(PAf/µAPAf)] = µ [EntA(PAf)] ,

where we have used that µBPA = µB for any A ⊂ B ⊂ [n] since PA is an orthogo-
nal projection. This proves (7.3.4).

To prove (7.3.5), observe that for any A ⊂ [n], f ≥ 0, any fixed η ∈ SN,n, taking
g(τ) := f((τ ◦ η)AηAc), one has ḡ = PAf , and therefore by Lemma 7.3.1,

PA [f log(f/PAf)] (η) =
1

N !

∑
τ∈SN

g(τ) log(g(τ)/ḡ)

≤ 1

N

∑
j<ℓ

1

N !

∑
τ∈SN

(
f((τ j,ℓη)AηAc)− f((τη)AηAc)

)
log

f((τ j,ℓη)AηAc)

f((τη)AηAc)

=
1

N

∑
j<ℓ

PA

[(
f j,ℓ,A − f

)
log

f j,ℓ,A

f

]
(η).

Taking the expectation and using µPA = µ one obtains (7.3.5).

Next, we compare the permutation entropy φ(A) with µ [EntA(f)]. The pre-
vious lemma in particular shows that φ(A) ≤ µ [EntA(f)]. The next lemma al-
lows us to give a bound in the opposite direction. Notice that such a bound
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needs some care since if e.g. f ∈ S is not a constant then φ([n]; f) = 0 while
µ
[
Ent[n](f)

]
= Ent(f) ̸= 0.

Lemma 7.3.3. Fix A ⊂ [n] such that 0 ≤ |A| ≤ n− 1, and V ⊂ Ac. Then,

φ(A) +
∑
i∈V

φ(A ∪ {i}) ≥ µ [EntV f ] .

Proof. Write V = {x1, . . . , xk} ⊂ [n], k = |V |, and defineA0 = A, andAi = A∪{xi},
i = 1, . . . , k. In general PAi

and PAj
do not commute for i, j = 1, . . . , k, but using

(7.3.2) one has PA0PAi
= PA0Pxi = PAµxi and for any ℓ = 1, . . . , k,

P ℓ := PA0PA1 · · ·PAℓ
= PA

ℓ∏
i=1

µxi =

(
ℓ∏
i=1

µxi

)
PA =

ℓ∏
i=0

PAi
,

where the last identity holds regardless of the order of the multiplications. In
other words, the operators PAi

commute thanks to the presence of PA0 . In partic-
ular, P k = PAµV = µV PA.

Consider the entropy

µ

[
f log

f

P kf

]
= µ

[
f log

f

µV f

]
+ µ

[
f log

µV f

PAµV f

]
. (7.3.6)

The first term is µ [EntV f ]. The second term satisfies

µ

[
f log

µV f

PAµV f

]
= µ

[
µV f log

µV f

µV PAf

]
= φ(A;µV f) ≥ 0.

On the other hand,

log
f

P kf
= log

f

PA0f
+ log

PA0f

PA0PA1f
+ · · ·+ log

PA0PA1 · · ·PAk−1
f

PA0PA1 · · ·PAk
f
,

and therefore

µ

[
f log

f

P kf

]
= φ(A; f) +

k−1∑
ℓ=0

µ

[
f log

P ℓf

P ℓ+1f

]
. (7.3.7)

Next, we show that

µ

[
f log

P ℓf

P ℓ+1f

]
≤ φ (Aℓ+1; f) , (7.3.8)

for all ℓ = 0, . . . , k − 1. Combined with (7.3.6)-(7.3.7), this implies the desired
conclusion:

φ(A) +
∑
i∈V

φ(A ∪ {i}) ≥ µ [EntV f ] + φ(A;µV f) ≥ µ [EntV f ] .
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It remains to prove (7.3.8). We first observe that

µ

[
f log

P ℓf

P ℓ+1f

]
= µ

[
P ℓf log

P ℓf

P ℓ+1f

]
= φ

(
Aℓ+1;P

ℓf
)
. (7.3.9)

The well known variational principle for the relative entropy implies that for any
B ⊂ [n]

PB

(
f log

f

PBf

)
≥ PB(fg) ,

for any function g such that PB(eg) = 1. Choosing g = log P ℓf
PBP ℓf

shows that

PB

(
f log

f

PBf

)
≥ PB

(
f log

P ℓf

PBP ℓf

)
.

Taking the expectation one finds

φ(B; f) ≥ µ

[
f log

P ℓf

PBP ℓf

]
.

If PB, P ℓ commute, then

µ

[
f log

P ℓf

PBP ℓf

]
= µ

[
f log

P ℓf

P ℓPBf

]
= µ

[
P ℓf log

P ℓf

P ℓPBf

]
= φ(B;P ℓf).

Therefore,
φ(B; f) ≥ φ(B;P ℓf),

whenever PB, P ℓ commute. Taking B = Aℓ+1, and using the fact that PAℓ+1
and

P ℓ commute, one obtains φ
(
Aℓ+1;P

ℓf
)
≤ φ (Aℓ+1; f). Together with (7.3.9), this

implies (7.3.8).

7.3.3 Proof of Theorem 6.5.2

From the strict separation assumption, it follows that for some δ(ν) > 0,

EN,n(f, log f) ≥
δ(ν)

n

n∑
i=1

(
EAi

(f, log f) + EAi\{i}(f, log f)
)
,

where, for every i, Ai ⊂ [n] is such that Ai ∋ i and min{ν(Ai), ν(Ai \ {i})} ≥ δ(ν).
Therefore, from Lemma 7.3.2,

EN,n(f, log f) ≥
δ(ν)

2n

n∑
i=1

(φ(Ai) + φ(Ai \ {i})) .
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Lemma 7.3.3 then implies

EN,n(f, log f) ≥
δ(ν)

2n

n∑
i=1

µ [Entif ] .

Using (7.3.1) it follows that α(N, n) ≥ δ(ν)/2n. This proves the bound (6.5.2) with
α(ν) = δ(ν)/2n.

To prove the lower bound for one-point crossover, notice that the above argu-
ment can be repeated but this time we can directly estimate

EN,n(f, log f) ≥
1

4

1

n+ 1

n∑
i=1

(φ(Ji) + φ(Ji−1)) ≥
1

4(n+ 1)

n∑
i=1

µ [Entif ] ,

where J0 = ∅, and Ji = {1, . . . , i}, i ≥ 1. The lower bound α(N, n) ≥ 1/4(n + 1)

thus follows again by the tensorization (7.3.1).

Next, we prove the lower bound for the case of uniform crossover ν(A) = 2−n

for all A ⊂ [n]. From Lemma 7.3.2

EN,n(f, log f) = 2−n
∑
A

EA(f, log f) ≥ 2−n−1
∑
A

φ(A).

By Lemma 7.3.3,

n∑
i=1

∑
A

φ(A)1(i ∈ A) =
n∑
i=1

∑
A: |A|≤n−1

φ(A ∪ {i})1(i /∈ A)

≥
∑

A: |A|≤n−1

(µ [EntAcf ]− φ(A)) .

Therefore,

∑
A

φ(A) =
1

n

n∑
i=1

∑
A

φ(A)(1(i /∈ A) + 1(i ∈ A))

≥ 1

n

∑
A

|Ac|φ(A) + 1

n

∑
A: |A|≤n−1

(µ [EntAcf ]− φ(A))

=
1

n

∑
A: |A|≤n−1

(|Ac| − 1)φ(A) +
1

n

∑
A

µ [EntAcf ] .

In particular,

2−n−1
∑
A

φ(A) ≥ 2−n

2n

∑
A

µ [EntAcf ] .
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From Lemma 2.4.4 it follows that

2−n−1
∑
A

φ(A) ≥ 1

4n
Entf.

This proves the desired bound α(N, n) ≥ 1
4n

.

Finally, in the case of symmetric functions one has φ(A) = φ(Ac) for all A ⊂
[n], see (7.3.3). Therefore, the previous computation now shows that

∑
A

φ(A) ≥ 2

n

∑
A

µ [EntAcf ]− 2

n

∑
A

φ(A).

Rearranging terms yields the bound αS(N, n) ≥ 1
2(n+2)

. This concludes the proof
of Theorem 6.5.2.

7.3.4 Proof of Proposition 6.5.5

The proof of the upper bound on α(N, n) is based on Proposition 7.1.11, Proposi-
tion 7.1.8, and the following entropy production estimate for the nonlinear equa-
tion that was derived in [29].

Lemma 7.3.4. Let Ω = {0, 1}n, and let p = p(n) ∈ P(Ω) be defined as

p = w2δ1 + (1− w)2δ0 + 2w(1− w)U ,

where w = 2−n and U is the uniform distribution on Ω. Then, taking f = p/π, with
π = ⊗n

i=1pi, one has
Dπ(f)

Entπf
≤ 4

n
+O

(
1

n2

)
.

Proof. See [29, Proposition 4.7].

To prove Proposition 6.5.5 we take Ω = {0, 1}n, and p as in Lemma 7.3.4. Note
that p has marginals equal to Bernoulli Be(w). Take ϱN such that (7.1.3) holds with
π the product of Bernoulli Be(w), and write fN = γ(p, ϱN)/γ(π, ϱN). Recall that

α(N, n) ≤ α(ΩϱN ) ≤
E(fN , log fN)

EntfN
,

where EntfN = HN(γ(p, ϱN) | γ(π, ϱN)). Clearly, p is irreducible. From Proposition
7.1.11 and Proposition 7.1.8,

lim sup
N→∞

α(N, n) ≤ Dπ(f)

Entπf
≤ 4

n
+O

(
1

n2

)
.
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7.3.5 Proof of Theorem 6.6.1

Let p ∈ P(Ω) be an arbitrary initial value for the Boltzmann equation and let
π = ⊗ipi denote the corresponding equilibrium. In order to ensure that p be
irreducible we write

p(ε) = ε π + (1− ε) p

with ε ∈ (0, 1) to be taken to zero eventually. Clearly, p, p(ε), π have the same
marginals. Let ϱN be an admissible sequence such that (7.1.3) holds. Let p(ε)N =

γ(p(ε), ϱN) and πN = γ(π, ϱN) and define p(ε)N,t = p
(ε)
N etLN . The propagation of chaos

at fixed time t implies that the hypothesis of Proposition 7.1.9 apply to µ(N) = p
(ε)
N,t.

Therefore,

H(p
(ε)
t |π) ≤ lim inf

N→∞

HN(p
(ε)
N,t | πN)
N

,

where p(ε)t is the solution to the nonlinear equation with initial datum p(ε). Theo-
rem 6.5.2 implies that

HN(p
(ε)
N,t | πN) ≤ e−α(ν) tHN(p

(ε)
N | πN).

Then an application of Proposition 7.1.8 shows that for all ε > 0, t ≥ 0, one has

H(p
(ε)
t | π) ≤ e−α(ν) tH(p(ε) |π).

The conclusion follows by taking ε → 0+. Indeed, p(ε) → p and, by (7.2.14) we
know that p(ε)t → pt, so that H(p(ε) |π) → H(p | π), and H(p

(ε)
t | π) → H(pt |π). We

note that we can use the entropy production for symmetric functions here, so that
for instance in the case of uniform crossover we may take α(ν) ≥ 1/2(n+ 2).
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Appendix A
Appendix

Here we prove some facts stated in chapter 2 and the local central limit theorem
in chapter 7.

A.1 Mixing time and entropy

In order to prove Lemma 2.3.3, we need the following result which shows that
the bound (2.3.5) is stronger than the MLSI in (2.3.3).

Lemma A.1.1. If the entropy decay holds with rate δ in discrete time then it holds with
the same rate in continuous time. That is, (2.3.5) implies the MLSI with constant δ.

proof of Lemma A.1.1. Suppose that

Entµ(P
∗f) ≤ (1− δ)Entµf.

From the variational principle (2.3.2) it follows that for any f ≥ 0 with µ[f ] = 1:

µ[(P ∗f) log f ] ≤ EntµP
∗f.

Therefore,

DP (f, log f) = µ[((1− P ∗)f) log f ] ≥ Entµf − EntµP
∗f ≥ δ Entµf.

Proof of Lemma 2.3.3. The standard LSI with constant s implies entropy decay in
continuous time with rate ϱ = 2s, since DP (f, log f) ≥ 2DP (

√
f,

√
f) for all f ≥ 0.

Moreover, thanks to Lemma A.1.1, we also have that entropy decay in discrete
time implies MLSI. Now, suppose that the entropy decay in discrete time holds



A.1. MIXING TIME AND ENTROPY

with a constant δ > 0. Pinsker’s inequality says that

∥δσP n − π∥2TV ≤ 1

2
H(δσP

n |π),

where δσ(τ) = 1(τ = σ) is the Dirac mass at σ. Iterating (2.3.4),

∥δσP n − π∥2TV ≤ 1

2
(1− δ)nH(δσ | π).

Since H(δσ |π) = − log π(σ) and (1− δ)n ≤ e−δn we obtain

∥δσP n − π∥TV ≤ 1

4
,

as soon as n is an integer such that n ≥ δ−1 log[8 log(1/π∗)].

Proof of Lemma 2.3.5. The first assertion is proved in [104, Proposition 6]. The sec-
ond assertion follows from the first and the simple observation that if P = P ∗

then the LSI for (P, π) implies the LSI for (P ∗P, π) with the same constant since
P ∗P = P 2 ≤ P as quadratic forms in L2(π).

Proof of Lemma 2.4.1. The identity (2.4.1) follows from (2.4.2) in the case k = 2

with Λ0 = ∅, Λ1 = Λ, Λ2 = V . To prove (2.4.2), set gi = µΛi
f , and note that

gi = µΛi
gi−1 by (2.1.1). Therefore,

µ [EntΛk
g0] = µ [g0 log (g0/gk)]

=
k∑
i=1

µ [gi−1 log (gi−1/gi)]

=
k∑
i=1

µ [µΛi
(gi−1 log (gi−1/gi))] =

k∑
i=1

µ [EntΛi
gi−1] .

Now we provide the proof of the Shearer inequality for product measures.
This proof can be found in these notes, Lemma 4.1.

Proof of Lemma 2.4.4. We prove the Shearer inequality for the entropy functional,
the proof for the variance functional is similar and thus omitted. For simplicity,
we fix an ordering of the vertices of Λ and call Λ = [n] and µ = µΛ. For any A,

define Ai = {x ∈ A, x ≤ i} and A−
i = {x ∈ A, x < i} for any i ∈ A. Then from

equation (2.4.2)

EntAf =
∑
i∈A

µA

[
EntAi

µA−
i
f
]
.
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Since µ is a product measure one has µAi
= µ{i} ⊗ µA−

i
, then

µA

[
EntAi

µA−
i
f
]
= µA

[
Ent{i}µA−

i
f
]
. (A.1.1)

Next we claim that

µA

[
Ent{i}µA−

i
f
]
≥ µA

[
Ent{i}µ[i−1]f

]
(A.1.2)

where [i − 1] = {1, . . . , i − 1} for i > 1 and [i − 1] = 0 iff i = 1. This inequality
follows from a more general statement that whenever U, V ⊂ [n], with U ∩ V = ∅
and µUµV = µV µU , then for all f : Ω −→ R+ on has

µ [EntUµV f ] ≤ µ [EntUf ] . (A.1.3)

It is immediate to see that (A.1.3) follows by applying (A.1.2) with U = {i}, V =

[i− 1] \ A−
i and f replaced by µA−

i
f. To prove (A.1.3), we write

µ [EntUµV f ] = µ

[
(µV f) log

(
µV f

µUµV f

)]
= µ

[
(µV f) log

(
µV f

µV µUf

)]
= µ

[
f log

(
µV f

µV µUf

)]
.

Taking g = log
(

µV f
µV µUf

)
, ν = fµU and observing that µU [eg] = 1, the variational

principle (2.3.2) shows that

µU

[
f log

(
µV f

µV µUf

)]
= ν(g) ≤ H(ν|µU) = µU

[
f log

(
f

µUf

)]
.

By integrating we finally get

µ [EntUµV f ] ≤ µ [EntUf ] ,

which implies (A.1.3). Now observe that by (2.4.2) one has

EntΛf =
∑
i∈[n]

µ
[
Ent[i]µ[i−1]f

]
=
∑
i∈[n]

µ
[
Ent{i}µ[i−1]f

]
.

Therefore, summing over A in (A.1.1) one obtains∑
A⊂[n]

αAµ [EntAf ] ≥
∑
A⊂[n]

αA
∑
i∈A

µ
[
Ent{i}µ[i−1]f

]
≥ γ(α)EntΛf.
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Proof of Lemma 2.4.5. From the decomposition in Lemma 2.4.1 it follows that

EntΛ(µB(f))− µΛ[EntA(µB(f))] = EntΛ(µAµB(f)) = EntΛ(µΛ(f)) = 0.

This proves (2.4.6). To prove (2.4.7) notice that by definition

µΛ [EntA(µB(f))] = µΛ

[
µB(f) log

(
µB(f)

µAµB(f))

)]
.

For any U ⊂ B, µB(f) = µBµU(f) and the product structure µΛ = µA⊗µB implies
the commutation relation µAµBµU = µBµAµU . Therefore,

µΛ [EntA(µB(f))] = µΛ

[
µBµU(f) log

(
µBµU(f)

µBµAµU(f)

)]
= µΛ

[
µU(f) log

(
µBµU(f)

µBµAµU(f))

)]
= µΛ

[
µA

[
µU(f) log

(
µBµU(f)

µAµBµU(f)

)]]
.

It remains to observe that

µA

[
µU(f) log

(
µBµU(f)

µAµBµU(f)

)]
≤ EntA(µU(f)).

The latter estimate follows from the variational principle (2.3.2).

Proof of Lemma 2.4.6. In view of Lemma 2.3.3 it is sufficient to prove item 2. We
note that the relative entropy decay with rate δ is equivalent to the entropy con-
traction

Ent(Pαf) ≤ (1− δ) Ent(f),

for all f ≥ 0. By convexity of x 7→ x log x one has

Ent(Pαf) = µ[Pαf log(Pαf)]− µ[f ] log µ[f ]

≤
∑
B

αB µ[µB(f) log(µB(f))]− µ[f ] log µ[f ] =
∑
B

αB Ent(µB(f)).

From the decomposition in Lemma 2.4.1 it follows that

Ent(Pαf) ≤ Ent(f)−
∑
B

αBµ[EntB(f)].
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By Definition 2.4.3,
∑

B αBµ[EntB(f)] ≥ (δ(α)/C) Ent(f), and therefore

Ent(Pαf) ≤ (1− δ(α)/C) Ent(f).

A.2 Central limit theorem: proof of Proposition 7.1.2

In order to prove Proposition 7.1.2 we adapt to our multivariate setting some clas-
sical estimates, see e.g. [43, 112]. For the sake of clarity we give a self-contained
proof. Recall the notation from Section 7.1. In particular, |t| =

√
⟨t, t⟩ denotes

the vector norm of t ∈ RK , and the random variable ξ = (ξi,x) with distribu-
tion µ ∈ P(X) takes values in X = {0, 1}K , and has covariance matrix V1. The
next lemma only requires the nondegeneracy of µ, that is det(V1) ̸= 0. The proof
of Proposition 7.1.2 however requires the irreducibility of µ in order to apply
Lemma 7.1.5.

Lemma A.2.1. Let µ ∈ P(X) be nondegenerate. For any t ∈ RK , define

φN(t) := µ
(
ei⟨V

−1/2
N t , ξ̄⟩

)N
,

where ξ̄i,x := ξi,x − µ [ξi,x] , VN = NV1, and LN := 1√
N
µ
[∣∣V −1/2

1 ξ̄
∣∣3] . Then

∣∣∣φN(t)− e−
1
2
⟨t,t⟩
∣∣∣ ≤ 16LN |t|3e−

1
3
⟨t,t⟩ , |t| ≤ 1

4LN
. (A.2.1)

Proof. We split the proof into two. First, let us suppose that 1
4LN

≥ |t| ≥ 1
2
L
− 1

3
N . If

one has

|φN(t)|2 ≤ e−
2
3
⟨t,t⟩ (A.2.2)

then ∣∣∣φN(t)− e−
1
2
⟨t,t⟩
∣∣∣ ≤ |φN(t)|+ e−

1
2
⟨t,t⟩ ≤ 2e−

1
3
⟨t,t⟩ ≤ 16LN |t|3e−

1
3
⟨t,t⟩.

We now show (A.2.2). Let φ(t) := µ
[
ei⟨t,ξ̄⟩

]
. Define Ψ := Ψ1 − Ψ2, where Ψ1 and

Ψ2 are independent and indentically distributed as ξ̄, so that the characteristic
function of Ψ is |φ(t)|2, and its covariance matrix is 2V1. Next we use

R(x) = eix −
(
1 + ix− x2

2

)
, |R(x)| ≤ min

{
|x|2, |x|

3

6

}
, (A.2.3)
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for all x ∈ R. By substituting x = ⟨t,Ψ⟩ in (A.2.3) and taking the expectation,

|φ(t)|2 = 1− 1

2
µ
[
(⟨t,Ψ⟩)2

]
+ µ [R (⟨t,Ψ⟩)]

≤ 1− ⟨t, V1t⟩+
1

6
µ
[
|⟨t,Ψ⟩|3

]
.

Then, by using the fact that (1+ x)N ≤ eNx for all x, that V −1/2
N is self-adjoint, and

the Cauchy-Schwarz inequality,

|φN(t)|2 =
∣∣∣φ(V −1/2

N t
)∣∣∣2N ≤

(
1− 1

N
⟨t, t⟩+ 1

6
µ

[∣∣∣⟨t, V −1/2
N Ψ⟩

∣∣∣3])N
≤
(
1− 1

N
⟨t, t⟩+ 8

6
|t|3µ

[∣∣∣V −1/2
N ξ̄

∣∣∣3])N
≤ exp

{
−⟨t, t⟩+ 8

6
LN |t|3

}
≤ e−

2
3
⟨t,t⟩,

thus (A.2.1) is proved if 1
4LN

≥ |t| ≥ 1
2
L
− 1

3
N . Next, suppose that |t| < 1

2
L
− 1

3
N . Define

τN := LN

N
. One has

1

2
> L

1
3
N |t| > τ

1
3
N |t| = µ

[∣∣∣V −1/2
1 ξ̄

∣∣∣3] 1
3 |t|√

N
≥ µ

[∣∣∣V −1/2
1 ξ̄

∣∣∣2] 1
2 |t|√

N
(A.2.4)

≥ |t|√
N
,

where the last inequality follows from

µ

[∣∣∣V −1/2
1 ξ̄

∣∣∣2] 1
2

=
(
µ
[
⟨V −1/2

1 ξ̄, V
−1/2
1 ξ̄⟩

]) 1
2
=

√
K ≥ 1.

From (A.2.3) and the inequalities (A.2.4), using again the Cauchy-Schwarz in-
equality we can write

∣∣∣φ(V −1/2
N t)− 1

∣∣∣ = ∣∣∣∣− 1

2N
⟨t, t⟩+ µ

[
R
(
⟨t, V −1/2

N ξ̄⟩
)]∣∣∣∣

≤ 1

2N
⟨t, t⟩+ τN

|t|3

6
<

1

8
+

1

48
<

1

4
. (A.2.5)

For all |z| < 1 the following inequality holds:

|log(z + 1)− z| ≤ |z|2

2(1− |z|)
(A.2.6)
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Then, by using, in order, (A.2.6), (A.2.5), |a+ b|2 ≤ 2(|a|2 + |b|2) and (A.2.4),

∣∣∣logφ(V −1/2
N t)−

(
φ(V

−1/2
N t)− 1

)∣∣∣ ≤
∣∣∣φ(V −1/2

N t)− 1
∣∣∣2

2
(
1−

∣∣∣φ(V −1/2
N t)− 1

∣∣∣) < 2

3

∣∣∣φ(V −1/2
N t)− 1

∣∣∣2

=
2

3

∣∣∣∣− 1

2N
⟨t, t⟩+ µ

[
R
(
⟨t, V −1/2

N ξ̄⟩
)]∣∣∣∣2 ≤ 4

3

(
|t|4

4N2
+
τ 2N
36

|t|6
)

≤ 4

3

(
τN√
N

|t|4

4
+
τ 2N
36

|t|6
)

≤ 4

3

(
1

2 · 4
+

1

36 · 8

)
τN |t|3 =

37

216
τN |t|3 <

1

5
τN |t|3.

By the triangular inequality we have∣∣∣∣logφ(V −1/2
N t) +

1

2N
⟨t, t⟩

∣∣∣∣ ≤ ∣∣∣logφ(V −1/2
N t)−

(
φ(V

−1/2
N t)− 1

)∣∣∣+
+

∣∣∣∣(φ(V −1/2
N t)− 1

)
+

1

2N
⟨t, t⟩

∣∣∣∣ ≤ 1

5
τN |t|3 +

1

6
τN |t|3 ≤

1

2
τN |t|3.

Using the inequality |ez − 1| ≤ |z|e|z|, z ∈ C, and (A.2.4),∣∣∣∣φN(t)e |t|2
2 − 1

∣∣∣∣ ≤ ∣∣∣∣logφN(t)e |t|2
2

∣∣∣∣ exp(∣∣∣∣logφN(t)e |t|2
2

∣∣∣∣)
= N

∣∣∣∣logφ(V −1/2
N t) +

1

2N
⟨t, t⟩

∣∣∣∣ exp(N ∣∣∣∣logφ(V −1/2
N t) +

1

2N
⟨t, t⟩

∣∣∣∣)

≤ 1

2
LN |t|3e

1
2
LN |t|3 ≤ 1

2
LN |t|3e

1
16 < |t|3LN ,

so that (A.2.1) is proved.

Proof of Proposition 7.1.2. Set zN := 1√
N
V

−1/2
1

(
MN − µ⊗N(SN)

)
. Using the Fourier

transform as in the proof of Theorem 7.1.6 and the identity∫
RK

e−i⟨s,zN ⟩− ⟨s,s⟩
2 ds = (2π)

K
2 e−

⟨zN ,zN ⟩
2 ,
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one has∣∣∣∣∣µ⊗N (SN =MN)−
e−

1
2
⟨zN ,zN ⟩

(2πN)
K
2

√
detV1

∣∣∣∣∣
=

1

BN(2π)K

∣∣∣∣∣
∫
QN,K

e−i⟨s,zN ⟩φN(s)ds−
∫
RK

e−i⟨s,zN ⟩− 1
2
⟨s,s⟩ds

∣∣∣∣∣ (A.2.7)

≤ 1

BN(2π)K

(∫
AN

∣∣∣φN(s)− e−
1
2
⟨s,s⟩
∣∣∣ ds+ ∫

QN,K\AN

|φN(s)| ds+
∫
Ac

N

e−
1
2
⟨s,s⟩ds

)
,

where BN :=
√
detVN = NK/2

√
detV1, QN,K := V

1/2
N [−π, π]K , and AN := {s ∈

RK : |s| ≤ 1
4LN

}. We are going to show that the three terms in the parenthesis
above are bounded by C/

√
N .

Let us define
τ := µ

[∣∣∣V −1/2
1 ξ̄

∣∣∣3] .
For the first term in (A.2.7) we use Lemma A.2.1:∫

AN

∣∣∣φN(s)− e−
<s,s>

2

∣∣∣ ds ≤ 16LN

∫
AN

|s|3e−
<s,s>

3

≤ 16LN

∫
RK

|s|3e−
<s,s>

3 =
C1√
N
,

where C1 := 16 τ
∫
RK |s|3e−<s,s>

3 . For the second term in (A.2.7) we use Lemma
7.1.5: ∫

QN,K\AN

|φN(s)| ds = BN

∫
[−π,π)K\Bτ

|φ(t)|Ndt ≤ BN(2π)
Ke−

CN
16τ2 , (A.2.8)

where C is defined as in that lemma and Bτ :=
{
t ∈ RK : |t| ≤ 1

4τ

}
. Therefore,

(A.2.8) is bounded by C2/
√
N for a suitable constant C2. Finally, to bound the last

term in (A.2.7), using L−1
N ≥ c

√
N for some constant c > 0, a simple estimate on

the gaussian integral shows that∫
|s|> 1

4LN

e−
<s,s>

2 ds ≤ C3√
N
,

for some constant C3.
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Mathematical structures in population genetics, volume 22. Springer, 1992.

[93] Fabio Martinelli. An elementary approach to finite size conditions for the expo-
nential decay of covariances in lattice spin models, pages 169–181. in: On Do-
brushin’s Way: From Probability Theory to Statistical Physics. American
Mathematical Society 2000.

[94] Fabio Martinelli. Dynamical analysis of low-temperature Monte Carlo clus-
ter algorithms. Journal of Statistical Physics, 66(5-6):1245–1276, 1992.

[95] Fabio Martinelli. Lectures on Glauber dynamics for discrete spin models.
In Lectures on probability theory and statistics (Saint-Flour, 1997), volume 1717
of Lecture Notes in Math., pages 93–191. Springer, Berlin, 1999.

[96] Fabio Martinelli and Enzo Olivieri. Approach to equilibrium of Glauber
dynamics in the one phase region. I. the attractive case. Communications in
Mathematical Physics, 161(3):447–486, 1994.

[97] Fabio Martinelli and Enzo Olivieri. Approach to equilibrium of Glauber
dynamics in the one phase region. II. The general case. Comm. Math. Phys.,
161(3):487–514, 1994.

[98] Fabio Martinelli, Enzo Olivieri, and Roberto H. Schonmann. For 2-d lat-
tice spin systems weak mixing implies strong mixing. Communications in
Mathematical Physics, 165(1):33–47, 1994.

[99] Fabio Martinelli and Fabio Lucio Toninelli. On the mixing time of the 2d
stochastic ising model with “plus” boundary conditions at low tempera-
ture. Communications in Mathematical Physics, 296(1):175–213, 2010.

216



[100] Servet Martínez. A probabilistic analysis of a discrete-time evolution in
recombination. Advances in Applied Mathematics, 91:115–136, 2017.

[101] Katalin Marton. Logarithmic Sobolev inequalities in discrete prod-
uct spaces: a proof by a transportation cost distance. arXiv preprint
arXiv:1507.02803, 2015.

[102] Katalin Marton. Logarithmic Sobolev inequalities in discrete product
spaces. Combinatorics, Probability & Computing, 28(6):919–935, 2019.

[103] Carl D. Meyer. Matrix analysis and applied linear algebra, volume 71. SIAM,
2000.

[104] Laurent Miclo. Remarques sur l’hypercontractivité et l’évolution de
l’entropie pour des chaînes de markov finies. In Séminaire de Probabilités
XXXI, pages 136–167. Springer, 1997.

[105] Laurent Miclo and Pierre Del Moral. Genealogies and increasing propaga-
tion of chaos for feynman-kac and genetic models. The Annals of Applied
Probability, 11(4):1166–1198, 2001.

[106] Stéphane Mischler and Clément Mouhot. Kac’s program in kinetic theory.
Inventiones mathematicae, 193(1):1–147, 2013.

[107] Stéphane Mischler, Clément Mouhot, and Bernt Wennberg. A new ap-
proach to quantitative propagation of chaos for drift, diffusion and jump
processes. Probability Theory and Related Fields, 161(1):1–59, 2015.

[108] Elchanan Mossel and Allan Sly. Exact thresholds for ising–gibbs samplers
on general graphs. The Annals of Probability, 41(1):294–328, 2013.

[109] Thomas Nagylaki. Introduction to theoretical population genetics, volume 21.
Springer Science & Business Media, 2013.

[110] Danny Nam and Allan Sly. Cutoff for the Swendsen–Wang dynamics on
the lattice. The Annals of Probability, 47(6):3705–3761, 2019.

[111] Yann Ollivier. Ricci curvature of Markov chains on metric spaces. Journal
of Functional Analysis, 256(3):810–864, 2009.

[112] Valentin V. Petrov. Sums of independent random variables. In Sums of
Independent Random Variables. De Gruyter, 2022.

[113] Tadeusz Platkowski and Reinhard Illner. Discrete velocity models of the
Boltzmann equation: a survey on the mathematical aspects of the theory.
SIAM review, 30(2):213–255, 1988.

217



[114] James Gary Propp and David Bruce Wilson. Exact sampling with coupled
markov chains and applications to statistical mechanics. Random Structures
& Algorithms, 9(1-2):223–252, 1996.

[115] Yuval Rabini, Yuri Rabinovich, and Alistair Sinclair. A computational view
of population genetics. Random Structures & Algorithms, 12(4):313–334, 1998.

[116] Yuri Rabinovich, Alistair Sinclair, and Avi Wigderson. Quadratic dynami-
cal systems. In Proceedings of the 33rd Annual Symposium on Foundations of
Computer Science, SFCS ’92, page 304–313, USA, 1992. IEEE Computer Soci-
ety.

[117] Gesine Reinert and Nathan Ross. Approximating stationary distributions
of fast mixing Glauber dynamics, with applications to exponential random
graphs. The Annals of Applied Probability, 29(5):3201–3229, 2019.

[118] Fraydoun Rezakhanlou. Propagation of chaos for particle systems associ-
ated with discrete Boltzmann equation. Stochastic processes and their applica-
tions, 64(1):55–72, 1996.

[119] Justin Salez. Cutoff for non-negatively curved markov chains. Preprint,
arXiv:2102.05597, 2021.

[120] Jamil Salhi, James MacLaurin, and Salwa Toumi. On uniform propagation
of chaos. Stochastics, 90(1):49–60, 2018.

[121] Holger Sambale and Arthur Sinulis. Logarithmic Sobolev inequalities for
finite spin systems and applications. Bernoulli, 26(3):1863–1890, 2020.

[122] Daniel W. Stroock and Boguslaw Zegarliński. The logarithmic Sobolev in-
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