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Summary

This work contains a discussion on the spread of infection, a model for
interacting particles system, in the specific setting of Galton-Watson
branching trees.

It is organized in five chapters: in Chapter 1, we recall the basics of
interacting particle systems and quickly provide some classical examples. Then
we observe more recent evolutions in this subject, in particular by focusing on
a class of models known in literature as the spread of infection. We recall one
of its basic definitions, examine a couple of specific models, state some known
results as well as some open questions, and finally consider more recent works
on different types of graphs.

Chapter 2 is dedicated to Galton-Watson tree and it serves as a
preparation for our model to be introduced in the next chapter. Here we recall
the construction of Galton-Watson trees and examine some properties which
we are going to use to prove our results later on.

In Chapter 3 we define a model for the spread of infection on Galton-Watson
trees, mention some of its basic properties, consider the survival problem and
state two theorems which provide sufficient conditions for its solution in two
different scenarios.

Our results will then be proved in Chapter 4, while Chapter 5 is dedicated
to some open problems.
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Chapter 1

Interacting particle systems

In this first chapter we present some basic elements in the theory of
interacting particle systems. Most of the topics in this introduction are
inspired from [4]. This branch of the probability studies was born in the late
1960’s, with most of initial works due to Spitzer in the US and Dobrushin in
the Soviet Union. Its motivation came from statistical mechanics, more
specifically the phase transition phenomenon that often characterizes those
models, which is the change of behaviour in the long term evolution of the
system as the parameters involved in its definition take different values. Since
the beginning, other mathematical models have been adapted to be treated as
interacting particle systems and therefore studied with the new tools this
theory has developed along the way.

1.1 Introduction

From a pure mathematical perspective, an interacting particle systems can be
seen as a further step forward with respect to the theory of Markov processes.
We explain this with an example: consider a countable family of particles
performing a discrete-time random walk1 over the set {0, 1}, each one
independently of the others. Let ηt(j) be the position of the j-th particle at
time t. Imagine now to view the entire process ηt as a whole Markov process
on the (uncountable) space {0, 1}N. Whichever initial configuration η0 is
chosen, the distributions ηt at a given time t are a product of measures, with
each one of them being singular with respect to the others and with respect to
the invariant measure of the process. If some kind of interaction is added, for
instance we could add some dependence from the position of the other
particles in the transition probabilities, this singularity may be kept, however
we no longer have independence-based results and therefore need new
techniques.

1At every time unit, each particle chooses position 0 or 1 with probability 1
2
each and then

moves to it, independently from the other particles and from its present location.
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More generally, an interacting particle systems can be summarized as a
process involving a finite of infinite quantity of particles (or agents) moving on
some space, which is usually taken to be the vertex set V of some finite or
infinite graph G. On top of this, some interaction rule is added to the system.
Typical questions and results about these processes concern the long term
behaviour of their evolution, such as convergence to some equilibrium
distribution or the eventual realization of some event. This practical
description provided above will be sufficient for our purpose. Indeed a precise
construction would require tools related to functional analysis and Markov
theory. A formal approach to these procedures can be found in chapters 1, 2
and 3 from [4], whereas we used [25] as a reference for Markov processes. For
now, let us move on and consider some examples, starting from their historical
formulations.

1.2 An example: the contact process

In this section we shall keep the notation η used before to indicate a generic
configuration in the state space. We now begin by providing the classic definition
of the contact process.

1.2.1 Historical definition and first results

The contact process was introduced by Harris in 1974 and is defined on the state

space {0, 1}Zd

. This means that each element of Zd is assigned an attribute ηx
equal to 0 or 1. In this setting we consider the integer lattice Zd as a graph,
therefore we may call its element vertices or sites. An edge exists between two
sites x and y if and only if |x − y| = 1, which mean that either they are equal
or they differ by 1 in exactly one coordinate. A possible interpretation for the
contact process is as a model for the spread of infection. In this sense, a site x
with η(x) = 1 is called infected, whereas if η(x) = 0 we say that x is healthy.

The evolution rule is the following: each x in Zd with η(x) = 1 waits
independently of the others for an exponential clock with rate 1 and then
changes its attribute to 0, while sites x with η(x) = 0 change their state to 1
similarly, however their exponential clock rate is equal to

λ
∑

y:|y−x|=1

η(y)

where λ is a positive parameter which is usually called infection rate. Notice
that the starting configuration µ with all healthy particles is stationary.
Moreover, for other initial configurations, it is possible that the distribution ηt
converges to some distribution µ′ as t → ∞ as indicated in the Markov chains
convergence theorem ([25], Theorem 20.1). In this case we say that µ′ is an
invariant measure.

The first studies (until the early 1990s) have analyzed whether there exist
other (nontrivial) invariant measures for the process on the integer lattice Zd.
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In [4], Chapter 6 we see that for any fixed dimension d ≥ 1 there exists a critical
value λc = λc(d) such that µ is the sole invariant measure for every λ < λc(d); in
this case, we say that the infection dies out almost surely. On the other hand, it
is possible to find at least one additional invariant measure if λ > λc(d), which
means that the infection can survive with positive probability for all times,
provided that there is at least one infected site at the beginning. This change
of global behaviour of the model according to the values of the parameter λ is
known as phase transition. A later study by Bezuidenhout and Grimmett (see
[5]) showed that the infection dies out almost surely at the critical value as well.
Finally, there have been numerical attempts to establish some bounds for the
critical value, see for example [10] for the one-dimensional process.

1.2.2 Further developments

With the long-term behaviour of the model on the integer lattice being
completely understood, focus has then shifted towards the analysis of the
contact process on different graphs other than Zd. Pemantle ([8], 1992) and
Stacey ([13], 1996) began by considering homogeneous trees with degree d
(each vertex has d neighbours), showing that for every d ≥ 4 the model can
exhibit three possible behaviours, these being separated by two critical values
for the parameter λ. More precisely, they proved that there exist two values
λ1 < λ2 such that the infection dies out almost surely if λ < λ1, whereas there
is positive probability for the infection process starting from a single particle
to survive for all times whenever λ > λ1. However, if λ > λ2 we have that any
fixed vertex v of the tree gets infected infinitely many times with positive
probability. This does not occur in the intermediate regime λ1 < λ < λ2, in
which the infection tends to drift away from any finite region, thus infecting
each vertex finitely many times almost surely. The former case is known as
strong survival of the infection, while the latter one is referred to as weak
survival. The case d = 3, which was initially left open, was then solved by
Liggett in 1996, who managed to prove that analogue results hold for the
model on the binary tree as well (see [12]).

1.2.3 Introducing the contact process on random graphs

In recent years, the growing interest towards more complex (and possibly
random) network structures has motivated the analysis of the contact process
on even more graphs, such as Galton-Watson trees or other types of random
graphs. A Galton-Watson tree or branching tree is a random graph generated
by starting from a single vertex - the root and adding a number of additional
vertices according to some distribution X. This rule is then repeated
countable-many times by taking the sites which were added during the
previous step and attaching to each of them independently a number of new
vertices, always according to X. Such distribution is usually called offspring
law. Chapter 2 will be dedicated to Galton-Watson trees, by provide a more
formal construction as well as an analysis of some of its properties.
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1.2.4 Heavy-tailed, subexponential and light-tailed
distributions

Let us consider a random variable Y which takes positive integer values2 and put
yk := P(Y = k), Pk := P(Y ≥ k). Since the structure of a branching tree can
vary significantly depending on the offspring law, in this section we distinguish
among different distribution classes we can find. Definitions 1.1 and 1.2 are
taken directly from [24], wheras we refer to [29], Section 1.2 for the definition
1.3.

Definition 1.1. We say that Y is a heavy-tailed distribution if

E[eθY ] = +∞

for all θ > 0, that is if Y does not admit any positive exponential moment.

Definition 1.2. We say that Y is a light-tailed distribution if it is not
heavy-tailed.

Definition 1.3. Here we consider a subcategory of heavy-tailed distributions.
We say that Y is a subexponential distribution if

lim sup
k→+∞

log (pk)

k
= 0 (1.1)

Notice that starting from condition (1.1) we get

lim sup
k→+∞

log (pk)

k
= 0 ⇐⇒ lim sup

k→+∞
(pk)

1
k = 1 ⇐⇒ ∀ ϵ ∈ (0, 1) pkj

> (1− ϵ)kj

(1.2)
for infinitely many indexes kj .

1.2.5 Contact process on random graphs: some results

In a paper from 2018, Huang and Durrett managed to prove that, in a contact
process on a Galton-Watson tree with one infected particle at the beginning,
the infection can survive with positive probability. Here is their result:

Theorem 1.4 ([29], Theorem 3). Consider the contact process on the
Galton-Watson tree with some subexponential offspring distribution X such
that E[X] > 1, and suppose that only the root of the tree is initially infected.
Then for all choices of the parameter λ there is positive probability for the
infection to survive for all times.

Shortly thereafter in 2019, Bhamidi, Nam, Nguyen and Sly showed that the
result from Huang and Durett was sharp, in the sense that follows:

2Random variables which take such values are of interest because of the models we are
considering and therefore we shall focus on them, however the definitions will make sense for
real-valued distributions as well.
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Theorem 1.5 ([30], Theorem 1). Consider the contact process on the
Galton-Watson tree with offspring distribution X, and suppose that only the
root of the tree is initially infected. If X satisfies E[ecX ] < +∞ for some
c > 0, then there exists λ0 = λ0(X) > 0 such that for all λ < λ0 the infection
process dies out almost surely.

In the same paper, the autors also proved that for random graphs with n
vertices and degree distribution µ which satisfies some conditions, the contact
process exhibits a phase transition, in the sense that there exist two critical
thresholds λ1 < λ2 such that with high probability the infection survives for a
time interval with size at most n1+o(1) whenever the parameter λ is below λ1,
whereas if λ > λ2 survival occurs for a time window with size at least eΘ(n)

with high probability.

1.3 Spread of infection

In this section we focus on the spread of infection as a family of interacting
particle systems, mentioning some additional examples and examining some
related results which have been proved so far. As we saw in section 1.2.1, the
contact process itself can be interpreted as a model for the spread of infection.
This time we shall consider different models which will distinguish between a
working environment and agents or particles that interact somehow within it,
for example by spreading the infection, whereas the vertices of a graph in the
contact process are involved in both actions simultaneously.

More formally, we will have different types of particles (at least two types, in
which case they are usually referred to as healthy or infected) that move on the
set V of vertices of some graph through its edges. The criteria that establish
how particles move may or may not depend on their type. Given an initial
configuration, the process evolves according to some other rule which explains
how transitions from one type to another can be accomplished. Let us begin by
considering another example known as the frog model.

1.3.1 The frog model

In the frog model we have two types of particles, S (suscettible) or I (infected).
Initially, on every vertex of Zd we put a number of particles of type S equal
to a Poisson random variable with parameter µ > 0, independently per each
vertex. We may write Poisson(µ) to denote such distribution. Then, place an
additional I particle at the origin. I particles wait for an exponential clock with
rate 1, select a neighbour uniformly at random and move to it. This happens
independently per each I particle. On the other hand, S particles do not move
(equivalently, they jump with rate 0). The interaction between the two types is
that every time an I particle encounters a S particle, the latter turns to I type
(and consequently start moving according to the rule explained before). This
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mechanism can be represented in short with the formula

S + I → 2I (1.3)

We will refer to this process as frog model with SI dynamics. This was initially
introduced in 1999 by Telcs and Wormald [14] as a branching random walk
where particles branch every time a new vertex is visited for the first time.

As first result they proved the following fact:

Theorem 1.6 ([14], Theorem 5). Given d ≥ 1, in the frog model in Zd each
particle will eventually become infected almost surely.

With this result accomplished, another natural question involves the speed
at which infected particles move. More precisely, define νIt as the number of the
infected particles at time t on Zd. Moreover, given r > 0 let Br be the open
ball in Zd centred in the origin and with radius r. We say that the infection
propagates with positive speed if there exists c = c(d, µ) > 0 such that

νIt
(
Zd \Bct

)
≥ 1

for all t sufficiently large, almost surely. The following holds:

Theorem 1.7 (Alves, Machado, Popov and Ravishankar [15]). The frog model
with SI dynamics has positive speed for all d ≥ 2 and any µ > 0.

Actually, in [15] they proved a stronger claim, which we do not present here.
Further results have been achieved in dimension d = 1 by Kesten, Ramı́rez and
Sidoravicius [23].

1.3.2 SIS and SIR dynamics

Let us now examine two variants of the frog model, although they can be applied
to any other model for the spread of infection. This time, the evolution involves a
second parameter λ. With SIS dynamics we add the possibility for each infected
particles to heal after an exponential clock with rate λ. In short, together with
the previous rule (1.3) we can write

S + I → 2I

I
λ→ S

Observe that the first rule implies that, whenever an I particle turns to S type,
any eventual I particles on the same location will convert it immediately to I
type again. As a consequence, I particles effectively heal when they are alone
on a site.

Similarly, the SIR dynamics involves a third type of particle, the removed or
dead particles, denoted by R. The difference with the SIS model is that, after an
exponential clock with rate λ, an I particle dies instead of recovering, therefore
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turning to type R. Since a R particle cannot turn to S or I again, it plays no
role in the spread of the infection. This time we have the formulae

S + I → 2I

I
λ→ R

Other models could be defined by combining SIS and SIR, however we ignore
them as they are not necessary for our purpose.

For the variants described above, we say that the infection survives if

P
(
νIt (Zd) ≥ 1 ∀ t ≥ 0

)
> 0

Otherwise, the infection is said to die out. Notice that there is always positive
probability that the infection die out : for example, in the origin there might
be only one infected particle at the beginning, and there is positive probability
for it to recover (or die) before it can jump or other particles can jump to the
origin; this holds for all dimensions d and for every choice of the two parameters
µ and λ. A natural question is therefore whether the infection survives with
positive probability.

1.3.3 Phase transition in SIR dynamics

For the frog model it was proved that in dimension 1 survival does not occur:

Theorem 1.8 (Alves, Machado and Popov [16], Theorem 1.1). In the frog
model with SIR dynamics, for d = 1 the infection dies out almost surely for all
µ > 0 and for all λ > 0.

On the other hand, in higher dimensions we have that:

Theorem 1.9 (Alves, Machado and Popov [16], Theorems 1.3-1.5). In the frog
model with SIR dynamics, for all d ≥ 2 and all µ > 0 there exists λc such that
the infection survives for all λ < λc, otherwise it dies out.

The existence of a critical parameter separating two different regimes for
the long-term evolution of the model is called phase transition (this time, with
respect to the parameter λ).

As µ increases, it becomes more difficult for infected particles to heal, as
they are less frequently occupying a site without other particles. This leaves the
open question of whether the infection can survive in the SIS model when the
particle density is large enough, regardless of the recuperation rate.

We also want to mention the works from Alves, Machado and Pupov [16] as
well as Lebensztayn and Utra [28], which considered a discrete-time, modified
version of the frog model in which at every step particles can die with some
positive probability 1− p. Here we report some of the main results from Alves,
Machado and Pupov:

• In Z, there are sufficient conditions on the initial configuration for the
infection to die out almost surely;
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• Both on a regular tree with degrees d and in Zd with d ≥ 2, the infection
dies out almost surely if the parameter p is small enough;

• If p is close enough to 1, the infection survives with positive probability
both on Zd (for d ≥ 2) and on the regular tree with degrees d (for d ≥ 3).

Lebensztayn and Utra considered the same process but on biregular3 trees. They
proved that there exists a critical value for the death parameter p separating
the two regimes of almost sure extinction and survival with positive probability.

1.4 A more general model

Now we consider another model for the spread of infection, where we also allow
susceptible particles S to move, with the same jump rate 1 as the infected ones.
This addition makes the analysis of the model more challenging, as S particles
now have the possibility to avoid encountering the I particles. We will refer to
this model generically as spread of infection (notice that the contact process
and the frog model belong to the spread of infection category as well, but since
this new model we just defined does not have a specific name, we prefer to keep
the expression spread of infection for this last one and use frog model or contact
process for the other two).

Here it is possible to consider the SI dynamics, which we recall here in short

S + I → 2I

or, alternatively, the SIS or SIR dynamics, given by

S + I → 2I S + I → 2I

I
λ→ S and I

λ→ R

respectively.

1.4.1 Results for SI, SIS and SIR dynamics

Recall that we say that there is positive speed when there exists a constant
c = c(d, µ) > 0 such that

νIt
(
Zd \Bct

)
≥ 1

for all t sufficiently large, almost surely. For the SI dynamics, we have the
following:

Theorem 1.10 (Kesten and Sidoravicius [17], Theorems 1 and 2). There exists
c = c(d, µ) such that νIt

(
Zd \Bct

)
≥ 1 for all t sufficiently large.

3A tree is biregular with degrees d1 and d2 if, when viewed as a bipartite graph, vertices
belonging to the same partition have the same degree, which needs to be either of the values
d1 or d2.
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Later on, Kesten and Sidoravicius also proved an even stronger result about
the geometry of the set of infected particles, as it evolves in time.

Moving on to the SIS and SIR dynamics, recall from Section 1.3.2 we say
that the infection survives if

P
(
νIt (Zd) ≥ 1 ∀ t ≥ 0

)
> 0

and otherwise we say that it dies out. For the SIS dynamics, the model exhibits
a phase transition:

Theorem 1.11 (Kesten and Sidoravicius [18], Theorem 1). In the SIS dynamics
for the spread of infection, for all d ≥ 1 and for all µ > 0 there exists λc such
that the infection survives with positive probability if λ < λc.

The proof is based on a slightly modified model, where the infection of an
S particle is only possible either when it moves to some I particle or, on the
contrary, some I particle moves to its position.

Baldasso and Stauffer ([32], Theorem 1.2) later proved that, for any
density µ > 0 and provided that the recovery rate λ > 0 is small enough,
strong survival occurs almost surely when conditioned on weak survival. They
also established ([32], Theorem 1.4) that the infection can always survive with
positive probability for all recovery rates λ > 0 if the particle density µ is large
enough. Note that the above result does not hold in the model defined by
Kesten and Sidoravicius in [18], because it relies on the argument that
particles can only heal when they are alone at a site.

Additionally, Dauvergne and Sly [33] extended a result from Kesten and
Sidoravicius from [17] by showing that positive speed of propagation occurs for
the SIS model even in the case where susceptible and infected particles move
at different rates. Furthermore, in [31] they proved that, in the SIR model, the
infection survives for all times with positive probability whenever the parameter
µ is small enough. They also showed that the infection tends to abandon quickly
any finite region it reaches, by leaving a herd immunity regime with mostly
removed and few susceptible particles only.

1.5 Spread of infection on other graphs

More recent studies have considered the spread of infection on graph structures
other than Zd. As an example, let us mention a couple of works about the frog
model with SI dynamics on regular d-ary trees. We say that a realization of the
model is recurrent if the root of the tree is visited infinitely many times and
it is transient otherwise. Hoffman, Johnson and Junge proved ([26], Theorem
1) almost sure recurrence for d = 2 and almost sure transience for d ≥ 5.
For the same model, they also proved ([27], Theorem 1.1) that the distance
of the farthest infected particle from the root grows linearly in time with high
probability, provided that the particle density is large enough.

Motivated by the results recollected in this chapter, in this work we are
going to propose a spread of infection model with SIS dynamics on a
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Galton-Watson tree and state sufficient conditions for the infection to survive.
Before proceeding, it is necessary to establish some properties of
Galton-Watson trees that we will make use of: next chapter will be dedicated
to this.
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Chapter 2

Galton-Watson trees

After having taken a glance at some examples of interacting particle systems,
in this chapter we move forward and consider a Galton-Watson or branching
tree. This serves as a preparation for Chapter 3, where such a tree will be the
environment on which we establish a model for the spread of infection.

2.1 Introduction

The discussion that has led to the present model known as Galton-Watson
process began in the early 1870s by F. Galton, who published a problem about
the diffusion of male family names among a given population, and H. W.
Watson, who submitted a possible solution (see [1] and [2]). Although the
current formulation of the model differs much from the very first problem
posed by Galton, it still retains its original interpretation.

In modern terms - see for instance Harris [3] - by Galton-Watson tree we
mean a random tree T originated from the branching process, which can be
constructed as follows: choose some random variableX which takes non negative
integer values and such that P(X = 0) > 0, then let T0 be a tree with one vertex
{r} only. Define inductively the tree Tn by taking each vertex v with distance
n− 1 from r in Tn−1 and adding to it a number of leaves according to the law
of X. These are usually referred to as the children of v and v on the other hand
is called their parent vertex. Repeat this for every such v independently. If no
vertex with said property can be found in Tn−1, simply put Tn := Tn−1. Finally,
take

T =

+∞⋃
n=0

Tn

A usual interpretation of T is population growth: starting from one element,
each individual is given once in their lifetime the opportunity to create copies of
themselves, and it does so according to X, which is typically referred to as the
offspring law. The resulting final tree T is simply a genealogical map of said
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population. An interesting first object of studies in the branching process is the
survival event

S := {|T | = +∞}
The complement event of S is called extinction. The following holds:

Theorem 2.1. [Harris [3], Theorem 6.1] Consider a branching process with
offspring law X and let m := E[X]. The survival event S has positive probability
if and only if either m > 1 or m = 1 and X = 1 almost surely.

In other words, no matter how complicated the distribution X can be, its
expected value is the only crucial parameter in establishing whether the event
S is possible. Naturally, survival is also guaranteed if we assume that X ≥ 1
almost surely. The case m > 1 is often called supercritical regime. We will see
that the results concerning our model turn to be trivial if we do not assume that
the tree is infinite, therefore we shall always consider this supercritical scenario.

2.1.1 Some notations

Limited portions of the tree

Let Z0 be the root and, for every n ≥ 1, let

Zn := Tn \ Tn−1

be the n-th generation, that is the set of vertices at distance n from the root.
Also, given a vertex v, let T (v) be the subtree of T which is obtained by

taking v as the root (generation zero), then its offspring as the first generation,
and so on. Similarly, let Tk(v) be the portion of T (v) which only contains the
first k generations of vertices, and let Zk(v) be the set of vertices in T (v) at
distance k from v.

Cutting out vertices

Another construction that we will make use of is the following: in a tree T , with
root v and S a set of some of its children, we denote by T S the tree obtained
from T by removing the edges between v and all of its children w ∈ Sc, and
then taking the connected component containing v.

Paths and descending paths

A path is a finite or infinite sequence of vertices P = (v0, v1, v2, ...) such that,
for every i ≥ 0, the edge (vi, vi+1) exists in the tree. We say that a path is
descending if vi is the parent of vi+1 for all i ≥ 0.

Given two vertices v and w, let {v → w} denote the event that there exists a
descending path from v to w, provided that the definition makes sense given the
positions of v and w. Similarly, given a vertex v and a collection A of vertices,
we define

{v → A} =
⋃
w∈A

{v → w} (2.1)
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Finally, let {v → ∞} be the event that there exists an infinite descending path
starting from v.

2.2 The spine decomposition

With the expression spine decomposition we mean a different representation of
a Galton-Watson tree for the first k generations, provided that it survives up
to that point. The following construction is inspired from Lyons, Pemantle and
Peres [11], Section 2. Now, starting from the root, for every n choose some
ordering among the vertices w1, ..., wZn

∈ Zn. Since we have survival up to the
k-th generation, among the offspring of the root select the first vertex v1 that
belongs to a descending path of length k, starting from the root.

Because of this choice, for every v ∈ Z1 with v < v1 (according to the
ordering), since we have independence, its offspring will not survive up to
generation k in the original tree, which means it will die out before its
(k − 1)-th branching step. As for the vertices v ∈ Z1 with v > v1, in general
we do not have any information about their offspring. Proceed then by
considering v1 as the new root; this produces another vertex v2 at distance 2
from the root with similar properties. Iterate this up to the (k − 1)-th
generation.

We are now left with a subtree T̃k of Tk in which for every 1 ≤ n ≤ k− 1 we
have appointed a special vertex vn ∈ Zn belonging to a path of length k, every
v ∈ Zn with v < vn whose offspring does not reach Zk and for every v ∈ Zn

with v > vn do not need to satisfy any condition. We call the sequence v1, ..., vk
a spine. Note that, conditioning on survival of the tree, the spine can be taken
to be an infinite sequence. Also, if we are interested in only the portion of T̃k
that effectively goes from the root to Zk, simply delete for each n all of the
vertices v < vn first. Then, take a look at the vertices v > vn: each of they
may or may not belong to a path of length k and therefore they will be kept or
deleted accordingly. Go on for all vertices at a given generation and then for
all generations until all of the vertices have been analysed. Let us call the final
remaining tree T ′

k the spined version of Tk. T ′
k satisfies the property that every

vertex up to the (k − 1)-th generation has at least 1 offspring.
Moreover, we want to note that, starting from T ′

k , it is possible to construct a
weighted tree T ′′

k , with the property that every vertex in T ′′
k up to the (k−1)-th

generation has at least 2 offspring. The procedure is simple: first, contract
every path P = (w1, ..., wl) in T ′

k which consists of only edges (wi, wi+1), with
deg(wi) = deg(wi+1) = 2, into a single edge (w1, wl), then assign it the weight l
which is the length of the compressed path. Lastly, assign weight 1 to all of the
remaining edges. The advantage of such construction is that inside T ′′

k there is
a regular binary tree. We shall see that having such hypothesis will make some
computations easier. T ′′

k will be referred to as the compressed spined version of
Tk.
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2.3 The k-th generation Zk

When looking at a truncated portion Tk of the whole tree, it might be useful to
consider some properties of Zk, the farthest level from the root in Tk.

2.3.1 The size of Zk given |Zk| > 0

Keeping in mind that we shall examine the behaviour of an infection process,
in this section we collect other minor results on Galton-Watson trees that will
prove to be crucial in the next chapter. Indeed at some point we will need to be
able to find a lot of vertices far from the root and, among them, having some
with sufficiently high degree. Therefore we introduce the following technical
lemma:

Lemma 2.2. Consider a supercritical Galton-Watson tree with offspring law
X. Given k ≥ 0 there exists a constant c > 0, depending only on X, such that

P
(
|Zk| < 2ck | |Zk| > 0

)
≤ exp (−ck) (2.2)

Proof of Lemma 2.2. If X ≥ 2 almost surely then m ≥ 2 as well, and there are
at least 2k vertices at distance k from the root almost surely, as in this case T
contains a binary tree.

Let us now focus on the general scenario where P(X ≤ 1) > 0. Here we make
use of the spine and compressed spine decompositions: firstly, fix a distance h
from the root (to be chosen afterwards). From the given tree T consider the
spined version T ′ where each vertex in Tk produces at least 1 child. Because T
has more vertices than T ′, it suffices to prove the statement for T ′. Let also T ′′

be the compressed spined version of T . Fix a constant 0 < c < 1, let h = ck
and remark that

|Z ′′
h | ≥ 2h (2.3)

Given w ∈ Z ′′
h , let Xw be the sum of the weightsWe over the edges e in the path

(in T ′′) from the root to w. Recall that the weight We indicates that the edge
e ∈ T ′′

k corresponds to a contraction of a path in T ′
k which connects the two

endpoints of e and with length We. Since the {We} are independent, geometric
random variables with parameter p equal to the probability that the offspring
law X is equal to 1, we can use a Chernoff bound for Xw (see section A.2) and
obtain that for every constant ϵ > 0:

P
(
Xw > (1 + ϵ)

h

p

)
= P

(
We1 + ...+Weh > (1 + ϵ)

h

p

)
≤ exp

(
− ϵ2

1 + ϵ2
· 1 + ϵ

2
h

)
(2.4)

Now this holds for every w ∈ Zh; let us put

b(ϵ) :=
1 + ϵ

p
g(ϵ) :=

ϵ2

1 + ϵ2
· 1 + ϵ

2
(2.5)
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Also, let B be the event

B := {∃ w ∈ Z ′′
h : Xw > b(ϵ)h} (2.6)

We want to show that no one of these Xw can exceed b(ϵ)h with high probability
as h grows. Indeed by making use of the notation with (2.5) and applying the
inequalities (2.3) and (2.4), together with the union bound, we can get

P (B) = P

 ⋃
w∈Z′′

h

{Xw > b(ϵ)h}


≤

∑
w∈Z′′

h

P (Xw > b(ϵ)h)

≤
(2.3)
(2.4)

2h exp (−g(ϵ)h)

= exp [−h (g(ϵ)− log 2)]

≤ exp(−h)
(

=
h=ck

exp(−ck)
)

(2.7)

here in the second last passage we take ϵ > 0 such that g(ϵ) ≥ 1 + log 2, which
is possible because g(0) = 0 and lim

ϵ→+∞
g(ϵ) = +∞. Since we have chosen a

specific value for ϵ, from now on let b := b(ϵ). Notice that b now only depends
on the law of X because of p.

So inequality (2.7) effectively shows that B occurs with exponentially small
probability. Now let us assume that it does not happen: we know that the
vertices in Z ′′

h we have considered before, when viewed as part of T ′, find
themselves at distance at most bh from the root. Take now

c =
1

b
(2.8)

so that
bh = bck = k

since every vertex in T ′ has at least degree 2, here it is possible to find at least
2h = 2ck vertices at distance k from the root. As a consequence, even the
original tree T has at least 2ck vertices at generation k. Finally, observe that
from (2.8) we have that c only depends on the law of X. This completes the
proof.

2.3.2 Survival of the tree up to a given generation

The previous lemma was based upon conditioning on the event {|Zk| > 0}.
However, what could we say if we did not know that such event is verified?
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Lemma 2.3. Let T be a supercritical Galton-Watson tree with offspring
distribution X and let v be its root. Given Γ > 0, let PΓ be the probability
measure conditioned on the event {deg(v) = Γ}. Let w1, ..., wΓ−1 be the
children of the root. Choose some k > 0 and recall from section 2.1.1 that
{wj → Zk} denotes the existence of a descending path from wj to Zk. Let ωj

be the indicator of the event {wj → Zk}. Notice that, since the offspring of the
different wjs all have the same probability, we have

πk := P(w1 → Zk) = P(wj → Zk)

for all j. Define the event

Yk
v :=

{
ω1 + ...+ ωΓ−1 >

πk
2
(Γ− 1)

}
(2.9)

We have
PΓ

((
Yk
v

)c) ≤ exp
(
−πk

8
Γ
)

(2.10)

Proof of Lemma 2.3. The claim is obvious if the offspring distribution X
satisfies X ≥ 1 almost surely. If P(X = 0) > 0, then the proof is an immediate
application of a Chernoff bound for the sum of the i.i.d. Bernoulli variables
ω1, ..., ωΓ−1 as from Theorem A.2.

2.3.3 Random walks: transience, recurrence

A simple random walk is said transient if, for any given vertex w, the process
returns to w finite times almost surely. We say that it is recurrent if it is not
transient. For a supercritical, infinite branching tree it has been proved (see [6],
theorem 4.3 and proposition 6.4) that a simple random walk is transient.

Now let v be the root of T and pick a child w of v. A further consequence of
transience is that a random walk starting on w will visit w a finite times almost
surely, thus there is positive probability that it never jumps to the root v. We
conclude this section with the following observation:

Observation 2.4. In analogy with Lemma 2.3, a similar claim can be stated
and proved for events other than {w → Zk}, like for example {w → ∞}, the
transience or the event that, starting from some child w of the root v, a random
walk never visits the root for all positive times. Simply replace the events
{wj → ∞}, their indicator functions ωj and their probability πk := P(w1 → Zk)
accordingly.

2.4 Looking for high-degree vertices

In the section we will examine some results about the distribution of the
maximum degree of a possibly large group of vertices. In this case, however,
the possibility of establishing valid estimates strongly depends on the
properties of the offspring distribution X, therefore we will need to make some
assumptions about it.
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2.4.1 Defining a new subset of the heavy-tailed
distributions

Recall that in section 1.2.4 we defined heavy-tailed, subexponential and
light-tailed distribution. Also, the results from Huang and Durrett [29] and
Bhamidi, Nam, Nguyen and Sly [30] for the contact process that we
introduced in section 1.2.5 distinguished between subexponential and
light-tailed distribution. For our model, we require a slightly different
alternative to the subexponential distributions. Indeed in section 3.3.2 we will
present a first result for Galton-Watson trees with offspring law X which
satisfies the following:

∀θ > 0 ∃ k0 = k0(θ) > 0 : P(X ≥ k) > exp (−θk) ∀k ≥ k0 (2.11)

Let us observe first that condition (2.11) for a distribution is stronger than
belonging to the heavy-tailed class:

Lemma 2.5. Let R be a random variable that satisfies equation (2.11). Then
R does not admit any exponential moments, that is E

[
eθR
]
= +∞ for all θ > 0.

Proof of Lemma 2.5. Let

fn := P(R = n), Fn := P(R ≥ n)

and choose some θ > 0. We have

E
[
eθR
]
=

+∞∑
n=1

eθnfn

=

+∞∑
n=1

eθn (Fn − Fn+1)

summation by parts yields

+∞∑
n=1

eθn (Fn − Fn+1) = eθF1 +

+∞∑
n=2

(
eθn − eθ(n−1)

)
Fn

= eθF1 +
(
1− e−θ

) +∞∑
n=2

eθnFn

in the last series, observe that thanks to (2.11) applied with θ
2 , for large n we

have
eθnFn > e

θ
2n

and therefore
+∞∑
n=2

eθnFn >

+∞∑
n=2

e
θ
2n = +∞

thus completing the proof.
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Observe now that the converse is not true, in the sense that it is possible to
define a random distribution R which is heavy-tailed but does not satisfy (2.11).
Here is an example:

Example 2.6. Let us construct a non-negative random variable R by specifying
Fn := P(R ≥ n). Choose some δ > 0 and let F0 := 1, F1 := e−δ. Now there
exists n1 such that

F1 = e−δ = e−
δ
2n100

therefore, let Fn ≡ F1 for all 1 ≤ n ≤ n1.
At this point we proceed inductively: let us assume that we have defined Fj

for all 0 ≤ j ≤ nj and put

Fnj+1 := exp
(
−2jδ (nj + 1)

)
Then, take nj+1 such that

exp
(
−2jδ (nj + 1)

)
= exp

(
− δ

2j+1
nj+1

)
⇐⇒ nj+1 = 22j+1 (nj + 1)

(2.12)
and let

Fn ≡ exp

(
− δ

2j+1
nj+1

)
∀ nj + 1 ≤ n ≤ nj+1

At this point, note that fn = P(R = n) satisfies

f0 = 1−exp (−δ) , fnj = exp

(
− δ

2j
nj

)
−exp

(
−2jδ (nj + 1)

)
, fn = 0 if n ̸= 0, nj

As a consequence, given θ > 0 we have

E
[
eθX

]
=

+∞∑
n=0

eθnfn

= 1− e−δ +

+∞∑
j=1

exp(θnj)

(
exp

(
− δ

2j
nj

)
− exp

(
−2jδ (nj + 1)

))

> 1− e−δ +
+∞∑
j=1

exp

((
θ − δ

2j

)
nj

)
= +∞

thus R cannot have any finite exponential moments.
Now observe that for every k ≥ 0 we can choose j(k) such that

2j(k)−1δnj(k) > θk

This is possible because (2.12) implies that the sequence {nj}j is increasing and

therefore, for the same reason, so is the sequence
{
2j−1δnj

}
j
. As a consequence,

2jδ (nj + 1) > θk =⇒ Fnj = exp
(
−2j−1δnj

)
< exp (−θk)

for all j ≥ j(k). Finally, if j also satisfies nj > k we have

Fnj = exp
(
−2j−1δnj

)
< exp (−θk)

which means that R does not satify (2.11).
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2.4.2 The maximum of i.i.d. random variables

Now that the relevant distributions for our model have been defined, let us go
back to the examination of Galton-Watson trees properties. The next step is
this short technical lemma about the maximum of a collection of i.i.d. random
variables.

Lemma 2.7. Let X1, ..., Xn be i.i.d. random variables that satisfy the property
(2.11) and fix θ > 0. For M =M(θ) > 0 sufficiently large we have

P (max {X1, ..., Xn} < M) ≤ exp (−n exp (−θM)) (2.13)

Proof of Lemma 2.7. We have

P (max {X1, ..., Xn} < M) = P (X1 < M)
n

= (1− P (X1 ≥M))
n

<
(2.11)

(1− exp (−θM))
n

≤ exp (−n exp (−θM))

where (2.11) requires that M ≥M(θ).

2.4.3 The maximum degree among vertices in Zk

We finish this chapter with one last lemma about the maximum degree we can
expect to find among the vertices located some generations away from the root.

Lemma 2.8. Consider a supercritical Galton-Watson tree T with offspring
distribution X. Let v be the root of T and, for any given Γ ≥ 1, let PΓ be the
probability measure obtained by conditioning on the event {deg(v) = Γ}.
Choose ϵ > 0.

(a) There exist two constants c,Γ0 > 0, depending only on the law of X, such
that the event

Mv,ϵ :=
{
|ZϵΓ| ≥ 2cϵΓ

}
(2.14)

satifies
PΓ

(
Mc

v,ϵ

)
< exp(−cϵΓ) (2.15)

provided that Γ ≥ Γ0.

(b) Assume now that X satisfies the property (2.11) and define the event

Dv,ϵ :=

{
max
w∈ZϵΓ

deg(w) ≥ 2Γ

}
(2.16)

There exist two constants c′ > 0, depending only on the law of X, and Γ′
0,

depending on the law of X and on ϵ, such that

PΓ

(
Dc

v,ϵ|Mv,ϵ

)
< exp(−c′ϵΓ) (2.17)

for all that Γ ≥ Γ′
0.
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In words, provided that Γ is large enough, with very high probability we can
find at least 2bϵΓ vertices in ZϵΓ and at least one of them will have a degree
which is not smaller than 2Γ. Before proceeding with the proof, we just want
to anticipate here that the events (2.14) and (2.16) will play a fundamental role
in our main result.

Proof of Lemma 2.8.

(a) If X ≥ 2 then there are at least 2ϵΓ vertices in |ZϵΓ| and thus the claim is
verified with c = 1, so assume that this is not the case. An application of
Lemma 2.3 implies that the event YϵΓ

v in (2.9) satisfies

PΓ

((
YϵΓ
v

)c) ≤ exp
(
−πϵΓ

8
Γ
)
≤ exp

(
−π∞

8
Γ
)

(2.18)

where recall that, for every w ∈ S, πϵΓ = P(w → ZϵΓ) and π∞ = P(w →
∞); the last passage in (2.18) has the advantage that π∞ only depends on
the offspring distribution. Then, choose Γ large enough so that

π∞
2

(Γ− 1) > 1 ⇐⇒ Γ > 1 +
2

π∞
=: Γ0 (2.19)

so that there is at least one good child with good property {w → ZϵΓ}.
Finally, under the event YϵΓ

v we have |ZϵΓ| > 0, thus Lemma 2.2 can be
applied with k replaced by ϵΓ, so that there exists c̃ > 0 such that

PΓ(Mc
v,ϵ | YϵΓ

v ) < exp(−c̃ϵΓ) (2.20)

In conclusion, since c̃ only depends on X, we simply combine (2.18) and
(2.20) with c := π∞

8 + c̃ to get (2.15).

(b) For this second part, observe first that since the degree D of a vertex is
equal to its offspring X in the case of the root, whereas D = 1+X for all
of the other vertices, we can say that properties (2.11) or (??) are valid
for D if and only if they hold for X. Now we assume that Mv,ϵ holds and
therefore select a group of 2c̃ϵΓ vertices in ZϵΓ. At this point we apply
Lemma 2.7 to their degrees, with n = 2c̃ϵΓ and M replaced by 2Γ. We
obtain

PΓ

(
Dc

v,ϵ|Mv,ϵ

)
≤ exp (− exp (Γ(ϵc̃ log 2− 2θ))) (2.21)

now (2.21) must hold for all θ > 0, provided that Γ ≥ Γ′
0(θ) is large

enough. Therefore we can select θ = ϵ
j with j such that

c̃ log 2− 2

j
> 0 ⇐⇒ j >

2

c̃ log 2− 1
(2.22)

Now from (2.22) we have that j is a function of c̃ which only depends on

X, therefore so does the constant c′ :=
(
c̃ log 2− 2

j

)
. Now that θ has been

chosen, simply put Γ′
0 := Γ′

0(θ).
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Now we prefer to write

exp (− exp (c′ϵΓ)) ≤ exp (−c′ϵΓ) (2.23)

because, despite the fact that (2.23) is not a sharp estimate, the analytical
expression of the right hand side will be more convient for the future
proofs. This concludes Lemma 2.8.
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Chapter 3

A formal approach to a SIS
model

In this chapter we provide a formal definition of a spread of infection model on
branching trees, examine a couple more lemmas concerning it, and finally we
state our main results.

3.1 Introduction

Consider a supercritical Galton-Watson tree with offspring law X. For every
realization of this tree T , let us add particles on its vertices. Given a vertex
v ∈ T we declare that the number of particles on v at time 0 is distributed as
a Poisson random variable with mean µdeg(v), where µ > 0 is a parameter
of our system and deg(v) is the degree of v. This applies to each vertex v
independently. Now that the tree and the particles occupying it are set, we can
let the system evolve in time: each particle performs a continuous-time simple
random walk on T independently from the others by waiting for an exponential
time (with rate 1), picking a neighbour uniformly at random and then jumping
to it.

Once the particles are set, let us proceed and consider a SIS infection process,
where at time t = 0 we add one infected particle to the root. By doing so, we can
be sure that there is at least one particle infected to actually start the process,
even if the Poisson distribution determining the amount of particles at the origin
should be 0. Recall from section 1.3.2 that in the SIS model infected particles
(I) immediately spread the infection to suscettible (S) particles on the same
vertex. Furthermore, we assume that an infected particle heals (thus turning
back to S type) after an exponential time with rate λ > 0.
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3.2 Stationarity

Our work will rely on the fact that the particles are distributed as Poisson
because of the following two reasons: firstly, every time we will need to consider
only some special subset of particles, because of the thinning property (see
Proposition B.1) they will be distributed as Poisson too, allowing for quicker
computations. Secondly, note how the particle system is in stationarity, as
established in the following proposition.

Proposition 3.1. Let N (v, t) be the number of particles on a given vertex
v at time t. We know that N (v, 0) is a Poisson distribution with parameter
µdeg(v). We claim that N (v, ·) is stationary, in the sense that, for any given
t > 0, N (v, t) is Poisson with parameter µdeg(v).

Proof of Proposition 3.1. Fix a vertex v and a time t > 0 and observe that

N (v, t) =
∑
w

M(w, t)

where M(w, t) is the number of particles located in the vertex w at time 0 that

satisfy the event
{
w

t−→ v
}
of having performed a random walk such that they

are in v at time t. Now the thinning property from Proposition B.1 implies that∑
w
M(w, t) is a Poisson distribution, with parameter

∑
w

µdeg(w)P(w t−→ v)

Now notice that the events
{
w

t−→ v
}
and

{
v

t−→ w
}
satisfy

deg(w)P(w t−→ v) = deg(v)P(v t−→ w)

and thus we conclude that∑
w

µdeg(w)P(w t−→ v) =
∑
w

µdeg(v)P(v t−→ w)

= µdeg(v)
∑
w

P(v t−→ w)

= µdeg(v)

that is N (v, t) and N (v, 0) have the same law.

3.3 The infection problem

The evolution of the model is influenced by - and thus changes according to -
these three factors, which play the roles of parameters: the offspring law X, the
particle density µ and the healing rate λ.
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3.3.1 The survival event

Recall that the infection is said to survive if for all times t > 0 there is at least
one infected particle on the tree. We say that the infection dies out if it does not
survive. Observe that we have excluded a priori some choice for the parameters
involved that would otherwise make the discussion trivial. For example, if µ = 0
then the only particle on the tree is the infected one that we add to the origin,
thus it will recover for any λ > 0 almost surely.

Also, if there are no particles at the root before the infected particle is added
and the only infected one heals before jumping to some other vertex, then the
infection dies out. Both events happen with positive probabilities for any choice
of µ and λ. As a consequence, the actual problem is whether the infection may
survive with positive probability.

3.3.2 The case of the finite tree

Also, the infection dies out almost surely if the tree is finite: to see this, observe
that there is always positive probability P0 for the number of initial particles
to be smaller than the number of vertices, regardless of the particle density µ.
Therefore even if we add another one on the root, the number of total particles
still does not exceed the number of vertices. Fix some T > 0 and observe that
in the time interval [0, T ] there is positive probability P1 for the particles to
scatter, so that we have at most one particle per vertex. At this point, for
any choice of λ there is positive probability P2 for all of these particles to heal
before any of them manages to jump within the time interval [0, 2T ]. So the
whole process has positive probability P0P1P2 to happen in the limited time
interval [0, 2T ]. Therefore, as time goes to infinity, at some point the infection
will die almost surely. Now Theorem 2.1 states that a necessary condition for
the tree to be infinite is that it is supercritical, thus we require such consequent
choice for the offspring distribution X.

3.4 Main results

Here we present our results about the long-time behavious of the spread of
infection.

Theorem 3.2. Consider the SIS model on a Galton-Watson tree with
supercritical offspring distribution X that satisfies the property (2.11). For any
choice of µ > 0 and λ > 0, the infection survives with positive probability.

As anticipated in section 2.3, things change when we remove the property
(2.11):

Theorem 3.3. Consider the SIS model on a Galton-Watson tree with
supercritical offspring distribution X which has unbounded support. There
exists a constant µc < +∞ such that the infection survives with positive
probability for all µ > µc.
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The proof of these theorems can be found in the next chapter.

3.4.1 Phase transition

Both theorems above show that the infection can survive under different
hypothesis. However, fixed an offspring law X with the necessary properties,
while in Theorem 3.2 we see that the parameters µ and λ do not influence the
long term behaviour of the system, in Theorem 3.3 it is required instead that
the particle density µ is large enough. As we will see in the final chapter, we
believe that the infection dies out when µ is small, although we have not
managed to prove it yet. In case this happens, we say that the process
undergoes a phase transition in the particle density µ.

3.5 Preliminary lemmas

This section contains two lemmas related to our model which we will require to
prove our results. We provide their proof in the next section.

3.5.1 Keeping the infection alive

The purpose of this first lemma is to analyse the exchange of particles between
an infected vertex v with a high degree and its children in order to show that the
infection process can be kept alive for long enough so that a very high number
of particles can visit v. This argument is similar to the one that Chatterjee and
Durrett used in [20] (in particular, see Section 2) to prove a similar result for
the contact process starting with all infected vertices.

Lemma 3.4. Consider the SIS infection model on a supercritical
Galton-Watson tree with offspring law X. Let v be a vertex of X and let PΓ be
the probability distribution conditioned on the event {deg(v) = Γ}. Let τ be the
first time that an infected particle reaches v: we shall only consider the
particles that have never visited the parent vertex of v for all times before τ .
Let Ñt be the number of such particles that find themselves on v at a given
time t > τ ; put

τ ′ := inf
{
t > τ : Ñt ≤ 1

}
Now take Vv to be the number of particles that jump on v for their first time
within the interval (τ, τ ′) and consider the event

Kc,v := {Vv ≥ exp(cµΓ)}

Then there exist two constants c,Γ0 > 0 such that

PΓ

(
Kc

c,v

)
≤ 4 exp(−cµΓ) (3.1)

for all Γ > Γ0. The constants c and Γ0 both depend on the law of X. Moreover,
Γ0 also depends on µ and is decreasing as a function of it.
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3.5.2 Propagation of the infection over generations

Next, we present a second lesser lemma. Its purpose will be to make the proof
of our first theorem easier to understand when X ≥ 2 almost surely, as in the
other cases we will require some changes and thus present similar arguments
directly in the proof of the corresponding results. The objective here will be
trying to understand whether the infection can expand to a specific generation
of vertices ahead.

Lemma 3.5. Consider the SIS infection model on a Galton-Watson tree with
offspring law X such that X ≥ 2 almost surely. Let v be the its root, with
deg(v) = Γ, and define PΓ in analogy with the previous lemma. Assume that
there exists a constant C > 0 such that there are exp(CΓ) particles on v at time
0 and no particles elsewhere. Suppose that each particle, independently from the
others, is removed from the tree after an exponential clock with rate λ. Fix ϵ > 0
and let Xv be the event there are at least 2ϵΓ vertices in ZϵΓ such that each one
of them is reached by one of the particles. Then there exists a value of ϵ such
that

PΓ(X c
v ) ≤ exp(−cΓ) (3.2)

for some constant c > 0 which depends on ϵ and on λ.

3.6 Proof of the preliminary lemmas

Let us begin with the proof of Lemma 3.4 first. We are going to divide it in
two steps, first under the stronger assumption that X ≥ 2 almost surely, then
in the general case.

Proof of Lemma 3.4, assuming that X ≥ 2 almost surely. The first step is to
define the quantity Nt as follows:

• N0 := 1 + Ñτ , where with Ñτ we indicate the number of particles that
have never visited the parent of v for all times before τ and that are on
v when an infected particle reaches it from the first time. We add one
to such quantity as we want to consider the particle that has brought the
infection as well (and which effectively jumps on v in that instant);

• Let Nt decrease by 1 every time that some particle on v leaves it;

• Let Nt increase by 1 at time t > 0 if there is some particle that has never
been in v for all times s < t and moves to v at time t, coming from one of
its children.

Now, each child w of v has a number of particles occupying it at a given t
distributed as Poisson(µdeg(w)) (see Lemma 3.1). Thus, if we define

ατ := PΓ (a particle never visits the parent of v for all times t < τ) (3.3)
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then the number of particles on w with this property is Poisson(ατµdeg(w))
(see Proposition B.1); for the same reason, if we further put

αw,t := PΓ (a particle on w at time t > 0 never visited v for all times s < t)
(3.4)

then there are Poisson(αταw,tµdeg(w)) particles on w at time t with said
property. Observe that the definition in (3.4) makes sense even in the case
t = +∞.

Notice also that since we are assuming X ≥ 2 a.s., the tree T contains a
binary tree. Thus we deduce that, for a given particle, the function

St := distance from the root r on the tree T

is greater than or equal to

SB
t := distance from the root r in the binary tree

with SB
t behaving like a random walk on Z≥0, with probability 2

3 of increasing
by 1 and 1

3 of decreasing by 1 (except when in position 0, where it jumps almost
surely to 1). There is a martingale argument that shows that, for an asymmetric
random walk on Z, where the probability of increasing by 1 is greater than the
probability of decreasing by 1, it is possible to compute the probability that
the process, starting from within an interval (a, b), leaves it from one endpoints
instead of the other. By taking the limit b→ ∞, we can see that there is positive
probability that the random walk never actually reaches a for all times. To see
this, look at Section B.2 in the appendix. If we translate this in terms of our
tree, we have that

αw,t ≥ αw,∞ ≥ αB (3.5)

where αB denotes the probability that a random walk on a binary tree that
does not start on the root never visits it for all times. The consequence of 3.5
is that the distribution

Poisson(ατα
Bµdeg(w))

represents a worst-case scenario for the number of particles occupying the
children of v which can interact with v itself. Therefore, it will suffice to prove
the lemma in such case, therefore let us assume that each child w of v has
Poisson(ατα

Bµdeg(w)) number of particles. The advantage is that we have
eliminated the dependence from time in the parameter of the Poisson
distribution.

So how does Nt evolve in time? We know that each particle will jump
independently with rate 1, so that Nt decreases by 1 with rate Nt. On the other
hand, in each child w of v we have particles that jump with rate ατα

Bµdeg(w);
however, only those that move towards v produce an increase by 1 in Nt, and
this happens with probability 1

deg(w) . By summing over the Γ − 1 children we

get that Nt increases by 1 with overall rate

r := ατα
Bµ(Γ− 1) (3.6)
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At this point observe that, even though Nt is a continuous time process, it
actually changes only at the times where some particle jumps according to the
rules above. Therefore, to simplify the notations, let us treat Nt as a discrete
process in the first place. Consequently, we can now write

Nt+1 =


Nt − 1 with probability Nt

Nt+r

Nt + 1 with probability r
Nt+r

(3.7)

and recall that N0 = 1 + Ñτ . Now Ñτ is distributed as a Poisson(ατµΓ). An
application of Theorem A.3 with δ = 1

2 implies that

PΓ

(
Ñτ ≤ 3

4
ατµΓ

)
≤ exp

(
− 9

128
ατµΓ

)
(3.8)

We will require (3.8) in a few moments. As for relations in (3.7), they suggest
that whenever Nt < r, the movement of particles favours an increase of Nt,
while on the contrary they tend to let Nt decrease whenever Nt > r. With
the idea that we would like the infection to be alive for a long time, we use
the following strategy: assume that N0 >

r
4 ; this occurs with high probability

thanks to (3.8), so long as Γ is large enough so that

3

4
ατµΓ >

r

4
⇐⇒
(3.6)

3Γ > αB(Γ− 1)

which holds for all positive values of Γ.
Now

r

4
> 2 ⇐⇒ Γ > 1 +

8

αταBµ
=: Γ0 (3.9)

If (3.9) holds then Nt > 2 and thus the infection cannot heal. At this point,
note that whenever we have that Nt ≤ r

4 , we can observe that until

2 ≤ Nt ≤
r

2
(3.10)

relation (3.10), combined with (3.7), produces that the increase probability for
Nt+1 satisfies

r

Nt + r
≥ 2

3
(3.11)

Now we observe that, so long as (3.10) is valid, inequality (3.11) shows that Nt

dominates stochastically a random walk Wt on Z with probability 2
3 of moving

by +1, probability 1
3 of moving by −1 and such that W0 = r

4 . The point is that
we can show that for this process is very unlikely to reach 2 before r

2 : to see
this, simply apply again the martingale argument from Section B.2, by taking
a = 2 and b = r

2 . If t
∗ is the first time that the random walk leaves the interval

Ir and β = P
(
Wt∗ = r

2

)
, we have

β =

(
1
2

)2 − ( 12) r
4(

1
2

)2 − ( 12) r
2

(3.12)
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Note that

1− β =

(
1
2

) r
4 −

(
1
2

) r
2(

1
2

)2 − ( 12) r
2

≤ 4

((
1

2

) r
4

−
(
1

2

) r
2

)

≤
(3.6)

4 exp

(
− log 2ατα

BµΓ

8

)
=

c:= log 2αταB

16

4 exp (−2cµΓ) (3.13)

So we know that it is very unlikely for the random walk to leave the interval Ir
in 2 instead of r

2 . Therefore until we have Nt ≥ 2, we simply keep applying this
strategy for every time that Nt falls into the range (3.10). The question is how
long does this process usually go on? If G represents the number of iterations
that this strategy needs to be applied for before eventually having only one
particle left in v, G is a geometric random variable with probability γ := 1− β
of success and note that for any j we have

PΓ(G ≤ j) = 1− PΓ(G > j)

≤ 1− (1− γ)j

≤ jγ

=
(3.13)

4j exp (−2cµΓ)

≤ 4 exp (−cµ Γ) (3.14)

if we take
j = exp (cµΓ) (3.15)

This proves a first part (3.1), provided that Γ is large enough as required in
(3.9). Also, notice that for every time that the strategy is a success (in the
sense that the infection is kept active), we have that Nt has to grow from r

4 up
to r

2 , with
r

2
− r

4
=
r

4
>

(3.9)
2

which implies that, for every iteration, we have at least 2 new particles that
jump to v. As a consequence, under the event that the number of iterations
j satisfies (3.15), there is an exponentially high number (with respect to Γ) of
particles that jump to v in the process. This finishes the proof of (3.1) as well,
thus concluding the proof in the case X ≥ 2 almost surely.

We now proceed with the general case.
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Proof of Lemma 3.4, with P(X ≤ 1) > 0. We would like to provide the same
proof of the previous case, however we cannot make use of relation (3.5) this
time, as our tree does not contain a binary tree in general. Therefore, we need
a workaround. Given a tree T , let G(T ) be the event that a random walk,
starting from a child w of v, never visits v for all positive times. Since X is
supercritical, transience implies that there exists δ > 0 and a family T of trees
such that

PΓ(T) > 0 (3.16)

and
PΓ(G(T ) ≥ δ) (3.17)

for all trees T ∈ T. We say that a tree T is good if it satisfies (3.16) and
(3.17) with δ replaced by δ

1000 . Then, we say that a child w of v is good if T
is good. If P is the probability that w is good, an application of Theorem 2.3
and Observation 2.4 implies that the event W that at least P

2

⌊
Γ−1
2

⌋
children of

v are good satisfies

PΓ(Wc) ≤ exp

(
−P

4

⌊
Γ− 1

2

⌋)
≤ exp

(
− P

16
Γ

)
(3.18)

Under the event W, let w1, ..., w⌊Γ−1
2 ⌋ be the good children of v and let S be

the collection of them. At this point we simply try to repeat the argument of
the lemma in the case X ≥ 2 almost surely; however, this time we restrict out
argument to the tree T (v)S (recall from section 2.1.1 that T (v)S is obtained by
T (v) by deleting the edges between v and its children that do not belong to S
and then taking the connected component containing v. Define the quantities
N0 and Nt, for t > 0, just like in the previous case, which we recall here:

• N0 := 1 + Ñτ , where with Ñτ we indicate the number of particles that
have never visited the parent of v for all times before τ and that are on
v when an infected particle reaches it from the first time. We add one
to such quantity as we want to consider the particle that has brought the
infection as well (and which effectively jumps on v in that instant);

• Let Nt decrease by 1 every time that some particle on v leaves it;

• Let Nt increase by 1 at time t > 0 if there is some particle that has never
been in v for all times s < t and moves to v at time t, coming from one of
its children.

This time the particles we consider for each child w are distributed as Poisson(
αταw,tµ

⌊
Γ−1
2

⌋)
, where ατ and αw,t are defined like in (3.3) and (3.4)

respectively. In this case, observe that

αw,t ≥ αw,∞ ≥ α :=
δ

1000
(3.19)

thus we restrict the number of particles per each child w to be the (worst)
case Poisson

(
αταµ

⌊
Γ−1
2

⌋)
, which is independent of time. Equation (3.19) is a
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candidate replacement for (3.5) from the case X ≥ 2 almost surely that we were
looking for, therefore now we can simply previous argument to proceed with the
rest of the proof. By observing again that particles leave v with rate Nt and
move to w from one of its children with rate

r′ := αταµ

⌊
Γ− 1

2

⌋
(3.20)

Let us simplify again the process Nt by treating it as if time were discrete. In
complete analogy with (3.7) we have

Nt+1 =


Nt − 1 with probability Nt

Nt+r′

Nt + 1 with probability r′

Nt+r′

(3.21)

Since here again N0 = 1 + Ñτ , with Ñτ distributed as Poisson(ατµΓ), the
previous inequality (3.8), namely

PΓ

(
Ñτ ≤ 3

4
ατµΓ

)
≤ exp

(
− 9

128
ατµΓ

)
(3.22)

still holds. This implies implies that with high probability we have N0 >
r′

4 , so
long as we require that

3

4
ατµΓ >

r′

4
⇐⇒
(3.20)

3Γ > α

⌊
Γ− 1

2

⌋
which is always verified, and

r′

4
> 2 ⇐⇒

⌊
Γ− 1

2

⌋
>

8

αταµ
=: Γ0 (3.23)

similarly to (3.9). Finally, if we have

2 ≤ Nt ≤
r′

2
(3.24)

we deduce from (3.21) that
r′

Nt + r′
≥ 2

3
(3.25)

and at this point we can apply the same martingale argument as in the previous
case: whenever we have Nt ≥ r′

4 we compare Nt with a random walk Wt on Z
with probability 2

3 of increasing by 1, 1
3 of decreasing by 1, and W0 = r′

4 . This
is valid so long as condition (3.24) is satisfied. If t∗ is the first time that Wt

leaves the interval
(
2, r

′

2

)
and β′ := P

(
Wt∗ = r′

2

)
, we have

β′ =

(
1
2

)2 − ( 12) r′
4(

1
2

)2 − ( 12) r′
2

(3.26)
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and

1− β′ =

(
1
2

) r′
4 −

(
1
2

) r′
2(

1
2

)2 − ( 12) r′
2

≤ 4

(1

2

) r′
4

−
(
1

2

) r′
2


≤

(3.20)
4 exp

(
− log 2αταµΓ

32

)
=

c′:= log 2ατα
64

4 exp (−2c′µΓ) (3.27)

And this shows that it is very unlikely for the random walk to leave the interval(
2, r

′

2

)
in 2 instead of in r′

2 . This strategy can be applied again for every

instance that the condition (3.24) is verified. The conclusion follows directly
from the same geometric argument as in the case X ≥ 2 almost surely: if G
represents the number of iterations that this strategy needs to be applied for
before eventually having only one particle left in v, G is a geometric random
variable with probability γ′ := 1−β′ of success and note that for any j we have

PΓ(G ≤ j) = 1− PΓ(G > j)

≤ 1− (1− γ′)j

≤ jγ′

=
(3.13)

4j exp (−2c′µΓ)

≤ 4 exp (−c′µ Γ) (3.28)

if we take
j = exp (c′µΓ) (3.29)

This proves a first part (3.1), provided that Γ is large enough as required in
(3.23). Also, notice that for every time that the strategy is a success (in the

sense that the infection is kept active), we have that Nt has to grow from r′

4 up

to r′

2 , with
r′

2
− r′

4
=
r′

4
>

(3.23)
2

which implies that, for every iteration, we have at least 2 new particles that
jump to v. As a consequence, under the event that the number of iterations
j satisfies (3.29), there is an exponentially high number (with respect to Γ) of
particles that jump to v in the process. This finishes the proof, showing that
(3.1) is satisfied with the constant c′. Finally, take c := max

{
P
16 , c

′} so that
(3.18) holds as well.
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It remains to prove Lemma 3.5. The strategy here is showing first that it
suffices to prove the statement in the case of the binary tree, then proceed by
checking that things actually work for such a tree.

Proof of Lemma 3.5. As first step, we claim that the particles from v can visit
at least the same amount of vertices that they would do in the special case of
a regular binary tree: to see this, let us establish a comparison between two
version of the random walks, the first one on a binary tree (B), the second on
our general tree (G). For simplicity, let us consider only the particles that at
every jump move always to a child and not back to their parent vertex. We now
would like to couple the processes (B) and (G), so that whenever (G) moves,
so does (B). In the tree (G) we have two cases: the number of possible moves
could be either even or odd. If it is odd, we eliminate the last child from our
current position, so that we reduce ourselves to the even situation. Now every
time the random walk (G) performs a jump to one of the first half of children,
simply let the process (B) move to the first child, otherwise let (B) move to
the second one. Notice that by this rule we have that two distinct paths in (B)
cannot correspond to two identical paths in (G), therefore number of vertices
explored by the random walk (G) is at least the same amount explored in (B).
This proves the claim. Also note that the random walk on (G) at a given vertex
w with degree deg(w) = d satisfies that the probability of moving to a child of
w is given by d−1

d , when d is odd, and d−2
d , if d is even. Notice that

min

{
inf

d≥3,d even

d− 2

d
, inf
d≥2,d odd

d− 1

d

}
=

1

3

with 1
3 being the probability that a simple random walk in (B) chooses a specific

adjacent vertex at a jump.
So, because of this coupling argument, it suffices to show that the statement

is true in the case of the binary tree. Let w be a vertex in ZϵΓ, pick a particle u

and let
{
v ∼

u
w
}

be the event that u reaches w via the minimal path, without

jumping backwards and before being removed, and let
{
v

i→ w
}

be the event

that some particle manages to jump to v before being deleted. Because the tree
is binary, we have

PΓ(v ∼
u
w) = (3 (1 + γ))

−ϵΓ
(3.30)

per each particle. Thus the event X c
∆ that some vertex in ZϵΓ is not reached by

any infected particles satisfies

PΓ(X c
∆) = PΓ

( ⋃
w∈ZϵΓ

{
v

i→ w
}c
)

≤ PΓ

( ⋃
w∈ZϵΓ

⋂
Particles u on v

{
v ∼

u
w
}c
)

≤
∑

w∈ZϵΓ

(1− PΓ(v ∼ w))
exp(CΓ)
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Now we use that |ZϵΓ| = 2ϵ∆ in the binary tree, together with (3.30), to obtain∑
w∈ZϵΓ

(1− PΓ(v ∼ w))
exp(CΓ)

= 2ϵΓ
(
(1− 3(1 + γ))

−ϵΓ
)exp(CΓ)

≤ exp
(
ϵΓ log 2− exp(CΓ)(2(1 + γ))−ϵΓ

)
≤ exp (ϵΓ log 2− exp (Γ (C − ϵ log(2(1 + γ)))))

≤ exp (−Γ(C + ϵ log(1 + γ))) (3.31)

provided that we have

ϵ <
C

log(2(1 + γ))
(3.32)

and this finishes the proof.
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Chapter 4

Proof of Theorems 3.2 and
3.3

In the first theorem, the proof will consist of an iterative multiscale scheme and
will distinguish between the case where we assume that X ≥ 2 almost surely
and then the general case. In each step we show that the infection can spread
with very high probability from a vertex with a given degree ∆ to another one
with degree 2∆. Finally, we check that this procedure can be repeated infinitely
many times with positive probability of succeeding.

Proof of Theorem 3.2, assuming that X ≥ 2 almost surely. Take a vertex v0
such that deg(v0) := ∆0 and assume that an infected particle jumps to v0 at
some time t0 < +∞. Lemma (3.4) applied to the tree T (v0) with Γ = ∆0

implies that
P
(
Kc

c1,v0

)
≤ 4 exp(−c1µ∆0) =: F1,1 (4.1)

provided that ∆0 is large enough. Here the constant c1 > 0 is independent of µ
and ∆0. At this point the second part of Lemma 2.8 (recall that the first part
is trivial if X ≥ 2 almost surely), applied to the tree T (v0), Γ = ∆0 and some
ϵ > 0 to be chosen later, implies that

P
(
Dc

v0,ϵ

)
< exp(−c2ϵ∆0) =: F1,2 (4.2)

provided that ∆0 is large enough. Here the constant c2 depends only on the
law of X. Thus, assuming that Dv0,ϵ is verified, there exists a vertex v1 ∈ Zϵ∆0

with deg(v1) ≥ 2∆0 . Finally, assuming that the event Kc1,v0 from Lemma (3.4)
hold, we have at least exp (c∆0) particles on v0. Within Tv0 , we can couple the
evolution of each one of those particles to the process described in Lemma 3.5
to get that there exists a choice for the previous ϵ such that

P(X c
v0) ≤ exp(−c3∆0) =: F1,3 (4.3)
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with c3 a function of ϵ, µ, λ and X. Now thanks to (4.1), (4.2) and (4.3) we
have shown that the infection can spread from v0 to v1 with probability

P1 := (1− F1,1) (1− F1,2) (1− F1,3)

At this point, we could apply this argument again to the vertex v1 obtain that
the infection reaches another vertex v2, with degree deg(v2) ≥ 2 deg(v1) ≥ 4∆0,
with probability

P2 := (1− F2,1) (1− F2,2) (1− F2,3)

Inductively, for every j ≥ 0 the infection spreads from a vertex vj with deg(vj) ≥
2j∆0 to another vertex vj+1 with deg(vj+1) ≥ 2j+1∆0 with probability

Pj := (1− Fj,1) (1− Fj,2) (1− Fj,3)

where

Fj,1 ≤ 4 exp
(
−c1µ2j∆0

)
, Fj,2 ≤ exp(−c2ϵ2j∆0), Fj,3 ≤ exp(−c32j∆0)

Observe that the quantities Fj,i above have the form

ϕ exp
(
−ψ2j

)
for some positive constants ϕ and ψ. We would like to show that

ϕ exp
(
−ψ2j

)
≤ 1

12

1

2j
(4.4)

for some j ≥ j0. Condition (4.4) rewrites

2j

j
≥ log(24ϕ)

ψ

which clearly holds for all j greater than some j0. At this point, for the
application of Lemmas 3.4 and 2.8 in the first two steps of the first iteration it
was necessary to have ∆0 large enough, let us say larger than some ∆̃. At this
point, choose ∆0 such that

∆0 ≥ 2j0∆̃ (4.5)

so that all required conditions on ∆0 are satisfied. Also, define

ϕ = 4 ψ = max {c1µ∆0, c2ϵ∆0, c3∆0}

so that

max
i=1,2,3

Fj,i ≤ ϕ exp
(
−ψ2j

)
≤

(4.4)

1

12

1

2j
(4.6)

for all j ≥ j0. Finally, let Fj be the event that the j-th iteration of this procedure
fails, and F the event that the whole iterative scheme, starting from the step
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j0, fails at some point. We have

P(F) = P

 ⋃
j≥j0

Fj


≤

∑
j≥j0

P(Fj)

≤
(4.6)

∑
j≥j0

1

4

1

2j

≤ 1

2
(4.7)

(4.7) shows that the iterative procedure works with positive probability. Thus,
for the infection to survive for all times, it suffices that it manages to reach some
vertex with degree at least ∆0, large enough as indicated in (4.5). Observe that
this happens with positive probability, as for instance the root has positive
probability of having degree at least ∆0. This concludes the proof.

Proof of Theorem 3.2, with P(X ≤ 1) > 0. Take now a generic offspring law X
with E[X] > 1 and such that it satisfies the (2.11) property. Take again a
vertex v0, with deg(v0) = ∆0 to be determined, and assume that some infected
particle moves to v0 at some time t0 < +∞. Let S be a set which consists of⌊
∆0−1

2

⌋
children of v0. Recall from section 2.1.1 that T (v0)

S is the subtree of
T (v0) where we delete the children of v0 which do not belong in S and take the
connected component containing v0. This time, because of independence, we
will need to split the iterative argument between T (v0)

S and T (v0)
Sc

Firstly we proceed like in the previous case and apply Lemma (3.4) to the
tree T (v0)

S , with Γ =
⌊
∆0−1

2

⌋
: there exists c1 > 0 such that, for large enough

∆0 we have
P
(
Kc

c1,v0

)
≤ 4 exp(−c1µ∆0) =: F1,1 (4.8)

where c1 does not depend on µ and ∆0.
At this point we need a different construction. Since X is supercritical, pick

a constant d ≥ 0 and define the truncated distribution Xd associated to X by

Xd := X|X ≤ d (4.9)

that is

P(Xd = x) =

{
P(X=x)
P(X≤d) if x ≤ d

0 otherwise

Since the Xd converge in probability to X as d → +∞, we can choose d large
enough so that

E[Xd] > 1 (4.10)

Take now ϵ > 0, to be chosen afterwards. From now on, we will consider only
the tree Tϵ∆0

(v0)
Sc

. Then, let T := T̂ϵ∆0
(v0)

Sc

be the truncated version of

40



Tϵ∆0(v0)
Sc

where we eliminate the offspring of all vertices that have more than
d − 1 children. Because of condition 4.10, T is supercritical, therefore we can
apply Lemma 2.8 to it, with Γ =

⌊
∆0−1

2

⌋
, to get that for large enough ∆0 we

have

max
{
P
(
Mc

v0,ϵ

)
,P
(
Dc

v0,ϵ |Mv0,ϵ

)}
< exp(−c2ϵ∆0) =: F1,2 (4.11)

for some c2 > 0 which depends only on the law of X. Assuming that Mv0,ϵ

and Dv0,ϵ hold, there exists some vertex v1 ∈ Zϵ∆0
(v0)∩ T such that deg(v1) ≥

2 deg(v0) = 2∆0.

Take now w ∈ Zϵ∆0
(v0) ∩ T . For a particle u, let

{
v0 ∼

u
w
}

be the event

that u reaches w from v0 via the minimal path, without jumping backwards and

before it attempts to heal, and let
{
v0

i→ w
}

for the event that the infection

can spread from v to w. We have

P(v0 ∼
u
w) ≤ ((d− 1) (1 + γ))

−ϵ∆0 (4.12)

where we used the fact that every vertex in T \ {Zϵ∆0(v0) ∩ T} has no more
than d − 1 children. Now the event X ∗c

∆ that some w ∈ Zϵ∆0(v0) ∩ T is not
reached by any infected particles satisfies

P(X ∗c
∆ ) = P

 ⋃
w∈Zϵ∆0

(v0)∩T

{
v0

i→ w
}c


≤ P

 ⋃
w0∈Zϵ∆0

(v0)∩T

⋂
Particles u on v

{
v0 ∼

u
w
}c


≤

∑
w∈Zϵ∆0 (v0)∩T

(
1− P(v0 ∼

u
w)
)#{Particles u on v}

Now under the event Kv0 we know that

# {Particles u on v} ≥ exp(Cµ∆0) (4.13)

with C > 0 independent from µ and ∆0. Also, conditioning on Mv0,ϵ, we have
that there exists b > 0, depending only on the distribution X, such that

|Zϵ∆0(v0) ∩ T | ≥ 2bϵ∆0 (4.14)

At this point we combine (4.13) and (4.14) to write∑
w∈Zϵ∆0

(v0)∩T

(1− P(v ∼ w))
#{Particles u on v}

≤ 2bϵ∆
(
(1− (d− 1)(1 + γ))

−ϵ∆
)eCµ∆0

≤ exp
(
bϵ∆0 log 2− exp

(
Cµ∆0((d− 1)(1 + γ))−ϵ∆0

))
≤ exp (bϵ∆0 log 2− exp (∆0 (Cµ− ϵ log((d− 1)(1 + γ)))))
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Finally, choose ϵ such that

ϵ <
Cµ

log((d− 1)(1 + γ))

Now if ∆0 is large enough we have

exp (bϵ∆0 log 2− exp (∆0 (Cµ− ϵ log((d− 1)(1 + γ)))))

≤ exp

(
−1

2
exp (∆0(Cµ− ϵ log((d− 1)(1 + γ))))

)
≤ exp (c3∆0) =: F1,3 (4.15)

where c3 := 1
2 (Cµ− ϵ log((d− 1)(1 + γ))) is a function of ϵ, µ, γ and X but

it does not depend on ∆0. So, by combining (4.8), (4.11) and (4.15), we have
shown that the infection spreads from v0 to a vertex v1 with deg(v1) ≥ 2∆0

with probability
P1 := (1− F1,1)(1− F1,2)(1− F1,3)

for large enough ∆0. At this point the iterative argument starts again: we can
apply the three steps again to v1 to obtain that the infection spreads to a vertex
v2 with deg(v2) ≥ 2 deg(v1) ≥ 4∆0 with probability

P2 := (1− F2,1)(1− F2,2)(1− F2,3)

Inductively, for every j ≥ 0 the infection spreads from a vertex vj with deg(vj ≥
2j∆0 to another vertex vj+1 with deg(vj+1) ≥ 2j+1∆0 with probability

Pj := (1− Fj,1) (1− Fj,2) (1− Fj,3) (4.16)

with

Fj,1 ≤ 4 exp
(
−c1µ2j∆0

)
, Fj,2 ≤ exp(−c2ϵ2j∆0), Fj,3 ≤ exp(−c32j∆0)

(4.17)
Here again the failure probabilities Fj,i have the form

ϕ exp
(
−ψ2j

)
for some positive constants ϕ and ψ. In analogy with the previous case, equation

ϕ exp
(
−ψ2j

)
≤ 1

12

1

2j
(4.18)

rewrites
2j

j
≥ log(24ϕ)

ψ
(4.19)

which is verified for all j greater than some j0. Now it remains to choose ∆0:
application of Lemmas 3.4 and 2.8, together with the computations in (4.15),
required ∆0 large enough, let us say greater than some ∆̃. Take then

∆ > 2j0∆̃ (4.20)
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so that (4.19) is definitely verified. At this point simply define

ϕ = 4 ψ = max {c1µ∆0, c2ϵ∆0, c3∆0}

so that

max
i=1,2,3

Fj,i ≤ ϕ exp
(
−ψ2j

)
≤

(4.18)

1

12

1

2j

for all j ≥ j0. In conclusion, let Fj be the event that the j-th iteration of this
scheme fails, and F the event that the whole iteration process, starting from
the step j0, fails at some point. A similar calculation to the one in (4.7) shows
that

P(F) ≤ 1

2
(4.21)

As a consequence, the iterative procedure works with positive probability. Thus,
for the infection to survive, it suffices that it spreads to some vertex with degree
at least ∆0 as from (4.20). By observing that the root, for instance, can have
degree larger than this ∆0 with positive probability, the theorem is proved.

Now let us proceed with the proof of the second theorem. In this case, the
argument we applied the previous proof does not work, because without the
property (2.11) we are unable to find vertices with higher degree to spread the
infection to. However, we will show that it is possible to keep the infection
alive by observing how particles move among vertices that have a similar, high
enough degree.

Proof of Theorem 3.3. For this second theorem, it is possible to proceed via a
percolation argument as follows: firstly, take ∆′ such that:

P(X ≥ ∆′) = c(∆′) > 0 (4.22)

which is possible because X has unbounded support. Also, there exists ∆′′ > 0,
only depending on the offspring law X, such that Lemma 3.4 can be applied to
any vertex w with deg(w) ≥ ∆′′, for all µ ≥ 1: it suffices to define ∆′′ as the Γ0

in the statement of the lemma, with µ = 1 and then use the monotonicity in µ.
Finally, let

∆ := max {∆′,∆′′} (4.23)

At this point, assume that the infection has reached a vertex v with degree
∆ and let S be a collection of

⌊
∆−1
2

⌋
vertices among its children. Apply Lemma

3.4 to the tree T (v)S to obtain that

max
v∈T (v)S

{
P
(
Kc

c1,v

)}
≥ 1− exp (−c1µ∆) =: P1 (4.24)

For some c1 > 0 independent of µ. Observe that P1 tends to 1 as µ → +∞.
Also, the is positive probability P0 for the infection to spread to a vertex with
degree ∆: for example, the root may have degree ∆ with positive probability.
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Next, we want to establish an argument which is similar to the iteration
method in the previous theorem. Since X is supercritical, take Xd to be the
truncated version of X like in (4.9): then, choose d large enough so that

E[Xd] > 1

Fix now ϵ > 0. From now on, let us proceed and consider only Tϵµ∆(v)S
c

. Let

T := T̂ϵµ∆(v)S
c

be the truncated version of Tϵµ∆(v)S
c

where we cut the offspring
of all vertices with degree higher than d. T is supercritical because of the choice
of d, thus we can apply the first part of Lemma 2.8 to get that we can find a set
of vertices Z ⊆ Zϵµ∆ ∩ T , with |Z| = 2bϵµ∆, for some b > 0. This occurs with
probability

P2 ≥ 1− exp(−c2ϵµ∆) (4.25)

with c2 independent of µ. Observe that, similarly to (4.24), P2 tends to 1 as

µ→ +∞. Fix now w ∈ Z. Given a particle u, let
{
v ∼

u
w
}
be the event that u

reaches w from v via the minimal path, without jumping backwards and

before it attempts to heal, and let
{
v →

i
w
}

be the event that the infection

can spread from v to w. By assumption the degrees in Tϵµ∆(v)S
c \ Z are

bounded by d. Moreover, under the event Kv from Lemma 3.4, there are at
least exp(Cµ∆) distinct particles that jump to it from one of the children in
S, with C independent of µ. We have

P(v ∼
u
w) ≤ ((d− 1) (1 + γ))

−ϵµ∆
(4.26)

Then, for the event X c
v that there exists a vertex in Z which is not reached by

any infected particles we can write:

P(X ∗c
∆ ) = P

( ⋃
w∈Z

{v → w}c
)

≤ P

( ⋃
w∈Z

⋂
Particles u on v

{
v ∼

u
w
}c
)

≤
∑
w∈Z

(1− P(v ∼ w))
#{Particles u on v}

Now we use that |Z| = 2bϵµ∆ together with (4.26) to obtain∑
w∈Z

(1− P(v ∼ w))
#{Particles u on v}

= 2bϵµ∆
(
(1− (d− 1)(1 + γ))

−ϵµ∆
)#{Particles u on v}

≤ exp
(
bϵµ∆ log 2− (#{Particles u on v})((d− 1)(1 + γ))−ϵµ∆

)
≤ exp (bϵµ∆ log 2− exp (∆µ (C − ϵ log((d− 1)(1 + γ))))) =: h(∆, µ)
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At this point, choose ϵ such that

ϵ <
C

log((d− 1)(1 + γ))
(4.27)

and observe that, this time, it does not depend on µ. We have shown that all
of the vertices in Z get infected with probability

P3 ≥ 1− h(∆, µ) (4.28)

Here again we have that P3 tends to 1 as µ→ +∞.
Now we are not able to show that in Z we can find a vertex of a degree higher

than 2∆. However, notice that (4.22) implies that the number E of vertices with
degree at least ∆ satisfies

E[E ] = 2bµϵ∆c(∆) (4.29)

Thus, by combining (4.29) with the argument before, considering that the good
events we would like to happen have probabilities defined in (4.24), (4.25),
(4.28), we can write that the number Ẽ of vertices in Z, with degree at least ∆
and that are reached by some infected particle coming from v, is such that

E[Ẽ ] ≥ 2bµϵ∆c(∆)P0P1P2P3 (4.30)

Finally, observe that E[Ẽ ] → +∞ as µ → +∞, so there exists 1 < µc < +∞
such that E[Ẽ ] > 1 for all µ > µc. The idea is that, if we find some vertex w ∈ Z
with deg(w) ≥ ∆, then we can simply repeat this argument where we take a set
S of deg(w) −

⌊
∆−1
2

⌋
children of w to apply Lemma 3.4 to, and then use the

rest
⌊
∆−1
2

⌋
children in Sc to try to reach new vertices with degree at least ∆.

At this point, the spread of infection among vertices with degree at least ∆
can be seen as a branching process, where we have calculated the expected value
E[Ẽ ] of its offspring distribution. Assuming that µ > µc, the supercriticality
condition E[Ẽ ] > 1 shows that there is positive probability for such branching
tree to be infinite. In terms of our infection process, the infection is kept alive
for all times among vertices whose degree is at least ∆ with positive probability.
This concludes the proof.
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Chapter 5

Open questions and future
developments

In this last chapter we list some of the possible questions and topics that might
be worth investigating later on.

5.1 A complete discussion of the phase
transition regime

Theorem 3.3 shows that, whenever the offspring distribution is light-tailed and
has unbounded support, the infection can survive for sufficiently high density
of particles. For the moment, if we remove the second hypothesis on X, all we
have is that our proof does not work.

As for the other side of the problem, that is if the parameter µ is too small,
it is reasonable to think that the infection dies out almost surely, mirroring the
behaviour of the contact process as seen in Theorem 1.5. In order to understand
this, a good strategy could be based on a better analysis and control of the
behaviour of the infection in some precise, finite region of the tree, let us say
between a given vertex v which receives an infected particle and k generations
Tk(v) after it somewhere. Then, it is possible that an argument similar to the
one in section 3.3.2 might be adapted, though we have not managed to do it so
far.

5.2 Sufficient conditions for strong survival

Recall from section 1.2.2 that our results provide sufficient conditions for the
weak survival, however they do not address the strong survival question, which
requires that set of times in which the root is occupied by at least an infected
particle is unbounded. Such a fact would create a distinction between three
different phases like in the standard contact process. For that model, however,
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this question seems to be open on graphs different from Zd or regular trees. It
may be possible to deduce some bounds for the duration of the infection like
the ones from [30] for the contact process that we mentioned in section 1.2.5,
however they have not yet proved to be useful in ensuring strong survival.

5.3 The SIR model

Recall from section 1.3.2 that the SIR model, infected particles die after an
exponential clock with rate λ instead of recovering. Generally speaking, this
makes the infection difficult to be kept alive at a given vertex even when the
particle density is high: to see this, imagine a site v with N infected particles
occupying it. In the SIS model we can say that there will always be infected
particles on v so long as there are at least two of them. This idea is what the
entire Lemma 3.4 is based on. This property will then allow for many of the
N particles to move around and spread the infection elsewhere. On the other
hand, in the SIR model we have that said N particles will last up to a random
time equal to the maximum of N i.i.d. exponential variables with rate λ, so
not only does the argument used in Lemma 3.4 fail, but the overall time the
infection is maintained at v will usually be shorter.

Observe however that Lemma 3.4 is actually the only part of our entire proof
that ceases to be valid in the SIR model: notice that the recovery rate λ appears
only in Lemma 3.5 and in the final step of proof of Theorem 3.2 (without the
assumption that X ≥ 2 almost surely) and Theorem 3.3. In all these cases
we want particles to reach many vertices and bring the infection to them, thus
we simply asked that they did it before attempting to heal for the first time.
Now we simply have to say that they bring the infection before they die, and
everything else works the same way as for the SIS model.

5.4 Extending the results to random graphs

Another possible topic for future studies is the extension of the results on the
trees to more general random graphs. This is useful as there are many
situations where a tree is not the most suitable graph structure that represents
a real-life network the model takes inspiration from. Galton-Watson trees are
usually a good starting point to analyse more complicated graphs and extend
to them some previous results already proved for the tree. There are examples
in literature where transitions from trees to general graphs have already been
established, see for example [22]. It could also be possible to establish some
estimates for the duration of the infection like in the works from [30] about the
contact process, which we mentioned in the previous section 5.2.
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Appendix A

Chernoff bound

The Chernoff bound is an estimate used to show that a certain random variable
X is concentrated near its expected value, provided that for such variable has
a finite exponential moment E[eθX ] for some θ ≥ 0. Indeed given ϵ > 0 we have

P(X ≥ (1 + ϵ)E[X]) = P(eθX ≥ eθ(1+ϵ)E[X])

≤ E[eθX ]

eθ(1+ϵ)E[X]

= E[eθX ]e−θ(1+ϵ)E[X]

where in the second passage we applied the Markov inequality to the
non-negative random variable eθX . Now we see that having an upper bound
for E[eθX] allows for an upper bound for P(X ≥ (1 + ϵ)E[X]). Furthermore,
since the previous estimate is valid for all θ > 0 we have

P(X ≥ (1 + ϵ)E[X]) ≤ inf
θ>0

E[eθX ]e−θ(1+ϵ)E[X]

Now we proceed by applying the argument above to some assigned distributions.

A.1 Chernoff bound for a sum of Bernoulli
variables

Theorem A.1. Let X1, ..., Xn be indipendent variables in {0, 1}. Let

X =

n∑
i=1

Xi

and p = 1
n

∑n
i=1 E[Xi]. Then we have

P(X ≥ (1 + ϵ)np) ≤
(

eϵ

(1 + ϵ)1+ϵ

)np

(A.1)
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Another useful bound is

P(X ≥ (1 + ϵ)np) ≤ exp

(
−ϵ

2np

2
+
ϵ3np

6

)
≤ exp

(
− ϵ2np

2 + ϵ

)
(A.2)

Proof. Given θ > 0 we have

P(X ≥ (1 + ϵ)np) = P(eθX ≥ eθ(1+ϵ)np)

≤ e−θ(1+ϵ)np E[eθX ]

= e−θ(1+ϵ)np
n∏

i=1

E[eθXi ]

where we used the Markov inequality and the independence of the Xi variables.
Since for each i we have E[eθXi ] = pi(e

θ − 1) + 1 for some pi ∈ (0, 1), we can
write

P(X ≥ (1 + ϵ)np) ≤ e−θ(1+ϵ)np
n∏

i=1

(
pi(e

θ − 1) + 1
)

≤ e−θ(1+ϵ)np

(
n∑

i=1

pi(e
θ − 1) + 1

n

)n

= e−θ(1+ϵ)np
(
p(eθ − 1) + 1

)n
≤ exp

(
−θ(1 + ϵ)np+ np(eθ − 1)

)
=: f(θ)

where in the second inequality we used the relation between the arithmetic and
the geometric mean which follows directly from Jensen’s inequality:

log

(
n∑

i=1

yi
n

)
≥

n∑
i=1

log yi
n

= log

(
n∏

i=1

y
1
n
i

)

which holds for any y1, y2, ..., yn > 0. Observe that f(θ) > 0 for θ ∈ (0,+∞),
f(0) = 1, lim

θ→+∞
f(θ) = +∞. Therefore the value of θ that minimizes f must

satisfy
f ′(θ) = f(θ)np(eθ − (1 + ϵ)) = 0

that is eθ = 1 + ϵ. Finally we get

P(X ≥ (1 + ϵ)np) ≤ exp(−(1 + ϵ) log(1 + ϵ)np+ npϵ) =

(
eϵ

(1 + ϵ)1+ϵ

)np

and this proves equation (A.1). Equation (A.2) follows directly from (A.1):

indeed log(1 + ϵ) = ϵ− ϵ2

2 + ϵ3

3 − ϵ4

4 + o(ϵ5) implies

(1 + ϵ) log(1 + ϵ)− ϵ ≥ ϵ2

2
− ϵ3

6

and thus (A.2) is proved.
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Theorem A.2. Let X1, ..., Xn be independent variables in {0, 1}. Let

X =

n∑
i=1

Xi

and p = 1
n

∑n
i=1 E[Xi]. Then we have

P(X ≤ (1− ϵ)np) ≤ exp

(
−ϵ

2np

2

)
(A.3)

Proof. For every θ > 0 we apply the same argument as in the previous theorem,
thus obtaining

P(X ≤ (1− ϵ)np) = P(e−θX ≥ e−θ(1−ϵ)np)

≤ eθ(1−ϵ)np E[e−θX ]

= eθ(1+ϵ)np
n∏

i=1

E[e−θXi ]

= eθ(1−ϵ)np
(
−p(1− e−θ) + 1

)n
≤ exp

(
θ(1− ϵ)np− (1− e−θ)np

)
Here again we choose the value of θ given by e−θ = 1 − ϵ that minimizes
g(θ) = exp

(
θ(1− ϵ)np− (1− e−θ)np

)
. Finally we get

P(X ≤ (1− ϵ)np) ≤ exp (−np((1− ϵ) log(1− ϵ) + ϵ)) ≤ exp

(
−ϵ

2np

2

)
and so (A.3) is proved.

A.2 Lower bound for the sum of geometric i.i.d.
variables via Chernoff

The Chernoff bound for the sum of Bernoulli variables allows for another pair
of useful estimates, such as for a sum of geometric variables. First, take G to be
a geometric distribution with probability of success p. A sampling of G, let us
say {G = n}, can be represented as a sequence of n− 1 zeros followed by a final
1, meaning respectively the first failures and the final success. Thus, a sum of
geometric i.i.d. variables G1, ..., Gk is simply a long string of k such sequences.
For every integer m, the event {G1 + ... + Gk > m} simply means that in the
first m bits of the string we can see less than k ones. Recalling that each bit of
the string is the outcome of some Bernoulli variable Xj with parameter p, more
generally we can write:

P
(
G1 + ...+Gk > (1 + ϵ)

k

p

)
= P

(
X1 + ...+X(1+ϵ) k

p
<

1

1 + ϵ
p(1 + ϵ)

k

p

)
≤

(A.3)
exp

(
− ϵ2

1 + ϵ2
(1 + ϵ)

k

2

)
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Note that Theorem A.1 also allows for an upper bound of the sum G1+ ...+Gk

via a similar argument.

A.3 Chernoff bound for a simple random walk
on Z

As next example, consider a random walk on Z: a particle starts from the origin.
At each step the particle jumps to the right with probability p ≥ 1

2 and jumps
to the left with probability 1 − p. Let Xi ∈ −1, 1 be i.i.d. random variables
which indicate the i-th jump of the particle, that is p is the probability that
Xi = 1 for all i. Let S0 = 0 and

St = St−1 +Xt =

t∑
i=1

Xi

be the position of the particle after t steps. Let

ρ = E [Xi] = p− (1− p) = 2p− 1 ≥ 0

be the bias of the random walk. For every t we have

E[St] = tρ

We want to derive a Chernoff bound for St by using what we have proved for
the sum of Bernoulli variables: since Yi = 1+Xi

2 is a Bernoulli variable with
parameter p, let

Y =

t∑
i=1

Yi =

t∑
i=1

1 +Xi

2
=
t+ St

2

and

µ = E[Y ] =
t+ E[St]

2
=
t+ tρ

2
=
t(1 + ρ)

2

By combining Theorems A.1 and A.2 we deduce that for every δ ∈ (0, 1) we
have

P(|Y − µ| ≥ δµ) ≤ 2 exp

(
−δ

2µ

3

)
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and so we can write

P(|St − tρ|) ≥ δtρ) = P
(
|St − tρ|

2
≥ δtρ

2

)
= P

(
|Y − µ| ≥ δtρ

2µ
µ

)
= P

(
|Y − µ| ≥

(
δρ

1 + ρ

)
µ

)
≤

Theorems A.1+A.2
exp

(
− δ2ρ2µ

3(1 + ρ)2

)
= exp

(
− δ2ρ2t

6(1 + ρ)

)
where the Theorems A.1 and A.2 are applied with the constant ϵ = δρ

1+ρ ∈ (0, 1).
Next we shall see a concentration result for a Poisson variable.

A.4 Concentration for a Poisson variable via
Chernoff

Theorem A.3. Let X be a Poisson variable with mean λ. For every δ ∈ (0, 1)
we have

P
(∣∣∣X − λ

∣∣∣ ≥ δλ

2

)
≤ exp

(
− δ

2

16
λ

)
(A.4)

Proof. Indeed for every δ, θ > 0 we have

P
(
X ≥ λ

(
1 +

δ

2

))
= P

(
eθX ≥ eθλ(1+

δ
2 )
)

≤ E
[
eθX

]
e−θλ(1+ δ

2 )

= exp

(
λ

(
eθ − 1− θ

(
1 +

δ

2

)))
Now observe that

eθ − 1− θ =
θ2

2

1 +

+∞∑
j=1

θj
2!

(j + 2)!


≤ θ2

2

1 +

+∞∑
j=1

(
θ

3

)j


≤ θ2

2

1

1− θ
3

≤ 3

4
θ2
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provided that θ < 3. In order to get the last inequality we restrict further to
0 < θ < 2. Going back to the proof we conclude that

P
(
X ≥ λ

(
1 +

δ

2

))
≤ exp

(
λ

(
3θ2

4
− θδ

2

))
≤ exp

(
− δ

2

16
λ

)
by taking θ = δ

2 .
Similarly, for every δ, θ > 0 we can write

P
(
X ≤ λ

(
1− δ

2

))
= P

(
e−θX ≥ e−θλ(1+ δ

2 )
)

≤ E
[
e−θX

]
eθλ(1+

δ
2 )

= exp

(
λ

(
e−θ − 1 + θ

(
1 +

δ

2

)))
≤ exp

(
λ

(
θ2

2
− θδ

2

))
= exp

(
−δ

2

8
λ

)
by taking θ = δ

2 . Here in the second last passage we used that e−θ −1+ θ ≤ θ2

2 .
The theorem follows by combining the two inequalities.
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Appendix B

Other tools

B.1 Thinning property for a Poisson
distribution

Proposition B.1. Assume that N is a Poisson(λ) distribution, indicating the
quantity of some random objects. Assume that each of the said objects can
satisfy some event E independently from all of the others. Assume also that E
and N are independent. Then the number M of objects that satisfy the event
E is also a Poisson distribution, with parameter pλ, where p is the probability
that an object satisfies the event E.

Proof of Proposition B.1. Let Pk be the event that k objects satisfy the event
E. We have

P(M = m) = P(Pm)

=
∑
n≥m

P({N = n} ∩ Pm)

=
∑
n≥m

P(N = n)P(Pm)

=
∑
n≥m

exp(−λ)λ
n

n!
P(Pm) (B.1)

Now by definition of Pm we have to choose m particle that satisfy event E, thus

P(Pm) =

(
n

m

)
pm(1− p)n−m (B.2)
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by putting equation (B.2) into (B.1) and rearranging the terms we get∑
n≥m

exp(−λ)λ
n

n!
P(Pm) = exp(−λ)

∑
n≥m

λn

n!

n!

m!(n−m)!
pm(1− p)n−m

=
exp(−λ)pm

m!

∑
n≥m

λn(1− p)n−m

(n−m)!

=
exp(−λ)(pλ)m

m!

∑
n≥m

((1− p)λ)n−m

(n−m)!

=
j:=n−m

exp(−λ)(pλ)m

m!

∑
j≥0

((1− p)λ)j

j!

=
exp(−pλ)(pλ)m

m!

which is the law of a Poisson(pλ) distribution as we wanted.

B.2 A martingale argument for a biased random
walk on Z

This section of the appendix is based on the theory of martingales. We will not
provide an introduction to it, but simply refer to [7], Chapter 10.

Let us consider a random walkWt =
∑
t≥0

Xi on Z, whereW0 = X0 = w0 ∈ Z.

For simplicity we assume that Wt is a discrete time process, since a similar
argument works for the continuous version as well. The increments Xi, i ≥ 1
are equal to 1 with probability p > 1

2 and −1 with probability q = 1 − p. The
first thing we are going to prove is that

Qt :=

(
q

p

)Wt

is a martingale w.r.t. the canonical filtration

Ft := σ(W0,W1, ...,Wt)

Indeed we have

E[Qt+1|Ft] = E

[(
q

p

)Wt+1 ∣∣∣Ft

]

=

(
q

p

)Wt

E

[(
q

p

)Xt+1 ∣∣∣Ft

]

= Qt

[(
q

p

)
p+

(
p

q

)
q

]
= Qt
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As a next step, given a < w0 < b ∈ Z with W0 = w0 consider

τ := inf {t ≥ 0 :Wt < a or Wt > b}

now τ is clearly a stopping time w.r.t. (Ft). We would like to show that
α := P(Wτ = b) satisfies

α =

(
q
p

)a
−
(

q
p

)w0

(
q
p

)a
−
(

q
p

)b (B.3)

This follows from Doob’s optional stopping theorem, which is applicable here
since Qt∧τ is bounded:(

q

p

)b

α+

(
q

p

)a

(1− α) = E[Qτ ] = E[Q0] =

(
q

p

)w0

thus we immediately get the value of α as in equation (B.3).

56



Bibliography

[1] Francis Galton (1873), Problem 4001, Educational Times, Vol. 25, Number
143.

[2] Henry William Watson (1873), Problem 4001, Educational Times, Vol. 26,
Number 148.

[3] Theodore E. Harris (1963), The theory of branching processes, Grundlehren
der mathematischen Wissenschaften, Vol. 119.

[4] Thomas M. Liggett, Interacting Particle Systems, Grundlehren der
mathematischen Wissenschaften, 1985, Vol. 276

[5] Carol Bezuidenhout and Geoffrey Grimmett, The critical contact process
dies out, The Annals of Probability, 1990, Vol. 18, 1462-1482.

[6] Russell Lyons, Random walks and percolation on trees, The Annals of
Probability, 1990, Vol. 18, 931-958

[7] David Williams, Probability with martingales, Cambridge University Press,
1991.

[8] Robin Pemantle, The contact process on trees, The Annals of Probability,
1992, Vol. 20, 2089-2116.

[9] Russell Lyons, Robin Pemantle and Yuval Peres, Ergodic Theory on
Galton-Watson Trees: Speed of Random Walk and Dimension of Harmonic
Measure, Ergodic Theory Dynamical Systems, 1994, Vol. 15.

[10] Thomas M. Liggett, Improved upper bounds for the contact process critical
value, The Annals of Probability, 1995, Vol. 23, 697-723.

[11] Russell Lyons, Robin Pemantle and Yuval Peres, Conceptual proofs of
L logL criteria for mean behavior of branching processes, The Annals of
Probability, 1995, Vol. 23 (3), 1125-1138.

[12] Thomas M. Liggett, Multiple transition points for the contact process on
the binary tree, The Annals of Probability, 1996, Vol. 24, 1675-1710.

57



[13] A. M. Stacey, The existence of an Intermediate Phase for the Contact
Process on Trees, The Annals of Probability, 1996, Vol. 24, 1711-1726.

[14] András Telcs and Nicholas C. Wormald, Branching and tree indexed
random walks on fractals, Journal of Applied Probability, 1999, Vol. 36
(4), 999-1011.

[15] Oswaldo Alves, Fabio Machado, Serguei Popov and Krishnamurthi
Ravishankar, The shape theorem for the frog model with random initial
configuration, The Annals of Applied Probability, 2002, Vol. 12, 533-546.

[16] Oswaldo Alves, Fabio Machado and Serguei Popov), Phase transition for
the frog model, Electronic Journal of Probability, 2002, 7-21.

[17] Harry Kesten and Vladas Sidoravicius, The spread of a rumor or infection
in a moving population, The Annals of Probability, 2005, Vol. 33 (6):
2402-2462.

[18] Harry Kesten and Vladas Sidoravicius, A phase transition in a model for the
spread of infection, Illinois Journal of Mathematics, 2006, Vol. 50, 547-634.

[19] Harry Kesten and Vladas Sidoravicius, A shape theorem for the spread of
an infection, Annals of Mathematics, 2008, Vol. 167 (3): 701-766.

[20] Shirshendu Chatterjee and Rick Durrett, Contact processes on random
graphs with power law degree distributions have critical value 0, The Annals
of Probability, 2009, Vol. 37, 2332-2356.

[21] Craig A. Tracy, Harold Widom, Asymptotics in ASEP with Step Initial
Condition, Communications in Mathematical Physics, 2009, Vol. 290,
129-154

[22] Shankar Bhamidi, Remco van der Hofstad and Gerard Hooghiemstra, First
passage percolation on random graphs with finite mean degrees, The Annals
of Applied Probability, 2010, Vol. 20, No. 5, 1907-1965.

[23] Harry Kesten, Alejandro F. Ramı́rez and Vladas Sidoravicius, Asymptotic
shape and propagation of fronts for growth models in dynamic random
environment, Probability in Complex Physical Systems, Springer Berlin
Heidelberg, 2012, 195-223.

[24] Sergey Foss, Dmitry Korshunov and Stan Zachary, An Introduction to
Heavy-Tailed and Subexponential Distributions, Springer, 2013.

[25] David A. Levin, Yuval Peres and Elizabeth L. Wilmer, Markov Chains
and Mixing Times, Second Edition, PDF version available on the author’s
website http://yuvalperes.com/, 2017.

[26] Christopher Hoffman, Tobias Johnson and Matthew Junge, Recurrence and
transience for the frog model on trees, The Annals of Probability, 2017, Vol.
45, No. 5, 2826–2854.

58



[27] Christopher Hoffman, Tobias Johnson and Matthew Junge, Infection spread
for the frog model on trees, Electronic Journal of Probability, 2019, No. 112,
1-29.

[28] Elcio Lebensztayn and Jamie Utria, Phase transition for the frog model on
biregular trees, 2020. arXiv:1811.05495v2.

[29] Xiangying Huang and Rick Durrett, The Contact Process on Random
Graphs and Galton-Watson Trees, ALEA-Latin American Journal of
Probability and Mathematical Statistics, 2020, Vol. 17, 159-182.

[30] Shankar Bhamidi, Danny Nam, Oanh Nguyen and Allan Sly, Survival and
extinction of epidemics on random graphs with general degree, The Annals
of Probability, 2021, Vol. 49, 244-286.

[31] Duncan Dauvergne and Allan Sly, The sir model in a moving
population: propagation of infection and herd immunity, arXiv preprint
arXiv:2209.06037, 2022.

[32] Rangel Baldasso and Alexandre Stauffer, Local and global survival for
infections with recovery, Stochastic Processes and their Applications, 2023,
Volume 160: 161-173.

[33] Duncan Dauvergne and Allan Sly, Spread of infections in a heterogeneous
moving population, Probability Theory and Related Fields, 2023, 1-59.

59


	Summary
	Interacting particle systems
	Introduction
	An example: the contact process
	Historical definition and first results
	Further developments
	Introducing the contact process on random graphs
	Heavy-tailed, subexponential and light-tailed distributions
	Contact process on random graphs: some results

	Spread of infection
	The frog model
	SIS and SIR dynamics
	Phase transition in SIR dynamics

	A more general model
	Results for SI, SIS and SIR dynamics

	Spread of infection on other graphs

	Galton-Watson trees
	Introduction
	Some notations

	The spine decomposition
	The k-th generation Zk
	The size of Zk given |Zk|>0
	Survival of the tree up to a given generation
	Random walks: transience, recurrence

	Looking for high-degree vertices
	Defining a new subset of the heavy-tailed distributions
	The maximum of i.i.d. random variables
	The maximum degree among vertices in Zk


	A formal approach to a SIS model
	Introduction
	Stationarity
	The infection problem
	The survival event
	The case of the finite tree

	Main results
	Phase transition

	Preliminary lemmas
	Keeping the infection alive
	Propagation of the infection over generations

	Proof of the preliminary lemmas

	Proof of Theorems 3.2 and 3.3
	Open questions and future developments
	A complete discussion of the phase transition regime
	Sufficient conditions for strong survival
	The SIR model
	Extending the results to random graphs

	Chernoff bound
	Chernoff bound for a sum of Bernoulli variables
	Lower bound for the sum of geometric i.i.d. variables via Chernoff
	Chernoff bound for a simple random walk on Z
	Concentration for a Poisson variable via Chernoff

	Other tools
	Thinning property for a Poisson distribution
	A martingale argument for a biased random walk on Z


