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Introduction

The attempt to describe the behaviour of Nature accompanied the human development. At
the end of the XIX century, the incredible technological boost allowed scientists to successfully
explain macroscopic phenomena using microscopic principles. If, in the beginning, the exper-
imental observations came before the theoretical explanations, in the first decades of the XX
century, particle physics studies started to predict the presence of phenomena which would have
been observed only years later. This happened in the 1930, when Wolfgang Pauli noticed that,
being the β-decay electron spectrum continuous, a third invisible particle had to be involved.
This particle, with null electric charge and extremely light (or massless), was baptized neutrino
by Enrico Fermi, that in 1934 developed a theory to explain the nuclear β-decays [1]. The physics
community was eager to observe this particle, which seemed to be necessary to explain the ex-
perimental results. However, a light neutral particle could not be seen directly in a detector; for
this reason, it was clear that neutrinos could only be observed detecting the charged products of
their interactions with other particles. In order to do so, physicists required a neutrino source;
fortunately, in those years the research about nuclear fission was very vivid and several nuclear
plants were available. Since in fission chains β-decays occur, it was clear that if neutrinos were
real, nuclear plant should have been able to provide a large number of neutrinos. However, the
Fermi theory predicted a very crucial feature: the neutrino cross sections are extremely small
and for this reason their interactions are very rare. It took 20 years to develop a technology
adequate to neutrino observation: Clyde Cowans and Fred Reines, placing a detector near to
the Savannah River nuclear plant, observed for the first time in 1956 neutrinos [2] through the
inverse β-decay (IBD) reaction

ν̄e + p −→ e+ + n . (1)

This discovery not only confirmed the existence of a particle postulated 26 years in advance,
but also boosted the particle physics research in the neutrino sectors in the theoretical, phe-
nomenological and experimental fields. Indeed, neutrino studies have always been challenging
and required a huge scientific effort.
The 1936 discovery of a heavier counterpart of the electron, namely the muon [3], suggested that
for each particle, there may exist a few copies with different masses. Thus, after the discovery
of the first neutrinos, which coupled to electrons coming from β-decays, the experimental com-
munity started to search for a second neutrino. In 1962, at Brookhaven National Laboratories,
Lederman, Schwartz and Steinberg, were able to create and detect a muon neutrino beam from
pion decays [4]. One more time, theoretical predictions were confirmed. When in 1975 a third
charged lepton, the τ , was observed [5, 6], it became evident that a third neutrino should have
existed. But, in this case, its discovery was not so straight-forward. First of all, muon neutrinos
can easily be obtained using light meson decays, while tau neutrinos, being always coupled to
the heavy τ lepton, can only come from heavy (charmed, for instance) hadrons, which are clearly
more complicated to produce. Moreover, the charged current interactions of neutrinos (like the
IBD), which allow to both observe the particle and determine its flavor, in the ντ case, require
high neutrino energies, higher than 3 GeV. 25 years after the τ lepton discovery, in 2000, the
DONUT experiment was able to observe 4 tau neutrinos [7], finding the latest of the leptons. In
this experiment, high energy protons interactions were used to produce charmed meson, whose
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decays generated neutrinos of all three flavors; using a very performing detector, some events in
which a τ lepton appeared after a neutrino interaction were observed.
Besides the first detection of the three neutrinos, a certain number of neutrino experiments were
built in the second half of the XX century. One of their main goal was to observe neutrinos from
different sources: the Sun, the atmosphere, supernovae, particle accelerators or nuclear reactors.
In particular, solar neutrinos, which come from nuclear fusion reactions, were very interesting,
since their abundance is a direct probe of the inner solar composition. The astrophysicist John
Bahcall, together with the particle physicists Raymond Davis Jr., in 1960 developed the idea of
a detector able to observe solar neutrinos [8] through the radiochemical reaction

νe + 37Cl −→ 37Ar+ + e− . (2)

In order to lower the background this detector was placed underground in the Homestake mine
and lasted from 1970 to 1994. The conclusions [9] were very interesting: solar neutrinos were
observed, but their flux was not compatible to any of the solar models. In particular, only
1/3 of the neutrinos predicted by Bahcall seemed to reach the detector. The solar neutrino
problem started a debate in the scientific community about its origin. The final answer to the
problem came in the 1998. The Super-Kamiokande experiments, looking at neutrinos from the
atmosphere, observed that, depending on the distance they travelled, the flavor composition of
atmospheric neutrinos was different [10]. This suggested that neutrinos undergo the phenomenon
of flavor oscillation. Flavor oscillations are caused by the fact that the mass states do not
correspond to the flavor ones and for this reason, while propagating, particles can change their
flavor. The neutrino oscillation hypothesis, which was first studied by Pontecorvo in 1950s
[11] and then by Nakagawa, Maki and Sakata [12] in the 1960s, was also able to explain the
solar neutrino deficit, but introduced a problem in the particle physics framework: if neutrinos
oscillate, they must have a mass. However, this mass is so small that we have not been able
to observe it so far; a natural explanation of such small masses is one of the most appealing
theoretical aspects of the neutrino sector.
Going back to neutrino oscillations, it can be easily shown that, at least in the standard particle
physics approach, they are governed by only 6 parameters: three mixing angles, one CP-violating
phase, and the two independent neutrino mass differences (or mass splittings). Differently
from the quark sector, in which the oscillation phenomenon is well known since 1960s, neutrino
oscillations are characterized by large mixing angles [13]. Moreover, the two mass splittings
turned out to be very different; this allowed to search for oscillation in different regimes and
using neutrinos from several natural and artificial sources.
In roughly 25 years, oscillation experiments were able to measure almost all the oscillation
parameters (only the CP-violating phase is mostly unknown) with a few percents uncertainty.
However, other than the phase determination, there are also other open questions in the neutrino
oscillation framework; for instance, it is still unknown which of the three mass eigenstates is the
heaviest. Indeed, while the sign of the smallest of the two mass splittings has been measured
(m2

2 −m2
1 > 0), the sign of the largest one (m2

3 −m2
1) is still undetermined. For this reason a

few next-generation oscillation experiments are being currently built. Among them, future long
baseline accelerator experiments, which use artificial neutrino beams coming from a particle
accelerator facility, are very promising. In particular, DUNE [14] in the USA and T2HK [15]
in Japan are expected to determine the oscillation parameters with a great precision. For this
reason, oscillation measurements in the next decades may be able to catch also tiny new physics
effects. Indeed, there exists several Beyond the Standard Model (BSM) models which modify the
oscillation probabilities at the percent level. These models may introduce new particles which
mix with neutrinos (like light or heavy sterile neutrinos) or new interactions in the leptonic
sector. Studies about the capabilities of future experiments in constraining these BSM models
suggest that DUNE and T2HK should be be very promising in this context. In this dissertation,
we will present some results about the performances of future Long Baseline (LBL) experiments
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obtained in [16] (short discussion in Sec. 4.1.4), [17] (Sec. 5.2), [18] (Sec. 5.3), [19] (Sec. 6.1),
[20] (Sec. 6.2), [21] (Sec. 6.3) and [22] (Sec. 6.4). The scope of this thesis is to clearly show
how the rich phenomenology of the long-baseline experiments is crucial to extend our knowledge
about neutrino physics. In particular, we want to underline that the extremely large number of
events that the future long-baseline experiments will observe can be analyzed to provide precise
measurements of the standard oscillation parameters and give a great opportunity where to
search for several different new physics effects. To this aim, in the following chapters we suggest
some strategies which can be adopted in order to maximize the sensitivity of the experiments to
standard and new physics parameters, taking full advantage of the unprecedent richness of the
DUNE and T2HK datasets.
The thesis will be organized as follows. In Chapter 1, the Standard Model of particles will be
briefly described, with a focus on the role of neutrinos. In Chapter 2, the phenomenon of neutrino
oscillation will be discussed in details and the current experimental results on the measurements
of oscillation parameters will be presented. In Chapter 3 we will go beyond the Standard Model,
describing how new physics models may affect neutrino oscillations. In particular, we will have
a closer look to a few of them, namely the sterile neutrino, the Non Standard Interactions,
the neutrino decay and the Non Unitarity models. In Chapter 4, the main features of the two
future LBL experiments DUNE and T2HK will be presented. Finally, the main results of this
dissertation will be extensively discussed in Chapters 5 and 6. In the former, after a description
of the software used for the experiments simulations, we will show two examples on how the
complementarity between DUNE and T2HK experiments can be used to improve measurements
in the standard oscillation framework and in a BSM model (the Non-Unitarity model). In the
latter, we will propose four new approaches to bound different BSM models at DUNE.
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Chapter 1

Neutrinos and the Standard Model

Since the beginning of our history, we have been aware of the fact that there are some funda-
mental forces behind natural phenomena. In our current knowledge, we can distinguish four of
them: electromagnetic, weak, strong and gravity forces. Quantum field theory [23–25] allowed
us to describe in only one theory the first three. This theory, based on the local symmetry
SU(3)× SU(2)× U(1) is called Standard Model (SM) of particles. The SM is one of the most
successful models in physics, being able to predict with an astonishing precision different pro-
cesses.
The Standard Model describes three of the fundamental forces as mediated by the exchange of
particles, in particular spin 1 bosons. The matter particles, on the other hand, are divided in
three generation of spin 1/2 fermions, each of them including two quarks and two leptons. The
symmetry principles that are behind the construction of the standard model predict that all the
particles must be massless. However, we observe that most of the particles we know do have
masses [13]. The mechanism that generates such masses is a spontaneous symmetry breaking
(SSM) process called Higgs mechanism [26–29]. The particle responsible of this mechanism is a
spin 0 boson, the Higgs boson, which completes the particle content of the SM. This particle,
introduced in the theory in the 1964 has been observed in 2012 at the Large Hadron Collider
[30, 31] confirming the incredible predictive power of the SM.
Despite its great success [32–36], the Standard Model still fails to explain some very important
phenomena [37–43]. One of them, will be central topic of this dissertation: neutrino oscillation.
We will discuss it in details in the next chapter.

1.1 Gauge interactions and particle content

In the SM, fundamental interactions are described by a Yang-Mills theory [44] based on the
non-Abelian local (gauge) symmetry group SU(3)C × SU(2)L × U(1)Y where C denotes color,
L left-handed chirality and Y the weak hypercharge. The generators of this large group are the
mediators of the fundamental forces. In particular, the color-charged eight generators of SU(3)C
are the strong force mediators and are called gluons. The four generators of the SU(2)L×U(1)Y
are on the other hand the mediators of the electromagnetic and weak forces. The gauge bosons
lagrangian can be written as

Lgb = −1

4
[FµνF

µν +Ki
µνK

iµν + V j
µνV

jµν ] , (1.1)

where Fµν , K
i
µν (i=1,2,3) and V j

µν (j=1...8) are the field strength tensors for U(1)Y , SU(2)L and
SU(3)C respectively, which can be written as
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Fµν = ∂µBν − ∂νBµ (1.2)

Ki
µν = ∂µW

i
ν − ∂νW

i
µ + gεijkW j

µW
k
ν (1.3)

V i
µν = ∂µG

i
ν − ∂νG

i
µ + g′′f ijkGj

µG
k
ν (1.4)

In these equations, Bµ, W
i
µ and Gj

ν are the twelve vector bosons fields which mediate the three
fundamental forces described by the SM. Moreover, g and g” are the gauge couplings of SU(2)L
and SU(3)C and εijk and f ijk are the structure constants of the two groups.

The fermions in the SM are described by the Dirac free massless fermion lagrangian

Lf = iψ̄ /∂ψ , (1.5)

which, in order to be invariant under the SM symmmetry group, must be modified using the
substitution

∂mu → Dµ = ∂µ − ig′Bµ
Y

2
− igW i

µτ
i − igSG

j
µa

j (1.6)

where g, g′ and gS are the gauge couplings, Y/2 is the hypercharge operator, τ i and aj are
the non-abelian groups generators acting on the ψ field. Mass terms, which can be written as
mψ̄ψ are not invariant under the group SU(2)L, which act differently for the left-handed and
right-handed components of the spinors1. For this reason, at this point, the SM predict all the
fermions to be massless just like the gauge bosons.
We can divide the SM fermions in quarks and leptons. The quarks are organized in a SU(2)L
doublet

QL =

(
uL
dL

)
(1.7)

and two SU(2)L singlets uR and dR which denote the right handed components. The leptons,
on the other hand, are organized in a SU(2)L doublet

LL =

(
νL
lL

)
(1.8)

and one singlet lR. Right-handed neutrinos, which may act as singlet under the full SM group,
are not present in the SM. In the following chapter, we will explore the consequences of the
addition of the right-handed neutrinos in the model.

1.2 The Higgs mechanism

At this stage, none of the matter particles have a mass. This is obviously not in agreement
with experimental observation. Indeed, we know that not only all the charged fermions (quarks
and leptons), but also the two weak interactions mediator bosons are massive. One single
mechanism, introduced in the 1964 [26–29] is able to reconcile all the masses measurements.
This process is based on the spontaneous symmetry breaking (SSB) of the SU(2)L × U(1)Y
symmetry (electroweak symmetry) down to the electromagnetic gauge symmetry U(1)EM . The
particle which is responsible of this breaking is a SU(2)L doublet of scalar fields

Φ =

(
ϕ+

ϕ0

)
(1.9)

1In the chiral representation, every spinor can be written as ψ = (ψL, ψR). Early experiments on weak
interactions demonstrated that they involve only the left-handed component of Dirac spinors.
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of hypercharg Y = 1. This doublet, the Higgs doublet, allows for two new terms in the SM
lagrangian

LH = (DµΦ)
†(DµΦ)− V (|Φ|) (1.10)

where the former is the kinetic term and the latter the scalar potential. The presence of such
a potential allows these fields to break the electroweak symmetry. Indeed, if the minimum of
V is not located at |Φ| = 0, when the scalar field falls into its vacuum state, the lagrangian
spontaneously breaks the SM group. The general Higgs potential can be written as

V (|Φ|) = −µ2|Φ|2 + λ|Φ|4. (1.11)

This potential, if µ2 and λ are positive, is minimized for |Φ| = µ/
√
2λ = v/

√
2 where v is called

vacuum expectation value (vev) of the Higgs field. Thus, in its vacuum state the scalar fields can
assume any value for which |Φ| = v/

√
2; the most convenient choice is

Φ0 =

(
0

v/
√
2

)
. (1.12)

We can at this point expand around the minimum of the potential, writing the Higgs field as
Φ = H + Φ0, where H is the physical Higgs particle field which appears as perturbation of the
vacuum state. The constant term Φ0 modifies the gauge boson lagrangian, which now contains
the term

Lgbmass =
v2

8
[(g′Bµ − gW 3

µ)
2 + 2g2W+

µ W
−µ] , (1.13)

where W± = (W 1 ∓W 2)/
√
2. These two terms correspond to mass terms for a neutral gauge

boson, namely the combination g′Bµ − gW 3
µ and a charged one (with its antiparticle) W+

µ .
Introducing the so called Weinberg angle

tan θW =
g′

g
, (1.14)

we can rotate the two fields W 3
µ and Bµ defining two neutral Zµ and Aµ fields

Zµ = W 3
µ cos θW −Bµ sin θW (1.15)

Aµ = W 3
µ sin θW +Bµ cos θW . (1.16)

After this transformation, the lagrangian mass terms for the gauge boson can be written as

Lgbmass =
g2v2

8

(
1

cos2 θW
ZµZ

µ + 2W+
µ W

−µ

)
(1.17)

that show that Higgs mechanism generates the masses for the Z neutral boson (mZ = gv/2 cos θW )
and for the W charged bosons (mW = gv/2). The other field Aµ, which is a combination of two
generators of the electroweak gauge group, remains massless. Such a field is nothing but the
photon field, the meadiator of the electromagnetic force, which can be considered as the gener-
ator of the U(1)Q symmetry that survives the electroweak SSB. Looking at the fermions-gauge
bosons interactions terms in the elctroweak sector, we obtain

Lint = g′Bµψ̄
Y

2
γµψ + gW i

µψ̄τ
iγµψ = (1.18)

= eAµψ̄γ
µ

(
τ 3 +

Y

2

)
ψ +

g

cos θW
Zµψ̄γ

µ

(
cos2 θwτ

3 − sin2 θW
Y

2

)
ψ +

+
g√
2
(W+

µ ψ̄γ
µτ+ψ +W−

µ ψ̄γ
µτ−ψ)
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Q τ τ 3 Y

Lepton Left-Handed Doublet
νL 0 1/2 +1/2 -1
eL -1 1/2 -1/2 -1

Lepton Right-Handed Singlet eR -1 0 0 -2

Quark Left-Handed Doublet
uL 2/3 1/2 +1/2 1/3
dL -1/3 1/2 -1/2 1/3

u-quark Right Handed Singlet uR 2/3 0 0 4/3
d-quark Right Handed Singlet dR -1/3 0 0 -2/3

Table 1.1: Electroweak quantum numbers of the SM particles.

where we have defined the electric coupling e = g sin θW and τ± = τ 1 ± iτ 2. It is clear that the
strength of the interactions is determined by the quantum numbers of the fermions. In particular,
these numbers are fixed by the so-called Gell-Mann-Nishijima relation [45, 46] Q = τ 3 + Y/2
which can be defined starting from the electromagnetic interaction term and fixes the electric
charge of the fermions. Since neutrino fields are the upper components of the left handed lepton
multiplets, we have that τ 3ν = 1/2 (see eq. (1.8)). For this reason, we need the hypercharge
of the lepton doublet to be YlL = −1 in order to obtain neutral neutrinos2. This choice also
allow us to have Q = −1 for the charged leptons, which is what we expect experimentally [47].
Given that, we obtain that neutrinos in the SM interact only via weak interactions, which can
be neutral current (NC) interactions, mediated by the Z boson

LNC =
g

2 cos θW
Zµν̄Lγ

µνL (1.19)

and charged current (CC) interactions, mediated by the W bosons

LCC =
g√
2
(W+ν̄Lγ

µlL +W−l̄Lγ
µνL). (1.20)

1.3 Neutrino interactions in the SM

Experimentally, we know that the vector bosons W± and Z have a mass of ∼ 80 and ∼ 90 GeV,
respectively [48–52]. Thus, they are two of the most massive elementary particles, and if their
kinetic energy is low in respect to the mass (which is a good approximation when we consider
terrestrial neutrino interactions), their mass is the only contribution to the propagator. Thus,
when we consider neutrino interactions, it can be convenient to use the four fermions Fermi
effective theory, in which the effect of the bosonic mediator is only a suppression of the coupling.
The effective NC and CC lagrangian can written as a current-current interaction

LNC
eff = −GF√

2
j†Zµj

µ
Z (1.21)

LCC
eff = −GF√

2
j†Wµj

µ
W

(1.22)

where we have defined the Fermi constant

GF =
π√

2 sin2 θWm2
W

. (1.23)

2See Tab. 1.1 for a summary of the electroweak quantum numbers for quarks and leptons.
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Focusing on the leptonic sector (the quark sector is completely analogous) the currents are

jµW = ν̄γµ(1− γ5)l = 2ν̄γµeL (1.24)

jµZ = ν̄γµν +

(
−1 +

1

2
sin2 θW

)
ēLγ

µeL + 2 sin2 θW ēRγ
µeR. (1.25)

where the factors −1/2 + sin2 θW and sin2 θW are usually called gL and gR, respectively. Using
these currents, it is possible to study all the neutrino interactions in the SM. Let us take the
simplest case, namely the νe scattering on an electron (we will talk about how the neutrino
flavors enter in the game in the next section). In this case, we have two different channels, the
s channel, with a W boson exchange, and the t channel with a Z boson exchange. In the Fermi
approach, the total effective lagrangian density is

L =
GF√
2
{[ν̄γµ(1− γ5)e][ēγµ(1− γ5)ν] + [ν̄γµ(1− γ5)ν][ēγµ(gV − gAγ5)e]} (1.26)

where gV and gA are the neutral current vector and axial electron couplings, namely gV =
−1/2 + 2 sin2 θW and gA = −1/2 (notice that these can be obtained rearranging eq. (1.25)
through the relations 2gL = gV + gA and 2gR = gV − gA). Performing a Fierz transformation,
this lagrangian becomes

L =
GF√
2
[ν̄γµ(1− γ5)ν][ēγµ(1 + gv − (1 + gA)γ5)e] . (1.27)

We can now introduce the inelasticity defined as

y =
Eν − Ee

Eν

; (1.28)

this quantity, being a Lorenz invariant, can be expressed in terms of the scattering angle θ∗ in
the center of mass frame

y =
1

2
(1− cos θ∗). (1.29)

For this reason, it is easy to write the scattering cross section in terms of y considering the angular
distribution due to the spin configurations of the process. Indeed, when neutrinos interact with
left handed particles, the total spin is forced to be 0, so the angular distribution in the center of
mass frame is flat. On the other hand, when neutrino interacts with right handed particles, the
total spin is 1, and in terms of the inelasticity, the angular distribution is (1 − y). Thus, given
the lagrangian in eq. (1.27), we have

dσ(ν − e)

dy
=
G2

F s

π

[(
1

2
+ sin2 θW

)2

+ sin4 θW (1− y)2

]
(1.30)

where s is the usual total quadrimomentum. Integrating over the entire range of variability of
y, namely from 0 to 1, we easily obtain

σ(ν − e) =
G2

F s

π

[(
1

2
+ sin2 θW

)2

+
1

3
sin4 θW

]
∼ 10−41

(
Eν

GeV

)
cm2 (1.31)

which is a very small cross section compared to other processes in which charged particles are
involved. It is straight-forward to obtain the antineutrino scattering cross section just considering
that in this case the spin configurations are the opposite due to the fact that antineutrinos are
right handed particles. We obtain
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σ(ν̄ − e) =
G2

F s

π

[
1

3

(
1

2
+ sin2 θW

)2

+ sin4 θW

]
∼ 0.5× 10−41

(
Eν

GeV

)
cm2. (1.32)

With the same procedures one can compute the cross sections related to the interactions with
quarks and, considering the parton distributions, also with hadrons.

1.4 The fermion masses

The Higgs mechanism is able to generate not only the weak interactions bosons masses, but also
the fermion masses. Indeed, it is possible to consider new invariant and allowed terms in the
lagrangian which correspond to the Higgs-fermions interactions, that can be written as

LY uk = −ydQ̄LΦdR − yuQ̄LΦ
cuR − ylL̄LΦlR + h.c. (1.33)

where yu,d are the so called Yukawa couplings, that can be taken as real given a rephasing of the
fermion fields, and Φc = iτ 2Φ∗ is the charge conjugate of Φ. Notice that, given the neutrality of
the physical Higgs boson field H, YΦ = +1 and YΦc = −1. After the SSB, the vev contribution
to Φ generates fermion mass terms (otherwise not allowed in the lagrangian since left and right
handed fields transforms differently under the SM gauge group)

Lfm =
v√
2
[−ydd̄d− yuūu− yl l̄l] + h.c. (1.34)

that predicts the fermion masses to be proportional to the Higgs vev. It is worth to mention
that the Higgs mechanism does not provide neutrino masses, since the right handed neutrino
fields are missing in the SM.
The particle physics experiments have so far demonstrated that exist three copies of each SM
elementary particle. These copies are called generations and to each generation corresponds a
flavor. The presence of three generations of particles brings some interesting questions in the
game. For instance we do not know why there are exactly three generations and many theoretical
efforts have been done in order to understand if there could be a flavor symmetry3 beyond the
SM group that can explain the differences between the particle generations [53, 54]. The three
particle generations lead to new phenomenological implications in the SM framework. Let us
consider the quarks, which in the Standard Model are represented by a left handed doublet and
two right handed singlet for each generation. Their Yukawa lagrangian can be written as

LY uk = −ydijQ̄i
LΦd

j
R − yuijQ̄

i
LΦu

j
R + h.c. (1.35)

where now we have introduced the indices i and j that denotes the three generations. After the
SSB, this lagrangian generates the quark masses and the following terms appear

L = −md
ij d̄

i
Ld

j
R −mu

ijū
i
Lu

j
R + h.c. (1.36)

Now we have two complex mass matrices, that can be diagonalized through a bi-unitary trasfor-
mation, namely

md = U †
Lm̄

dUR and mu = V †
Lm̄

uVR (1.37)

where the U and V matrices are unitary matrices and the m̄ matrices are real and diagonal.
If we apply the unitary rotations to the quark fields (obtaining now new fields u′L,R and d′L,R),

3Notice that in the standard model the three generations are just copies of the same structure, thus the
standard model quantum numbers do not depend on the flavor.
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the lagrangian is written in the mass basis and there are no terms which mixes the generations.
However, this change of basis affects the interactions terms. Let us consider the charged current
weak interaction term. In the mass basis it becomes

LW =
g√
2
W+

µ ū
i
Lγµd

i
L + h.c. = (1.38)

=
g√
2
W+

µ (VLU
†
L)ijū

′i
Lγ

µd
′j
L + h.c. (1.39)

where now it is clear that when we consider the interactions between actual massive particles
(which are the mass eigenstates u′L,R and d′L,R) we need to take into account the entries of the

complex unitary matrix VLU
†
L, that is called the Cabbibo-Kobayashi-Maskawa (UCKM) matrix

[55, 56]. A general n× n unitary complex matrix has n2 real parameters, which can be chosen
as n(n− 1)/2 mixing angles and n(n + 1)/2 phases. In our case, we can remove 2n− 1 phases
by rephasing the left handed particle fields; indeed performing the same rephasing on the right
handed fields the lagrangian is unaltered, indicating that such phases are not physical. Thus,
the mixing matrix is left with only (n − 1)(n − 2)/2 physical phases. In the SM, where the
number of generation is n = 3, we can write the mixing matrix in terms of 3 mixing angles and
one phase in the following way

UCKM = =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

 , (1.40)

where sij = sin θij and cij = cos θij. These four parameters in quark sector have been measured
with a good precision so far [13, 57] showing that one of the three angles has a considerable
effect (θq12 ∼ 13◦) while the other two are very small. The phase, which is responsible of the CP
violation in quarks processes, has also been determined to be different from zero.
In the leptonic sector, the situation is different. The three charged particles are the electron (e),
the muon (µ) and the tau (τ), which have masses of respectively 511 KeV, 106 MeV and 1.77
GeV [13]. To each of these three particles correspond a neutrino. In absence of neutrino masses,
it is clear that the SM [58] is also invariant under rotations of the electronic, muonic and tau
fields, namely under the group U(1)e × U(1)µ × U(1)τ . For this reason, we expect that in all
the processes we observe in particle physics, the lepton flavor number must be conserved along
with the total lepton number. Thus, for instance, the process νµ + e→ νe + e can only occur in
neutral current, otherwise we would need a muon neutrino to turn into an electron through the
W boson exchange violating the lepton flavor number. The fact that neutrinos are massless in
the SM, has also another important consequence: differently from the quark sector, the leptonic
flavor oscillations should not occur. Indeed, in the SM leptonic sector we only have one mass
matrix which is diagonalized by two matrices UL and UR. Since the rotation matrix is the same
for both entries of the SU(2) doublet, the weak interaction lagrangian term is left unaltered.
However, neutrino oscillations have been experimentally observed in 1998, bringing to one of the
most important particle physics discoveries of the last decades. The presence of this phenomenon
established that neutrinos must be massive and paved the way for a huge number of theoretical,
phenomenological and experimental studies, as we will widely discuss in the next chapter.
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Chapter 2

Neutrino oscillations

Neutrino oscillations have been one of the most studied processes in the last decades. Several
neutrino experiments succeeded in observing the phenomenon and in measuring the parameters
involved. In this chapter we will discuss the formalism of the oscillations in vacuum and in
matter as well as the strategies one can adopt to measure each oscillation parameter. At the end
of the chapter we will briefly discuss how the neutrino masses, which are non-vanishing since we
observe oscillations, may be introduced in the SM.

2.1 Formalism of the oscillations

If neutrinos are massive, whatever their mass is, they can undergo the phenomenon of neutrino
oscillations. As we will show in few lines, we only require that all the three neutrinos do not
have the same mass. The theory of neutrino oscillations was born at the time of the first neu-
trino observations [11, 59]. Then, in the following decades, such phenomenon has been used to
explain some discrepancies between data and theory [8, 60–64], until it has been observed and
discovered in 1998 by the Super-Kamiokande experiment [10]. We will discuss in the following
sections how neutrino experiments are able to study this phenomenon.
Neutrino oscillations occur when neutrinos change their flavor during their propagation. This
process is governed by the oscillation probabilities, which can be obtained from a mixing matrix
and the knowledge of the differences between neutrino masses. The mixing matrix, which theo-
retically can be obtained in the exact same way of the CKM matrix, is called PMNS (Pontecorvo-
Maki-Nakagawa-Sakata) matrix [11, 59] and can be parameterized using three mixing angles and
a complex phase.
Let us now discuss how to obtain the neutrino flavor transition probabilities. First of all, we can
consider a neutrino flavor eigenstate of momentum p [65]. This state must be created from the
vacuum by the neutrino conjugate field, thus can be written as superposition of mass eigenstates
in the following way

|να(p)⟩ =
∑
i

U∗
αi |να(p)⟩ (2.1)

where the greek subscripts denotes the flavors, the latin ones the mass eigenstates. The matrix
U is the leptonic PMNS mixing matrix. If we consider the neutrino state after a time t, it
evolves, following the Schroedinger equation

|να(p)⟩ = e−iEit
∑
i

U∗
αi |να(p)⟩ (2.2)

where E is the neutrino energy. Experiments were able to set very stringent bounds to the
neutrino mass [66–71] so far (mν < 1 eV ). Moreover, cosmological observation could set even
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more stringent bounds on the sum of all neutrino masses
∑

imνi < 0.1 eV [72–74]. Thus, when
we deal with neutrinos we are always in the ultra-relativistic limit, in which we can write

Ei =
√
p2 +m2

i ∼ p+
m2

i

2p
(2.3)

where we assumed that all eigenstates have the same momentum. If we want to determine the
probability that a neutrino of flavor α turns into a neutrino of flavor β at a given time t, we
need the following amplitude

Aαβ = ⟨νβ(p)|να(p, t⟩ =
∑
i,j

UβjU
∗
αie

−iEit ⟨νj(p)|νi(p)⟩ = (2.4)

=
∑
i

UβiU
∗
αie

−iEit

which has to be squared

Pαβ =

∣∣∣∣∣∑
i

UβiU
∗
αie

−iEit

∣∣∣∣∣ = (2.5)

=
∑
i,j

UβiU
∗
αiU

∗
βjUαje

−i(Ei−Ej)t.

In the ultra-relativistic limit, we can write t ∼ L and p ∼ E, obtaining that Ei − Ej =
(m2

i − m2
j)L/2E = ∆m2

ijL/2E. Thus, as already mentioned, the oscillation probabilities only
depend on the so-called mass spittings ∆m2

ij; this is the reason why we need not only non-
vanishing, but also non-degenerate mass eigenstates to observe neutrino oscillations. Rewriting
eq. (2.6) in a convenient way, we obtain the general neutrino oscillation formula

Pαβ = δαβ − 4
∑
i<j

ℜ[UβiU
∗
αiU

∗
βjUαj] sin

2

(
∆m2

ij

4E
L

)
+ (2.6)

+2
∑
i<j

ℑ[UβiU
∗
αiU

∗
βjUαj] sin

(
∆m2

ij

2E
L

)
.

Some remarks about the probabilities. If we consider antineutrinos, we need the substitution
U → U∗. Thus, the first two terms of the probabilities are unaltered, while the last term which
involves the imaginary part of the combination of matrix elements changes sign. For this reason,
if the mixing matrix is real, there are no differences in the probabilities (no CP violation). In
the three neutrino framework, however, we have one complex phase surviving in the matrix
and for this reason we expect in general to observe CP violation. Moreover, any rephasing of
the mixing matrix, do not affect probabilities. Thus, Majorana phases (which will be discussed
later) cannot be determined studying oscillations.
Another interesting approach to obtain oscillation probability, makes use of the neutrino Hamil-
tonian. In this case we describe neutrinos as n level quantum mechanical system. Given that, it
is possible to write the flavor eigenstates vector in terms of the mass eigenstates vector through
the mixing matrix νf = Uνm. The Hamiltonian of the system in the mass basis is the free
particle one, namely

(Hm)ij = δij

(
p+

m2
i

2E

)
. (2.7)
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Figure 2.1: Feynman diagrams of the neutral current (left) and charged current (right) neutrino interactions

with matter.

The subtraction of a contribution proportional to the identity matrix does not affect the oscil-
lation probabilities. The Hamiltonian matrix can be thus written equivalently as

Hm =
1

2E
diag(0,∆m2

21,∆m
2
31). (2.8)

In the flavor basis, the Hamiltonian becomes Hf = UHmU
†. Using the Schroedinger equation

for the Hamiltonian operator, we obtain the transition amplitude

Aαβ = ν†βUe
−iHmLU †να = (2.9)

= Uβjν
†
je

−iHmLνiU
∗
αi =

=
∑
i

UβiU
∗
αie

−i
∆m2

ijL

2E

which is equivalent to the previous expression.

2.2 Oscillations in matter

If neutrino travel through the Earth, or in any matter media, they can undergo weak interactions;
this can alter the oscillation probabilities. Wolfestein, Mikheyev and Smirnov [75–77] studied
for the first time the effect of the matter (called MSW effect) in neutrino propagation. Indeed,
the neutrino Hamiltonian can get contributions at the first order in the small coupling GF if we
consider the coherent forward scattering on the matter particles. Even though the contribution is
small, it has to be compared to neutrino mass splittings (which appear in the free Hamiltonian)
and for this reason it can become non-negligible.
Let us now consider the processes which occur during neutrino propagation in matter. They
can be Neutral Current (NC) interactions, in which a neutrino of whatever flavor scatters on a
proton, a neutron or an electron exchanging a Z boson, or Charged Current (CC) interactions,
in which only the electron neutrino scatters on matter electrons exchanging a W boson. The
Feynmann diagrams corresponding to the two interactions are shown in Fig. 2.1. We will focus
on the latter contribution first. The lagrangian term is the usual charged current lagrangian
which can be written as

LCC =
GF√
2
[ν̄eγ

µ(1− γ5)e][ēγµ(1− γ5)νe] (2.10)
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and becomes

LCC =
GF√
2
[ν̄eγ

µ(1− γ5)νe][ēγµ(1− γ5)e] (2.11)

after a Fierz transformation [78]. Since in the medium in which neutrinos are propagating we
have not single particles but an electron number density Ne, we can define the electron density
matrix

ρe =
1

2

∑
s

∫
d3p

|e(p⃗, s)⟩ ⟨e(p⃗, s)|
2p0

Nef(p, T ) (2.12)

where f is the normalized statistical momentum distribution of electrons at a given temperature
T. Thus, we can integrate out the electrons in the lagrangian using this density matrix in the
following way

Leff
CC = Tr(LCCρe) = (2.13)

= −GF√
2
[ν̄eγ

µ(1− γ5)νe]
Ne

2

∑
s

∫
d3p

2p0
⟨e(p⃗, s)| ēγµ(1− γ5)e |e(p⃗, s)⟩ f(p, T ) =

= −GFNe

2
√
2
[ν̄eγ

µ(1− γ5)νe]

∫
d3pTr

[
/p+m

2p0
γµ(1− γ5)

]
f(p, T ) =

= −GFNe√
2

[ν̄eγ
µ(1− γ5)νe]

∫
d3p

pµ
p0
f(p, T ).

In the rest frame of the matter medium the momentum distribution can be considered an even
function. Thus, the integral vanishes unless µ = 0. Using the normalization of the distribution,
we finally obtain

Leff
CC = −GFNe√

2
[ν̄eγ

0(1− γ5)νe] . (2.14)

This term, linear in the weak coupling GF , becomes a new contribution to the neutrino self
energy that can be written as ξCC =

√
2GFNeγ

0PL where PL = 1−γ5

2
is the operator which picks

only the left handed neutrino component. The dispersion relation thus becomes

(E −
√
2GFNe)

2 = m2 + p2 (2.15)

that, in the ultra-relativistic limit, can be written as

E ∼ p+
m2

2p
+
√
2GFNe. (2.16)

If we consider the existence of three different neutrino flavors, the Hamiltonian is therefore
modified with the addition of the term

HCC =
√
2GFNe diag(1, 0, 0) (2.17)

since only the first neutrino flavor, namely the electron one, can undergo CC interactions during
the propagation. If we consider antineutrinos, p0 is negative; for this reason, the matter potential
term in the Hamiltonian changes sign in this case. Thus, the matter potential, together with the
PMNS matrix phase, are the only parameters responsible of the differences between neutrino
and antineutrino oscillation probabilities.
Let us now consider the NC contribution. Such interactions can involve any neutrino flavor
and any matter particle. If we are in a neutral medium, electrons and protons are in equal
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number and for this reason their contributions (which have opposite signs) cancel out. The only
remaining term is due to the neutrons density. Considering the NC lagrangian and repeating the
same procedure discussed for the CC interactions, we obtain a new contribution to the neutrino
Hamiltonian

HNC = −GFNn√
2

diag(1, 1, 1) (2.18)

where Nn is the neutron number density. In this case, since the neutral current interactions are
flavor independent, this contribution does not affect the oscillations, since it is proportional to
the identity and can be subtracted from the Hamiltonian. However, if there are sterile neutrinos
or if we consider other exotic physics this term can be important and can affect oscillations (see
Ch. 3).
If the electron density is constant through the medium, we only have an additional term in
the Hamiltonian which changes its eigenstates and eigenvalues. Thus, the matrix is no longer
diagonalized in the flavor basis by the PMNS matrix, but by a new matrix Ũ that depends on
the mixing angles and phases and on the matter potential. On the other hand, if the electron
density is not constant, the matter neutrino eigenstates in matter will become time-dependent.
In the flavor basis the time evolution equation is in this case

i
dνf
dt

= Hfνf −→ i
d(Ũ ν̃)

dt
= ŨHdŨ

†Ũ ν̃ (2.19)

where ν̃ are the new matter eigenstates and Hd = Ũ †Hf Ũ is the diagonalized effective Hamil-
tonian. Since now both the matrix Ũ and the eigenstates are time dependent, the equation
becomes

iŨ
dν̃

dt
+ i

dŨ

dt
ν̃ = ŨHdν̃ −→ i

dν̃

dt
=

(
Ũ − iŨ †dŨ

dt

)
ν̃. (2.20)

From this time evolution equation it is possible to extract the oscillation probabilities in the
most general way.

2.3 Two flavors oscillations

In nature we know that neutrinos can assume three different flavors (or at least three different
active flavors, since we have hints of the presence of sterile neutrinos, but we have not discovered
them yet, see Ch. 3). However, it can be useful to study neutrino oscillations in the two
flavors approximation. In this case the transition probabilities are easier to handle (in the full
framework the expressions can be very cumbersome, as we will discuss later) and can explain
different features of the phenomenon. Moreover, given the two measured values of the mass
splittings (which are very different one to each other, see Sec. 2.5), in certain circumstances, it
is possible to decouple fast oscillations from slow oscillations and study the experimental results
using the two flavors formulae [79, 80].
The two-flavors neutrino mixing matrix can be parameterized using only one angle and can be
written as

U =

(
cos θ sin θ
− sin θ cos θ

)
. (2.21)

Thus, there are no complex phases and for this reason we cannot expect CP violation. The only
mass splitting is ∆m2 = m2

2 −m2
1, and the neutrino Hamiltonian (in vacuum) is

Hf =
∆m2

2E

(
cos θ sin θ
− sin θ cos θ

)(
0 0
0 1

)(
cos θ − sin θ
sin θ cos θ

)
. (2.22)
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which becomes

Hf =
∆m2

2E

(
sin2 θ sin θ cos θ

sin θ cos θ cos2 θ

)
. (2.23)

Since we can subtract a contribution proportional to the identity without changing the oscillation
probabilities, we can write the Hamiltonian also as

Hf =
∆m2

4E

(
− cos(2θ) sin(2θ)
sin(2θ) cos(2θ)

)
(2.24)

that allows us to obtain the oscillation probabilities very easily. The two eigenvalues of the
Hamiltonian in this basis are indeed just E1/2 = ±∆m2/4E, while the two eigenvectors are
ν1 = (cos θ, sin θ) and ν2 = (sin θ,− cos θ). Thus, at a given time t (or distance L), the neutrino
flavor states are

|να⟩ = cos θe−i∆m2L
4E |ν1⟩+ sin θei

∆m2L
4E |ν2⟩ (2.25)

|νβ⟩ = sin θe−i∆m2L
4E |ν1⟩ − cos θei

∆m2L
4E |ν2⟩

and the transition amplitude is simply

Aαβ = ⟨νβ(L)|να(0)⟩ = sin θ cos θ
(
ei

∆m2L
4E − e−i∆m2L

4E

)
= i sin(2θ) sin

(
∆m2L

4E

)
. (2.26)

Squaring it we obtain the probability that a neutrino of energy E changes its flavor after a
distance L, which is

Pαβ = sin2(2θ) sin2

(
∆m2L

4E

)
. (2.27)

We usually refer to this probability as the νβ appearance. We can obtain the same result using
the general formula written in terms of entries of the mixing matrix (Eq. (2.7)). It is possible
to notice that the mixing angle θ define the amplitude of the oscillations. Thus, if the angle is
very small, the appearance probability is very close to zero, while if it is maximal (π/4), then
the probability can easily reach 1 when the oscillating term is maximized. In particular, we can
define an oscillation length

L0 =
2πE

∆m2
(2.28)

that refers to the distance that a neutrino of energy E should travel to have the maximum
probability of a flavor change, namely Pmax

αβ = sin2(2θ). Every odd multiples of the length L0

gives maximum probability, while every even multiples the probability is zero. Moreover, since
the mixing matrix is real, it is easy to demonstrate that Pαβ = Pβα.
Given a neutrino of flavor α, the relation ∑

f

Pαf = 1 (2.29)

must hold, where f = α, β is the final flavor. This is a direct consequence of the unitarity of the
time evolution operator, but it is also easy to understand from a practical point of view. From
this relation we can obtain the so called disappearance probabilities

Pαα = Pββ = 1− sin2(2θ) sin2

(
∆m2L

4E

)
(2.30)
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that refers to the probability that a neutrino does not change its flavor after travelling a distance
L (or, the probability that a neutrino of a given flavor does not disappear). When the appearance
probability is maximum, the disappearance is minimum. Thus, for odd multiples of the length
L0, the disappearance probability is zero. Notice that in the literature, the argument of the
oscillating sine function can be written in terms of the ∆ parameter defined as

∆ =
∆m2L

4E
(2.31)

that, if we want to express ∆m2 in eV 2, L in km and E in GeV , corresponds to

∆ = 1.27
∆m2[eV ]L[km]

E [GeV ]
. (2.32)

Let us now discuss the effect of the matter potential on the two flavor oscillations in the case
of constant electron density. Introducing the parameter V =

√
2GFNe

1 , in the flavor basis, the
Hamiltonian is

Hf =
∆m2

4E

(
− cos(2θ) sin(2θ)
sin(2θ) cos(2θ)

)
+ V

(
1 0
0 0

)
. (2.33)

If we subtract an identity matrix proportional to V/2, we obtain a traceless Hamiltonian that
can be rewritten as

Hf =
∆m2

4E

(
− cos(2θ) +Q sin(2θ)

sin(2θ) cos(2θ)−Q

)
(2.34)

where Q = 2V E/∆m2. With some manipulations of the Hamiltonian matrix, our expression
becomes

Hf =
∆m2

√
(cos2(2θ)−Q)2 + sin2(2θ)

4E
× (2.35)

×

 − cos(2θ)+Q√
(cos2(2θ)−Q)2+sin2(2θ)

sin(2θ)√
(cos2(2θ)−Q)2+sin2(2θ)

sin(2θ)√
(cos2(2θ)−Q)2+sin2(2θ)

cos(2θ)−Q√
(cos2(2θ)−Q)2+sin2(2θ)


that is identical to the vacuum Hamiltonian except for the redefinition of the mixing angle and
the mass splitting, which have to be replaced with

∆m̃2 = ∆m2
√
(cos2(2θ)−Q)2 + sin2(2θ) (2.36)

sin2(2θ̃) =
sin2(2θ)

[cos(2θ)−Q]2 + sin2(2θ)
.

Thus, it is clear that the matter effect both modifies the amplitude and the frequency of the two
flavor oscillations. Regardless of the value of the mixing angle, the matter potential introduces
a resonance condition in the appearance probability, since if Q = cos(2θ) the amplitude of the
oscillations is equal to one. This is the MSW (Mikheyev, Smirnov and Wolfenstein) resonance
condition [75–77] which has an amplitude proportional to sin(2θ). Moreover, at the resonance,
the effective mass splitting is ∆m̃2

r = ∆m2 sin(2θ) which tells us that the oscillation length
rapidly increases if the mixing angle is small. However, the resonance condition can be fulfilled
by either neutrino or antineutrino oscillations, but not by both. Indeed, since V > 0 for neutrinos
and V < 0 for antineutrino, for a given sign of the mass splitting, the MSW resonance appears

1In convenient units, V ∼ 7.5× 10−14ρ(g/cm3)Ye eV where Ye is the number of electrons per nucleon.
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only for particles or antiparticles.
If the electron density is not constant in time, the Schroedinger equation showed in eq. (2.20)
does not have a general solution. However, in the so-called adiabatic condition∣∣∣∣∆m̃2

4E ˙̃θ

∣∣∣∣≫ 1, (2.37)

namely when the matter potential is slowly changing, the appearance probability is given by [78]

Pαβ =
1

2
[1− cos(2θf ) cos(2θi)− sin(2θf ) sin(2θi) cos(ΦL)] (2.38)

where θi and θf are the values of the effective mixing angle at the initial and final time respec-
tively, while ΦL is defined as

ΦL =

∫ L

0

∆m̃2

2E
dl. (2.39)

If, changing the distance L, Φ rapidly oscillates, cosΦL can be averaged out to zero, giving a
very simple solution for the appearance probability

Pαβ =
1

2
[1− cos(2θf ) cos(2θi)] (2.40)

that, in the case of neutrinos produced in a medium with a very high electron density which
evolves to vacuum adiabatically, simply becomes Pαβ = cos2(θ) that is a constant value. This
approximation can, under some conditions, be used to compute the oscillation probability of
neutrinos produced in the Sun and detected on the Earth. Other solutions of the time evolution
equation have been studied in [81–88].

2.4 Three flavors oscillations

The addition of one single flavor to the previous case makes the computation of the oscillation
probabilities more complicated. Let us first give a look at the mixing matrix in the 3 flavors case.
As already mentioned, a 3×3 mixing matrix can be written in terms of three rotation angles and
one complex phase. We need to choose where to assign the complex phase and the multiplication
order of the rotation matrices; even though the parameterizations are all equivalent, it is widely
accepted to use the following

UPMNS =

1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13e
iδ

0 1 0
−s13e−iδ 0 c13

 c12 s12 0
−s12 c12 0
0 0 1


=

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

 (2.41)

where sij = sin θij and cij = cos θij. It is clear that the full oscillation probabilities become very
cumbersome since each term contains the product of four different mixing matrix entries. How-
ever, if one of the mass splittings is zero (or can be neglected) the general oscillation probability
reduces to the two flavors one, where now θ is an effective mixing angle which can be written
in terms of the three θij. Moreover, also if one of the elements of the mixing matrix is zero,
some of the probabilities can be simplified and written in terms of two-flavors oscillations. For
instance, as we will discuss in the following section, s13 ≪ 1; thus, Ue3 is very small. Neglecting
it, we obtain that all the mixing matrices combinations which appear in eq. (2.7) where α = e
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and/or β = e are zero. For this reason, all the probabilities which involve the electron flavor can
be written in the form

Pαβ = δαβ + [1− 2δαβ sin
2(2θeff )] sin

2

(
∆
m2

21L

4E

)
. (2.42)

Such equations can be used in some approximations and can be very useful, even though they
are not exact and are not catching all the features of the 3-flavors oscillations. Another approx-
imation that is used in some oscillations regimes, is the fast oscillation one. We will discuss
later that one of the mass splittings (∆m2

31) is bigger than the other (∆m2
21). Thus, if we are

observing oscillations driven by the latter, the ones driven by the former can be averaged out
since they are very fast. Defining Kij

αβ = UβiU
∗
αiU

∗
βjUαj, the oscillation probabilities become

Pαβ = δαβ − 2ℜ(K13
αβ +K23

αβ)− 4ℜ(K12
αβ) sin

2

(
∆m2

21L

4E

)
− 2ℑ(K12

αβ) sin

(
∆m2

21L

2E

)
(2.43)

which is much easier to handle than full probabilities. When we are at shorter distances, on
the other hand, we can neglect the slow oscillations driven by ∆m2

21 and we can choose a
basis in which we observe two flavors oscillations between two neutrino states ν ′1 = νe and
ν ′3 = s23νµ + c23ντ . The oscillation probabilities can be obtained from the two flavors one sub-
stituting the mixing angle with θ13 and the mass splitting with ∆m2

31.
It is worth to mention that, differently from the two flavors case, in the three neutrinos frame-
work, due to the presence of the PMNS matrix phase, the CP symmetry cannot be conserved
unless δCP = 0, π. If we assume CPT conservation, however, we have that P̄αβ = Pβα.
We can therefore in principle define three different CP (or equivalently T) asymmetries as
Pαβ − Pβα = Pαβ − P̄αβ. However, the unitarity of the probabilities imposes that there ex-
ists only one independent asymmetry [89, 90] that can be written as

Pµe − Peµ = −4J

[
sin

(
∆m2

32L

2E

)
+ sin

(
∆m2

13L

2E

)
+ sin

(
∆m2

21L

2E

)]
(2.44)

where J is the so called Jarlskog invariant defined as

J = c213s13s12c12s23c23 sin δ (2.45)

which encodes all the vacuum effects of the CP violation in the oscillations2.
The inclusion of the matter effects further complicates the treatment of oscillations. In this case
there is not an exact expression that can be used to discuss how effective oscillation parameters
are modified by the matter potential. However, there are some interesting features that can
be discussed. In particular, in this case, we have two MSW resonances, since there are two
independent mass splittings. These resonances, depending on the signs of ∆m2

ij, can appear in
neutrino probabilities, antineutrino probabilities or both. Being ∆m2

21 ≪ ∆m2
31, around the first

MSW resonance averaging out the fast oscillation, we obtain an effective Hamiltonian for the
remaining two-flavors oscillations is the same as eq. (2.33) after the substitutions V → c213V ,
θ → θ12 and ∆m2 → ∆m2

21.
Other regimes in which one of the states decouples for large matter effects or around resonances
have been studied in literature. Moreover, in different studies authors have developed strategies
to compute approximate expressions for the 3-flavor oscillation probabilities in matter [91–96].

2From the experimental point of view, it is convenient, on the other hand, to normalize the asymmetries by
the sum of the considered probabilities. This is because in this way we can consider the fact that, even if the
effect of the asymmetry is big, it can easily be considered as a fluctuation if also the sum of the probabilities is
big. In this case, a different asymmetry for each oscillation channel must be defined, as discussed in the following
chapters.
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2.5 Measurements of oscillation parameters

Many neutrino oscillation experiments have been realized in the last 30 years. They used (and
use) neutrinos from different sources to measure the six oscillation parameters (namely θ12, θ13,
θ23, δCP , ∆m

2
21 and ∆m2

31). Let us briefly discuss the categories of experiments which have been
used so far to measure the oscillation parameters.

2.5.1 Solar Neutrino Experiments

The energy source of the Sun are the nuclear fusion reactions inside its core. When such in-
teractions consist in the electron capture of a nucleus, electron neutrinos are produced. Thus,
a huge flux of solar neutrinos is expected to reach the Earth. Since the 1960s we were able to
observe solar neutrinos with radiochemical methods [8, 9, 60]. The solar neutrino flux provides
a direct probe of the internal composition of the Sun [97–99]; however, the first measurements
were not in agreement with the solar model. The explanation of this problem, known as solar
neutrino problem [60, 100, 101], provided a boost in the study of neutrino oscillations, which
were confirmed in a different type of experiment years later.
The solar neutrinos energy is small: most of neutrinos are below 500 keV and only a few of
them reaches 10 MeV. Since the neutrino interactions cross section grows with energy, we can
expect such neutrinos to be very weakly interacting; however, since their flux is very large (up
to 1011 ν/cm2/s) their observation is possible. Considering that the distance from the Sun and
the Earth is 108 km, the L/E ratio that governs the oscillations is of the order of 1011 km/GeV ,
which would need a mass splitting of 10−11 eV 2 in order to observe an oscillation pattern; in the
hypothesis that both the mass splittings are much larger than such value, we can average out all
the oscillations. For low energy electron neutrinos, the matter effect is not important (Q ≪ 1),
thus we can consider the disappearance probability, in the 2-flavor approximation, to be simply

Pee = 1− 1

2
sin2(2θ12), (2.46)

where the angle θ12 has been chosen as the one that drives the solar oscillations. For more ener-
getic solar neutrinos (E ∼ 10 MeV ), however, experiments observed a drop in the probability.
This is because solar neutrinos are produced in the Sun core which has a very high density and
this evolves to vacuum almost adiabatically. Thus, for neutrinos that suffer from matter effects,
the survival probability can be written, following eq. (2.40), as

Pee = 1− cos2 θ12 . (2.47)

It is therefore clear that the solar experiments are particularly sensitive only to one of the three
mixing angles (which is called for this reason solar mixing angle). The global fit performed
on the data from Homestake, GALLEX/GNO, SAGE, SNO, Borexino and Super-Kamiokande
[60, 64, 99, 102–110] suggests a value for this mixing angle of [111]

θ12 = 33.44+0.77
−0.74

◦. (2.48)

Other global fits agree at a good confidence level on such value [112, 113]. It has to be noticed
that this mixing angle is quite large (much larger, for instance, than the quark mixing angles)
and it is measured with a good precision (2%). One of the advantages of the presence of matter
effects in the solar neutrino oscillations, is that the disappearance probability for the high-energy
end of the solar spectrum is no longer sensitive to sin2(2θ12) but to cos2 θ12. This allow us to
determine the octant in which θ12 lies (if θ12 > 45◦ or < 45◦).
The solar neutrino oscillations can also be used to measure the mass splitting driving slow
oscillations (∆m2

21, or the solar mass splitting). Indeed, from the observation that the matter
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effect becomes important at around 10 MeV, fixing the solar model that predicts the electron
density, one can obtain ∆m2

21 ∼ 10−5 eV 2. Notice that the transition from standard oscillation
to the MSW resonance for neutrinos, not only suggests us the magnitude of the mass splitting,
but also fixes the sign of ∆m2

21 to be positive (if it was negative, the resonance would have
occurred only for antineutrinos, which are not produced in the su).
In the three neutrino framework, oscillation probabilities in the solar regime are modified in the
following way

P 3ν
ee = c413P

2ν
ee + s413. (2.49)

Since the data are well fitted by the 2-neutrinos approximation, solar experiments tell us that
θ13 must be small.

2.5.2 Reactor Experiments

Nuclear reactors produce energy through nuclear fission reactions. After the heavy nuclei split-
tings, β decays chains occurs. Such decays produce an intense flux of electron antineutrinos
with energies of the order of the MeV. For this reason, nuclear reactors have been widely used
as neutrino source [114, 115]. However, being the neutrino emission isotropic, the reactor flux
suffers from a 1/r2 reduction due to the distance from the source and reactor experiments cannot
have a very long baseline. Most of them have a baseline of few meters [116, 117], which is not
enough to develop oscillation (at least in the 3-neutrino framework, we will discuss about short
baseline reactor experiments anomalies later). However, near very powerful nuclear plants, it
has been possible to increase the baseline. At a distance of around 1 km from the antineutrino
source, the survival probability (which is the same for neutrinos and antineutrinos since matter
effects at short baselines are not important) is

Pee ∼ 1− sin2(2θ13) sin
2

(
∆m2

eeL

4E

)
(2.50)

where

∆ee =
∆m2

eeL

4E
= s212 sin

2

(
∆m2

32L

4E

)
+ c212 sin

2

(
∆m2

31L

4E

)
. (2.51)

If we consider that |∆m2
31| ∼ 10−3 eV 2 ≫ ∆m2

21 (from atmospheric experiments, see later), the
oscillation probability can be simply written as

Pee = 1− sin2(2θ13) sin
2

(
∆m2

31L

4E

)
. (2.52)

From the phenomenological point of view, this probability tells us that, when the oscillation
term is maximum, we expect to see a depletion on the number of events whose magnitude is
determined by the θ13 angle, known as reactor angle. RENO and Daya Bay, together with
Double CHOOZ [118–120] have been recently able to determine the reactor angle with a very
good precision [111]

θ13 = 8.57+0.13
−0.12

◦. (2.53)

Notice that, even though the probability depends on sin2(2θ13), we already know that the angle
lies in the lower octant otherwise we would have seen its effect on solar oscillation. Moreover,
since the measurement of this parameter is influenced also by other experiments that suffers
from the fact that we still don’t know the sign of ∆m2

31 (see next section), the best fit is
slightly different if we consider the neutrino mass ordering to be normal (∆m2

31 > 0) or inverted
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(∆m2
31 < 0).

A very important and unique reactor experiment was KamLAND [121–123]. This experiment
had a baseline of 180 km, where we can no longer neglect oscillation driven by the solar mass
splitting. In this regime, the oscillation probability becomes

Pee = 1− sin2(2θ13) sin
2

(
∆m2

eeL

4E

)
− sin2(2θ12) cos

4(2θ13) sin
2

(
∆m2

21L

4E

)
. (2.54)

The effect of the second term is a second and more pronounced (due to the fact that θ12 ≫ θ13)
dip in the oscillation probability for L/E values determined by the solar mass splitting. The
KamLAND experiment has been able to observe such a dip and to measure the solar mass
splitting, which from global fit results to be [111]

∆m2
21 = 7.42+0.21

−0.20 × 10−5 eV 2 . (2.55)

2.5.3 Atmospheric experiments

The first evidence of neutrino oscillations has been observed by the Super-Kamiokande exper-
iment in 1998 [10]. This experiment was looking at neutrinos coming from the Earth’s atmo-
sphere. Indeed, when cosmic rays hit the particles in our atmosphere, their interactions will
produce neutrinos. Atmospheric neutrino flux is complicated to predict [124–127], but the en-
ergy range is very wide, going from few MeV, to 109 GeV. Currently, we are able to observe
neutrinos up to 100 TeV [128], but very energetic atmospheric neutrinos are not very useful for
oscillations since they have no time to change their flavor3.
The main process from which atmospheric neutrinos are produced, is the pion decay. These
mesons, created by cosmic rays interactions, decay creating muons and muon neutrinos. If the
energy is below 5 GeV, the muons have time to decay into an electron, an electron neutrino
and a muon neutrino. Thus, for these energies we expect to observe a number of events ratio
Nνµ/Nνe ∼ 2. For higher energies, the muons do not have enough time to decay so we expect
mainly muon neutrinos on the Earth surface. Varying the zenith angle (ad thus the travelled
distance) from which neutrinos were observed, the Super-Kamiokande detector noticed that the
number of muon neutrinos was reduced, while the number of electron neutrinos was constant.
This was an evidence that for L/E ∼ 103 km/GeV , νe → νµ oscillations (driven by the solar
mass splitting) were not developed yet, while muon neutrinos were oscillating in a third neutrino
state (ντ ) which was not observable by the experiment. The νµ → ντ oscillation probability can
be written at the leading order as

Pµτ = 1− c413 sin
2(2θ23) sin

2

(
∆m2

31L

4E

)
. (2.56)

This mainly depends on θ23, which is known as atmospheric angle and ∆m2
13, or the atmospheric

mass splitting. Atmospheric neutrino experiments measured these two parameters, which how-
ever are also (and better) bounded by accelerator experiments, as we will discuss in the next
subsection. The main result of atmospheric experiments is that |∆m2

31| ∼ 2.5 × 10−3 eV 2 and
sin2(2θ23) ∼ 1 [109, 129–131]. However, with atmospheric neutrino experiments, it is very dif-
ficult to understand in which octant θ23 lies (lower octant, LO, if θ23 < π/4 and upper octant,
UO, if θ23 > π/4) and which is the sign of the atmospheric mass splitting (normal mass ordering,
NO, if ∆m2

31 > 0 or inverted mass ordering, IO, if ∆m2
31 < 0).

3On the other hand, energetic astrophysical neutrinos may be used for oscillation purposes.
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2.5.4 Accelerator experiments

Neutrino beams are produced since 1960s [4, 132, 133]. They come from protons which are
accelerated up to a certain energy and then sent to a fixed target. The interactions of the
protons with the target produce a large number of particles, which are mainly pions. After a
decay tunnel, we obtain a (mainly) forward beam of neutrinos and leptons coming from the
hadron decays. After absorbing or deviating all the charged particles only a pure neutrino beam
survives; of this beam we can predict with a good precision the energy spectrum. Most of the
neutrinos coming from accelerator beams are muon neutrinos, since the pions decays into muons
and muon neutrinos in the majority of the cases. However there is still a remaining contami-
nation (so called beam contamination) of electron neutrinos which mainly come from the kaons
decays. Placing magnets just before the decay tunnel, one can choose the charge of the pions
which generate neutrinos. In this way, we can produce neutrino or antineutrino beams. One of
the main problem of neutrino beams is that there is no way to narrow them and for this reason
if the neutrino detector is very far from the beam source, it sees only a fraction of the produced
neutrinos.
Accelerator experiments usually employ neutrinos with energies from hundreds of MeV to few
GeV. The baselines, on the other hand, can be very different. However, usually one can dis-
tinguish the accelerator experiments in Short Baseline Experiments (SBL) [134–138] and Long
Baseline Experiments (LBL) [139–145]. SBL experiments have a very short baseline, of the order
of few meters. For this reason, they should not see any oscillation (we will describe the SBL
anomalies later), but they observe a huge flux that can be used to measure, for instance, cross
sections [146–148]. Detectors placed few meters from the neutrino beam source can be also used
to control and determine the flux that reaches other detectors placed at longer baselines.
The LBL experiments, on the other hand, are built in order to reproduce the physics of low
energy atmospheric neutrinos but with a controlled and focused beam. For this reason, the
baseline of LBL experiments is chosen in order to sit, at the maximum of the neutrino flux, at
the first oscillation maximum, namely

LLBL =
2πE

∆m2
31

. (2.57)

Different LBL experiments have been built so far. The first generation included MINOS, OPERA
and ICARUS [141, 142, 142]. The first one mainly measured the atmospheric parameter using
the muon disappearance channel. The other two were looking at more energetic neutrinos (their
spectrum was peaked at 17 GeV) and successfully [149] tried to observe directly ντ . Observ-
ing νµ → ντ oscillations, which are responsible of the atmospheric oscillations, is very difficult.
Indeed, the ντ Charged Current interactions have an energy threshold of 3.1 GeV (due to the
fact that a τ lepton, which is rather massive, must be produced) and such energies are not very
typical of LBL experiments, since in order to be at the first oscillation maximum with a neutrino
energy of 3 or more GeV, we need a very long baseline (∼ 1500 km).
The second generation of long baseline experiments includes T2K and NOνA [140, 145]. These
two experiments were able to collect a large number of data and are still releasing their results
[150, 151]. Their detectors are able to observe not only the muon neutrinos from the disap-
pearance channel, but also electron neutrinos from the appearance channel. The appearance
probability in the atmospheric regime can be written as4

Pµe ∼ sin2(2θ13) sin
2 θ23 sin

2

(
∆m2

31L

4E

)
(2.58)

that is very small due to the presence of the reactor angle squared, but it is sensitive to the
atmospheric angle octant. However, since LBL are very precise, we cannot rely on this simple

4In the following chapters we will write this probability using different expansions and discussing different
terms.
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vacuum formula, and we can perform a fit considering also small subleading terms, which are
all useful for the parameters determination. Defining ∆ = ∆m2

31L/4E, V̂ = V/∆m2
31 where V

is the matter potential and α = ∆m2
21/∆m

2
31, we obtain

Pµe ∼ sin2(2θ13) sin
2 θ23

sin2[(1− V̂ )∆]

(1− V̂ )2
+ (2.59)

−α sin δ sin2(2θ12) sin(2θ13) sin(2θ23) sin∆
sin(V̂∆)

V̂

sin[(1− V̂ )∆)

1− V̂
+

+α cos δ sin(2θ12) sin(2θ13) sin(2θ23) cos∆
sin(V̂∆)

V̂

sin[(1− V̂ )∆)

1− V̂

neglecting all the small O(α2) terms (α ∼ 10−2). It is clear that, if we can observe the appear-
ance channel in both neutrino and antineutrino channels (for which V̂ and δ change sign), our
experiment can be sensitive to the CP violating phase δ. Moreover, the two subleading terms
are also sensitive to the sign of ∆ and the matter effect can have a non negligible impact.
Thus, long baseline experiments, being able to have access different transition channels (at least
νµ → νµ and νµ → νe but also νµ → ντ in some cases) and having a good sensitivity to sublead-
ing terms in the probabilities, are very performing in the parameter precision measurements.
Current LBL have determined that [111]

|∆m2
31| = 2.515+0.028

−0.028 × 10−3 eV 2. (2.60)

with a 2.5σ preference for the NO solution [112, 113, 152]. Regarding the atmospheric mix-
ing angle, non-maximal values are now preferred, but depending on the mass ordering (sign of
∆m2

31), the value of the CP violating phase and data included in the fit, it can be in the lower
(∼ 42◦) or in the upper octant (∼ 49◦). For this reason, all the values between 40◦ and 50◦

are allowed at 3σ, making the atmospheric angle the most poorly known neutrino mixing angle.
Current LBL experiments are not very sensitive to the CP violating phase; their main result is
that CP conservation is disfavored by the combination of their datasets. However, recent NOνA
and T2K data analysis have shown a mild tension (which we will discuss later) [153–155].
Future long baseline experiments aim to measure with an unprecedent precision all the neutrino
oscillation parameters. In particular the American Deep Underground Neutrino Experiment
(DUNE) and the Japanese Tokai-to-HyperKamiokande (T2HK) [156, 157], which will be dis-
cussed in details later, may be able to determine the neutrino mass hierarchy, the θ23 octant
and the value of the CP-violating phase δ, which are the main open questions in the neutrino
oscillation sector5; for this reason, they are also expected to be able to probe different Beyond
Standard Model (BSM) models.
Finally, next-to-next generation experiments aim also to look at the physics of the second os-
cillation maximum. At the second atmospheric maximum, we need a ratio L/E which must be
three times the one at the first maximum (∆ = 3π/2). In this condition, the matter effect is less
important and for this reason the main source of CP violation, seen as the difference between
neutrino and antineutrino oscillation probabilities, would be the phase δ. Thus, experiments
placed at the second atmospheric peak should be able to provide a very clean environment for
the measurement of the PMNS matrix phase. One of the proposed experiments of this kind is
an upgrade of the T2HK experiment, namely T2HKK [159], which consists in the addition of
a new detector in South Korea placed at a baseline which correspond to the second oscillation
maximum for the T2HK neutrinos. We will discuss about this experiment later. It is worth to
mention also a second maximum LBL experiment proposed in Europe, namely ESSνB [160].

5The JUNO long baseline reactor experiment, which is going to take data very soon, may be able to determine
at least the mass ordering at a great confidence level before the future LBL experiment. This will be possible
since the electron neutrino disappearance, at long distances, can amplify the interference between solar and
atmospheric oscillations, which is sensitive to the mass hierarchy [158].
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2.6 Parameter degeneracies

In the previous section, we have briefly described how the synergies between different neutrino
experiments allowed us to determine all the oscillation parameters with few percents precision
(apart from the PMNS phase which is still mostly unknown). In Fig. 2.2, taken from [161], we
show the best fits values with their uncertainties from the three global neutrino fits [112, 113, 152].
For the solar parameters θ12 and ∆m2

21, all the fits are in agreement and the best fits are not
affected by the atmospheric mass ordering. The reactor angle values and allowed ranges in the
three fits are also very similar. However, the situation is different for the atmospheric parameters.
Indeed, for θ23 and |∆m2

31|, while the 3σ allowed ranges are compatible in the three analysis,
the best fits can differ from each other. This is particularly evident for the atmospheric mixing
angle. In this case, in IO all the global fits agrees on the fact that the upper octant solution
is favoured; in NO, on the other hand, [152] and [113] obtained a best fit in the lower octant,
while [112] again in the upper octant. It is therefore clear that the θ23 measurement is still
very delicate and need more data to be performed with a good precision. It has to be noticed
that in [152], in NO, the preferred octant becomes the upper one if the Super-Kamiokande (SK)
atmospheric data [129, 162] are not considered6. Finally, for δCP all the global fits suggest that
its value may be in the range [180− 360]◦. The best fits are around the maximal value 270◦ in
IO and closer to 180◦ in NO. The CP-conserving values 0, 180◦ are excluded at only 2σ.
The difficulties in the measurements of oscillation parameters appear since while solar parameters
can be obtained in a rather independent way looking at solar neutrinos, the other four parameters
θ13, θ23, δ

7 and ∆m2
31 suffer from the so-called eight-fold degeneracy [96, 163–168].

2.6.1 The eight-fold degeneracy

It is well known that the appearance probability8 for neutrinos at a fixed baseline and energy
with input parameters θ13 and δ has not an unique solution; indeed, there exist a continuous
number of parameter couples (θ̄13, δ̄) for which the equation

Pαβ(θ13, δ) = Pαβ(θ̄13, δ̄) . (2.61)

holds. The most interesting (θ̄13, δ̄) pair is the one for which the same equation holds also for
antineutrino probabilities, namely

P̄αβ(θ13, δ) = P̄αβ(θ̄13, δ̄) . (2.62)

Thus, we have that, at least at fixed energy and baseline, there exist two couples of θ13 and
δ which produce identical appearance probabilities for neutrinos and antineutrinos. This is
the so-called intrinsic θ13-δ degeneracy. However, as already discussed, there are currently two
other ambiguities in the oscillation parameters measurements: the sign of the atmospheric mass
splitting and the octant of the atmospheric angle. As a consequence, other degenerate solutions
to the equiprobability equations may arise. Defining the two discrete variables [168]

sMH = sign(∆m2
31) (2.63)

soct = sign(tan 2θ23) (2.64)

we have that in the normal ordering case, namely m1 < m2 < m3, sMH = +1, while for the
inverted ordering case, namely m3 < m1 < m2, sMH = −1 (see Fig. 2.3); conversely, in the

6Notice that in Ch. 6 we will use in the simulations the best fits from [152] obtained without the inclusion of
SK data, in which the preferred octant is the upper one. These best fits coincide with the ones of the previous
analysis from the same group, in [111].

7From now on, we will refer to the PMNS phase as δ or δCP .
8In current oscillation experiments, the most interesting appearance probability is the νµ → νe one.
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upper octant (UO) case (θ23 < π/4), soct = +1, while in the lower octant (LO) case (θ23 < π/4),
soct = −1. Thus, given the fact that we have not determined yet neither sMH nor soct, the
following equiprobability equations should be considered in addition to the previous ones

(−)

P αβ(θ13, δ, sMH , soct) =
(−)

P αβ(θ̄13, δ̄, s̄MH = −sMH , s̄oct = soct) (2.65)
(−)

P αβ(θ13, δ, sMH , soct) =
(−)

P αβ(θ̄13, δ̄, s̄MH = sMH , s̄oct = −soct)
(−)

P αβ(θ13, δ, sMH , soct) =
(−)

P αβ(θ̄13, δ̄, s̄MH = −sMH , s̄oct = −soct) .

Clearly, the sets of parameters that solve each of the equations is not the same; however, we still
expect that there exist eight different degenerate solutions

• The true solution and the intrinsic degenerate one obtained solving eqs. (2.61) and (2.62);

• The two wrong hierarchy solutions obtained starting from the true and the instrinsic de-
generate pairs of θ13 and δ considering θ23 in the true octant and ∆m2

31 with opposite
sign;

• The two wrong octant solutions obtained starting from the true and the instrinsic de-
generate pairs of θ13 and δ considering θ23 in the opposite octant and ∆m2

31 with true
sign;

• The mixed solutions obtained starting from the true and the instrinsic degenerate pairs of
θ13 and δ considering θ23 in the opposite octant and ∆m2

31 with the opposite sign.

In order to have a complete understanding of the oscillation phenomenon one must completely
break the eight-fold degeneracy, for instance measuring the parameters in different oscillation
regimes which allow to independently measure only one parameter at-a-time. Currently, the
measurement of the reactor angle using electron disappearance at medium baseline reactor ex-
periments, already allowed us to disentangle θ13 to the other parameters like δ. The breaking of
the other degeneracies is the aim of future oscillation experiments. For instance, through pre-
cision measurements of the muon disappearance channel νµ → νµ, in absence of matter effect,
one may determine the θ23 value independently from the other parameters. On the other hand,
precise measurements of the νµ → νe appearance at LBL experiments or the νe → νe disappear-
ance at long baseline reactor experiments, should be able to finally break also the mass hierarchy
degeneracy9.

2.7 Neutrino mass models

We have now discussed how to determine all the oscillation parameters and which are the
criticism in the oscillation measurements. However there still is an issue that we have not
discussed yet. If in the SM neutrinos are massless, is it possible to build a model that include
the SM but predict massive neutrinos, that is what we observe experimentally? The answer is
yes, and in the last decades many different mechanisms have been studied. However, all of them
need to introduce in the model new particles which have not been seen so far and for this reason
they all remain plausible. The easiest way to include neutrino masses is to couple them to the
Higgs field, but in this case there exist a problem: why neutrino masses are so small compared to

9In order to break the degeneracies also neutrino factories, namely facilities that produce electron neutrino
beams from muon decays [169–172] have been proposed. In this case, the study of another independent appearance
channel, namely νe → ντ channel may help in the degenercy breaking. However, none of these facilities has been
approved so far.
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Figure 2.3: Schematic view of the two possible mass orderings (or mass hierarchies). The colors indicate the

different flavor components of the neutrino mass eigenstates.Figure from [173].

the other fermions? Indeed, different experiments which aim to measure the absolute neutrino
mass are telling us that neutrinos cannot be heavier than 1 eV [66–74]; on the other hand,
the lightest of the massive fermions is the electron, which has a mass of 511 KeV. Moreover,
we must consider that neutrinos do not carry any color nor electric charge. This implies that
they can actually be their own antiparticles. These kind of fermions are known as Majorana
fermions (unlike the Dirac fermions for which particles and antiparticles are different). At the
time being, there are no observations which have been able to determine whether neutrinos
are Dirac or Majorana particles and this is one of the most important goals of non-oscillation
neutrino experiments. However, also the inclusion of neutrinos as Majorana particles fails in
describing such particles in a natural way.
Among all the models that predict neutrino masses, some of the most appealing and simple ones
are the so called seesaw models10. In this case we have both Majorana and Dirac mass terms in
the lagrangian. We will discuss them in the following subsections.

2.7.1 Dirac masses

We can include a neutrino mass term in the lagrangian adding SM right-handed neutrinos νR
which are singlets under all the symmetries of the standard model. For this reason, they do not
couple directly to any of the gauge bosons. Apart for their kinetic term, they can only appear
in the Yukawa interaction term

LY = −yνL̄LΦ
cνR + h.c. (2.66)

that after the SSB becomes

Lv
Y = −y

νv√
2
ν̄LνR + h.c. (2.67)

This term is a mass term completely analogous to the other fermions ones. However, if Yukawa
couplings yν are of the order of magnitude of the other fermions ones (and there are no reasons
to believe that this is not the case), neutrinos should not be so light. The introduction of a
Dirac mass term has as one of the main consequences, the possibility to have a mixing matrix
and thus explain neutrino oscillations. Indeed, one can construct the PMNS matrix in the exact
same way of the CKM matrix.

10For other neutrino mass models see [174–181].
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2.7.2 Majorana masses

In principle, there is no need to introduce other new particles like right-handed neutrinos in
the game in order to have neutrino masses. Due to the fact that neutrinos are neutral and not
charged under SU(3)C , it is possible to write a Majorana mass term, that do not distinguish
particles for antiparticles

LMaj = i
m

2
νTLσ

2νL + h.c. (2.68)

which if we denote the different generations with the indices i, j becomes

LMaj = i
MM,ij

2
νiTL σ

2νjL + h.c. (2.69)

where MM is the Majorana mass matrix. Considering the anti-commutativity of the Weyl
spinors, the particle content in this mass term is symmetrical. For this reason, MM can be taken
as a complex symmetric matrix. Thus, we can diagonalize it with a unitary matrix UM and
its eigenvalues are real. Redefining the neutrino states in the diagonal basis ν

′i
L = UM,ijν

j
L, the

interaction term with W boson becomes

LW =
g√
2
W+

µ (UMU
†
L)iαν̄

′i
Lγ

µl
′α
L + h.c. (2.70)

where UL is the left-handed unitary matrix involved in the diagonalization of the charged leptons
mass terms; in this way a mixing matrix U = ULU

†
M arises. However, differently from the Dirac

case, a rephasing of the Majorana neutrino fields is not possible, since the Majorana mass matrix
eigenvalues would not be real. For this reason, in the Majorana mass matrix n− 1 new phases
appear. Usually, the mixing matrix in the Majorana case is written as UDK where UD is the
usual PMNS matrix and K = diag(1, eiα1 , eiα2) in the 3-flavor framework. The new phases are
called Majorana phases; such parameters do not enter in the oscillation probabilities since when
we compute the square of the transition amplitude, the Majorana phases are canceled.
Majorana particles, being particles which coincide with their antiparticles, have a different phe-
nomenology with respect to the pure Dirac particles. Indeed, if there are no differences between
ν and ν̄, some processes that are forbidden in the SM, can be observed. The most important
one is the neutrinoless double beta decay (0ν2β) [182–188]. This process involves some peculiar
isotopes that can undergo two β decays at the same time, being the final nucleus more stable
than the intermediate one that could be reached with a single decay. In the SM, this process,
which is very rare (T1/2 ∼ 1020 yrs) occurs with the emission of two neutrinos

(A,Z) −→ (A,Z + 2) + 2e− + 2νe. (2.71)

If neutrinos are Majorana’s, they two νe can annihilate each other, allowing a process in which
we only have two electrons in the final state

(A,Z) −→ (A,Z + 2) + 2e−. (2.72)

The decay time for this process is proportional to the quantity

⟨mee⟩ =
∣∣∣∣∣∑

i

U2
eimi

∣∣∣∣∣ (2.73)

which is called effective Majorana neutrino mass, that depends on the absolute neutrino masses
and on the mixing matrix entries. Since the matrix entries do not appear in their moduli squared,
this quantity depends also on the Majorana phases. Several experiments are searching for this
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very rare process, however none of them successfully observed it. For this reason we could only
put stringent limits on the effective Majorana mass, namely mee ∼ O(0.1) eV which corresponds
to T1/2 ∼ 1026 yrs [189–194].
The addition of a pure Majorana term in the SM lagrangian still have some problems, one of
the most important is that it explicitely violates SU(2)L. Moreover, the Majorana masses in
this case are free parameters and there are no reasons why they should be very small.

2.7.3 The seesaw mechanism

The simplest and most natural way to introduce very small neutrino masses in the SM is the
seesaw mechanism [195–207]. Through this mechanism, neutrinos are very light since there are
other very heavy particles (with masses at the scale of grand unified theory, namely ∼ 1010 GeV)
that we have not seen yet. There are different seesaw models that have been studied so far; we
will briefly introduce here the most famous ones.

Type-I seesaw

When we include right handed neutrinos in the SM in order to write Dirac mass terms, we have
to take into account that such new particles can also be Majorana particles. Their mass term
can be written as

LνR,Maj = −iMR

2
ν†Rσ

2ν∗R + h.c . (2.74)

The mass MR of the Majorana particles is expected to be at a scale above the electroweak one.
Using the charged conjugate of the right-handed neutrinos ni

L = −iσ2νi∗R , the Majorana mass
term becomes

LνR,Maj = i
MR,ij

2
niT
L σ

2nj
L + h.c (2.75)

Now, both Dirac and Majorana mass terms can be merged together in an unique lagrangian
term

Lmass = i
Mij

2
N iT

L σ2N j
L + h.c. (2.76)

where NL = νiL for the first n entries (where n is the number of flavors) and NL = ni−n
L for the

last n entries. The full mass matrix is in this case

M =

(
0 mD

mT
D MR

)
(2.77)

where mD is the Dirac mass matrix and MR is the Majorana one. This block matrix can be
easily diagonalized. Since MR ≫ mD, neglecting terms O(1/M2

R) we obtain

M̃ =

(
−mDM

−1
R MT

D 0
0 MR

)
(2.78)

where the diagonalizing matrix can be written as

U =

(
1 m∗

DM
∗−1
R

−M−1
R mT

D 1

)
=

(
1 α

−α† 1

)
. (2.79)

In the diagonal basis we have basically built a Majorana mass term for the combination N
′i
L =

νiL + αijn
j
L, that, since α ∼ O(mD/MR) ≪ 1, correspond to a Majorana mass term for the
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physical left-handed neutrinos. In this way, we have produced naturally small neutrino masses.
However, we introduced new particles in the SM, but their extremely big mass make them
impossible to be produced. On the other hand, we need to consider that now the lepton mixing
matrix is a 6× 6 matrix (in the 3 neutrino framework), since we do not only have the three left
handed neutrinos, but also the three right handed ones. Thus, the mixing matrix that we observe
and measure, is only a submatrix of the total mixing matrix; this submatrix in principle has no
reason to be unitary. For this reason, a way to probe the presence of right handed states which
can mix with left handed ones, is to measure deviations from unitarity of the PMNS matrix.
However, one mast consider that the terms outside the PMNS submatrix are suppressed by
mD/MR and for this reason are expected to be very small.

Type-II seesaw

In the type-II seesaw, we do not introduce right handed neutrinos, but a heavy SU(2)L triplet
of scalars with hypercharge +2, that can be represented by the matrix

∆ =

(
∆+/

√
2 ∆++

∆0 −∆+
√
2

)
. (2.80)

The lagrangian for this triplet can be written as

L∆ = −m2
∆Tr(∆∆†) + [µΦc†∆ † Φ + ikLT

Lσ
2(iτ 2)∆LL] + h.c (2.81)

where m∆ is the mass of the triplet, k and µ are couplings. After the SSB, the triplet acquire
an effective potential that can be written as

V = m2
∆(|∆++|2 + |∆+|2 + |∆0|2)− µv2ℜ∆0. (2.82)

This potential has its minimum when the (2,1) component of the ∆ matrix is equal to µv2/2m∆ =
v∆/2. Thus, when this triplet acquire vev, the interaction between the triplet and left handed
neutrinos term becomes

L∆ν = i
kv∆
2
νTLσ

2νL + h.c. (2.83)

which is a Majorana term where mν = kv∆. If we consider different flavors of neutrinos, the
only difference is that we will have a coupling matrix kij. If we make the natural assumption
that µ and m∆ are of the same order of magnitude, then we will have that neutrino masses will
be suppressed with respect to the Higgs vev by a large mass m∆. Both new particles from type
I and II seesaws can be introduced together in the SM, producing again small neutrino masses.

Type-III seesaw

The same approach considered for the type-I seesaw can be used to generate neutrino masses
including in the SM a right handed fermionic triplet, namely Σ⃗ = (Σ1,Σ2,Σ3), with null hyper-
charge. In the charge basis, we can define three fields which are Σ0 = Σ3 and Σ± = (Σ2∓Σ1)/

√
2.

The lagrangian in this case contains a new Yukawa-like term that can be written as

LΣ = −L̄LY
†
Σ[τ⃗ · Σ]Φc + h.c. (2.84)

where τ are the group generators and YΣ is a complex matrix. Allowing the lepton number
violation, we can build the Majorana mass term for the new fermion triplet as

LΣ,Maj = −1

2
¯⃗
ΣMΣΣ⃗

c + h.c. (2.85)
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where again MΣ is a symmetric matrix. After the SSB, we obtain a mass term for neutrinos
which is very similar to the type-I seesaw

Lmass =
1

2

(
ν̄R N̄R

)( 0 MT
D

MD MΣ

)(
νL
NL

)
+ h.c. (2.86)

where the Dirac mass matrix is defined as MD = vYΣ/
√
2 while the flavour neutrino fields, in

the usual basis in which the charged lepton matrix is diagonal, are the following

N = Σ0 + (Σ0)c ν = νL + νcL . (2.87)

Differently from the type-I seesaw, in this case we obtain also a contribution to the charged lepton
mass matrix, which however can be neglected using the hypothesis that the charged Σ fields have
very large Majorana masses compared to the charged lepton masses. After the neutrino mass
matrix diagonalization, we obtain again naturally small masses which, up to higher order terms
are

M̃ν ∼ −MT
DM

−1
Σ MD . (2.88)

The seesaw mechanisms in an effective field theory approach

It is worth to mention that, if we consider the possible dimension 5 operators in the SM lagrangian
in effective field theory (EFT), regardless of the UV completion, there is one operator, the
Weinberg operator, which may be able to give small masses to neutrinos:

L5 =
cαβ
Λ2

LαLβΦΦ (2.89)

where Φ is the Higgs field, L is the lepton SU(2)L doublet, cαβ are coefficients and Λ is the
energy scale at which EFT is no longer valid. Starting from the four doublets in the operator
we need to build a singlet under SU(2)L; in order to do so, there are four possibility for the
contractions

O1 = [(LL)1(ΦΦ)1]1 (2.90)

O2 = [(LΦ)1(LΦ)1]1 (2.91)

O3 = [(LL)3(ΦΦ)3]1 (2.92)

O4 = [(LΦ)3(LΦ)3]1 . (2.93)

The first one O1 is zero, since the singlet built with two identical fields Φ vanishes. On the
other hand, in all the other three cases after the SSB it appears a mass term for neutrinos in
the lagrangian

Lm =
cαβv

2

Λ2
νανβ . (2.94)

This term, if Λ is big enough, can naturally be small. Let us now discuss one by one which may
be the new physics origin of O2, O3 and O4.

• O2 is a four-fermion operator that can arise if an heavy fermion propagator that connects
two fermion-scalar-fermion verteces is integrated out. Considering the SU(2)L contractions
in O2, this heavy fermion must be a singlet. We have thus recovered the type-I seesaw, in
which a heavy fermion singlet (right handed neutrinos) is added to the SM.

• O3, on the other hand, can arise if an heavy scalar propagator that connect two scalar-
scalar-scalar verteces is integrated out. From the SU(2)L structure it is clear that we need
a new scalar triplet, recovering the type-II seesaw.
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• O4, finally, has a similar structure to O2, but with two triplets contractions. Thus, we
need in this case a new fermion triplet just like the type-III seesaw.

We have thus demonstrated in a general way how the simplest models which can generate small
neutrino mass in the SM starting from the standard particle fields and adding only one heavy
SU(2)L multiplet are the seesaw ones.
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Chapter 3

Neutrino oscillations beyond the
standard model

The Standard Model is, as already discussed, the most successful physics theory so far. However,
it still fails in explaining some phenomena. There are different very well known criticisms in the
Standard Model. Some of them are more evident, like the absence of a Dark Matter particle
[208] or the neutrino masses. Other problems are related to the naturalness of the theory,
namely the fact that we expect that free parameters having the same theoretical origin should
not to be very different; among them, we have the strong-CP problem or the flavor problem
[38, 40, 41, 209, 210]. Finally, while the SM is able to unify the electromagnetic and the weak
forces at a some energy scales, it fails to do the same with the strong force; moreover, it turned to
be very tricky to include gravity in the particle physics framework, since this process introduces
formal tensions between the general relativity and the standard model of particles.
All these aspects, together with some anomalous measurements in the quark and charged lepton
sectors [48, 52, 211–225], suggest that there should exist some extensions of the Standard Model
which could solve the theoretical and experimental problems without modifying drastically the
astonishing predictions of the SM. High precision accelerator experiments failed to find any
evident new physics up to the TeV energy scale; however, current and next generation neutrino
experiments are expected to provide very clean environment to search for new physics. Indeed,
even though the neutrino sector remains the least known sector of the SM, currently we know
most of the neutrino properties (like the oscillation parameters) with a few percents uncertainties.
Thus, precision neutrino measurements will soon compete with hadrons and charged leptons ones
for the BSM (Beyond Standard Model) searches. We will now briefly describe some of the models
that could be probed with neutrino experiment [226, 227]. After that, we will go into the details
of a few of them.

Sterile neutrinos Long-standing anomalies [62, 64, 117, 228–233] in some oscillation experi-
ments (see Sec. 3.1) have suggested that there may exist at least one additional neutrino flavor
which is sterile, i.e. do not undergo weak interactions. Anomalous oscillation data suggest that
the mass splitting related to such neutrino must be much bigger than the other ones, namely
∆m2 ∼ 1 eV 2; for this reason, the sterile-driven oscillation are very fast and can be observed
at very short baselines. The presence of a fourth flavor modify all the oscillation probabilities
and for this reason both νµ → νe and νµ → νµ channels at accelerator experiments, as well as
νe → νe transition at reactor experiments and β-beams can be used to probe such a model.

Non Standard Interactions (NSI) Non standard neutrino interactions (NSIs) [77, 234–236]
are a general and largely studied effective field theory framework (even though UV completion
models exists, see [188, 237–242]) in which we can parameterize new physics in the neutrino
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sector. In particular, they allow to introduce new interactions between neutrinos and matter
particles, mediated by vector, scalar or other spin structures particles [243, 244]. The most stud-
ied case is the vector one; in this case neutrinos can undergo new interactions their production,
propagation or detection. Many different experiments can probe NSIs, including long baseline
experiments, in which the matter propagation is important, or scattering experiments.

Non-unitarity Different neutrino mass models predict the presence of additional heavy fermions
(see type-I seesaw) which in principle would act like an additional neutrino flavor [245–248]. For
this reason, in such models the neutrino mixing matrix is bigger than the usual 3 × 3 PMNS
matrix. Thus, the matrix we measure with oscillation experiment is a submatrix of a bigger
one and no longer has to be unitary (see Sec. 3.4). The effect of the unitarity breaking can be
sizeable [249–254] and can be measured using different neutrino oscillation experiments.

Neutrino decays In the SM neutrinos are stable particles. Moreover, considering their very
small mass and the fact that they couple to other particles only via weak interactions, there
are no kinematically allowed decays in the standard model. However, many new physics models
introduce very light particles (Majorons [255–257]) which in principle could couple to neutrinos
and allow their decay [258–261]. Terrestrial experiments are able to bound the neutrino lifetime
(see Sec. 3.3); however, the strongest constraints on the neutrino decays come from cosmology
[262].

Lorentz invariance violation The violation of the Lorentz symmetry (or CPT) is present in
some BSM models, like string theory [263]. In these cases, a non-trivial spacetime dependence
of the theory vacuum leads to an apparent violation of the Lorentz symmetry. In neutrino
experiments, such violations could cause modifications of the oscillation probabilities, like time
or direction dependent effects, energy dependence of the mass splittings or neutrino-antineutrino
mixing [264–268]. It is possible to parameterize the effect of the Lorentz violation introducing
a new field that, coupling to neutrinos, brings into the game new possible CPT-odd and CPT-
even interactions. The former at the lowest-order modify the probabilities in a NSI-like fashion
[269, 270], while the latter introduce richer phenomenology. For neutrino oscillation analysis in
the context of the Lorenz violation see [271–293].

Large extra dimensions Some neutrino mass models imply that righ-handed neutrinos prop-
agate in extra dimensions and interact with active neutrinos that acquire Dirac Mass [294]. After
the compactification of the large extra dimensions, the so-called Kaluza-Klein modes generate
an infinite number of sterile neutrinos in the bulk. The sterile-active mixing modify the oscilla-
tion probabilities which can depend on the new neutrino masses and the compactification radius
[295–304].

Neutrino tridents Neutrino trident production is a rare weak process in which a neutrino
scatters on an heavy nucleus producing a pair of charged leptons [305–312]. Some measurements
have already been carried out [313–315], but still there is room for new measurements which could
give hints of the presence of new physics. Indeed, a class of Z ′ models modify the dimuon trident
cross-section [316, 317]. An excellent environment where to search for an anomalous number of
trident events will be the Near Detectors of future long baseline experiments [318, 319].

Heavy Neutral Leptons Heavy Neutral Leptons (HNL), or heavy sterile neutrinos, other
than being related to the generation of neutrino masses, could play a role as a dark matter
component and as responsible of matter-antimatter asymmetry [184, 320–325]. Also in this
case, Near Detectors could be crucial in the HNL detection [326–328]: indeed, such particles
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produced through rare meson decays, could reach the near detector decaying into SM particles.
Other than direct searches, hints of their presence could be found looking at the mixing with
active neutrinos.

Ultra-light Dark Matter Ultra-light scalar fields are present in different extensions of the
standard model. When such particles couple to neutrinos, the neutrino oscillation probabilities
may change in time, due to the vacuum expectation value of the new field [329–336]. Moreover,
invoking the neutrino interactions with background particles, also the matter effects may result
to be modified with a non-trivial energy dependence [337]. The very rich phenomenology related
to the presence of light particles has been widely studied in different neutrino experiments and
has also been used to explain anomalies in oscillation data [338].

Quantum decoherence Quantum fluctuations in the gravitational field due to micro black
holes may cause the loss of the quantum coherence [339–343]. If pure states may evolve in inco-
herent states, the quantum theory should be modified. The reduction of the coherence between
two states i and j in this model is proportional to an exponential factor e−γijL which grows with
the baseline [344]. The γij parameters can be function of the energy γij = γ0ij(E/GeV )n where
n is an integer. A given experiment is sensitive to decoherence when γijL ∼ 1. In the literature,
models with n < 0 have been studied [345]; however, positive values are more interesting since
some string-theory models predict n > 0 [340–343]. LBL experiments with high energy fluxes
[346–348], as well as atmospheric [298, 344, 349] or astrophysical neutrinos [185, 350–354] can
explore vast regions of the parameters space.

3.1 A closer look to the 3+1 sterile neutrino model

The history of the sterile neutrino searches is very rich because, since the first oscillation ex-
periments, some hints of the presence of a new sterile neutrino appeared. We know from the
Z boson decays that the active light neutrino species must be 3 at a great confidence level
[355–358]. However, there are no particle physics measurements that can limit the number of
sterile species other than neutrino oscillations. If new neutrinos are much heavier than the ac-
tive ones, it is rather difficult to observe oscillations, since they would be very fast and would
appear as averaged out at any baseline. In this case we expect that the main phenomenological
implication would be the non-unitarity of the 3×3 PMNS matrix (see Sec. 3.4). However, if the
sterile neutrinos have a mass which is comparable with that of active flavors, then we may be
able to see some oscillation effects. Even though many models have been explored in literature
[295, 296, 359–367], the simplest one is the so-called 3+1 sterile neutrino model, in which we
include only a new sterile state. In this case, the full 4 × 4 mixing matrix can be written in
terms of 6 mixing angles and 3 phases. Thus, in total, considering also the new independent
mass splitting ∆m2

41, we have 6 new parameters. For this reason, the oscillation probabilities
results more complicated. Moreover, taking into account the fact that sterile neutrinos do not
couple with matter, we can no longer neglect the NC matter potential; this can cause the pres-
ence of new matter resonances absent in the 3-neutrino framework. In the following subsections
we will briefly describe the anomalies which favors the 3+1 model, as well as the current limits
on the new parameters. Moreover, we will mention some models in which light sterile neutrinos
are included.

3.1.1 Anomalies in the oscillation data

The first experimental evidence for the existence of neutrinos came from the observation of
the antineutrino flux from nuclear reactors. Even though only very precise medium and long
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Figure 3.1: Ratio between the observed number of events and the predicted one (R) for different short (left

panel) and medium (right panel) reactor experiments. Orange lines have been obtained using the Huber-Muller

(HM) flux prediction [388, 389], the green lines using the Hayen-Kostensalo-Severijns-Suhonen (HKSS) flux

prediction [387], while the blue ones using the ab-initio calculations [390]. Figures taken from [117].

baseline experiments like RENO [368], Daya Bay [369] and KamLAND [121] were able to measure
oscillation parameters, a large number of short baseline (few meters) experiments were built in
the last 50 years [233, 370–386]. In such experiments we expect that neutrinos have no time
to oscillate and the number of observed neutrinos should be in agreement with the theoretical
flux predictions. However, the latest flux calculations [387–390] could not reproduce the data
from reactor experiments: most of the experiments observed less events than expected. This
disagreement is known as reactor anti-neutrino anomaly and has a total significance of about
3σ [117, 228, 391].

Flux calculations could still hide some criticisms1. Indeed, as shown in Fig. 3.1, depending
on the model used for the flux prediction, the anomaly significance can be drastically reduced.
Some recent experiments like Daya Bay and RENO have developed some methods to measure
the antineutrino fluxes coming from the different fuel isotopes separately [396–402]; the results
seem to point in the direction of wrong flux predictions but there are still different aspects that
need to be considered [117]. In order to separate the possible theoretical uncertainties in the
flux predictions from the presence of new physics, the Neutrino-4 experiment has been built so
to be able to measure the number of neutrino events at different baselines. Recent results from
this experiment claimed a 4.6σ anomaly [233]. However, this result has been criticized [117, 403]
and needs further analysis.
The reactor anomaly became more interesting in the 1990s when two gallium solar experiments,
namely GALLEX and SAGE [61, 63] monitored the neutrino flux coming from intense radioac-
tive sources during their calibration. Four measurements have been performed and all of them
observed a number of events which was below the expectations; the combined significance of the

1Many experiments which were able to measure the antineutrino spectra observed also the so-called 5 MeV
bump that still requires more effort to be explained [392–395]

39



gallium anomaly is around 3σ [232, 404, 405].
Finally, at the end of the last century, a completely different experiment, LSND [136], observed a
third anomaly [229]. In this case, muon neutrinos were produced from stopped pions decays and
were observed in a liquid scintillator detector after travelling roughly 30 meters. Considering the
experiment design, the neutrino flux was almost free from ν̄e contamination. Nonetheless, a sig-
nificant (3σ) electron antineutrino excess compared to the estimated background was observed in
the detector. In the last two decades, no satisfactory explanations in terms of systematic errors
or SM uncertainties have been found, even though different hypothesis were explored in the lit-
erature [359–364]. The MiniBooNE [138] experiment at Fermilab was designed to reproduce the
LSND results independently. In this case, pions decayed in flight and produced a neutrino beam
observed by a Cherenkov detector located 541 meters from the source. MiniBooNE confirmed
the short baseline anomaly observing an excess of 4.8σ [230, 231, 406]. In this case the esti-
mation of the backgrounds is more complicated than in the LSND case; indeed in MiniBooNE
one need to carefully consider the possible contribution of the hadronic resonances or of the
presence of neutral pions decaying in the detectors [407]. All these possibilities were explored
by the MiniBooNE collaboration, but the anomaly still remains significant [231].

3.1.2 Sterile neutrinos phenomenology

The computation of the oscillation probabilities in the 3+1 model follows exactly the same
procedure used in the standard oscillation framework. In order to try to solve the reactor and
gallium anomalies with the sterile hypothesis, we can imagine that sterile oscillations (in this
case ν̄e → ν̄s, where νs is the sterile state) occur at very short baselines. This means that
∆m2

41 ≫ ∆m2
31. Thus, in the experiments conditions (∆m2

21L/E ≪ ∆m2
31L/E ≪ 1) we can

consider the two-flavors approximation to compute the probability which reads

Pee ∼ 1− 4|Ue4|2(1− |Ue4|2) sin2

(
∆m2

41L

4E

)
(3.1)

in terms of the PMNS matrix elements. We can also define a sterile oscillation angle for electron
disappearance experiments as sin2 2θsee = 4|Uµ4|2(1 − |Ue4|2). Reactor and gallium anomalies
data, together with constraints from other experiments, show a preference for sterile oscillations
with ∆m2

41 ∼ 1 eV 2 and |Uµ4| ∼ 10−2 (see Fig. 3.2).

If we want to explain the LSND and MiniBooNE anomalies with the sterile hypothesis, we
need to compute the νµ → νe probability in presence of a fourth sterile state. At short baseline,
this reads

Pµe ∼ 4|Uµ4|2|Ue4|2 sin2

(
∆m2

41L

4E

)
(3.2)

for which we can define the effective mixing angle sin2 2θsµe = 4|Uµ4|2|Ue4|2. In this case the
analysis in terms of matrix elements is more complicated, since there are two different elements
appearing in the probability. The best fits from all the electron neutrino appearance are ∆m2

41 ≲
1 eV 2 and sin2 2θsµe ∼ 0.01 (see Fig. 3.3). It is clear that oscillation driven by eV-scale sterile
neutrinos are able to solve all the anomalies considering all the current electron disappearance
and appearance data2. However, we can notice that, if from electron disappearance data we
have that |Ue4|2 ∼ 0.01, in order to explain the LSND and MiniBooNE excesses, we would need
|Uµ4|2 ∼ 1. Thus, the sterile oscillations effect on the muon disappearance probability, which

2Notice that, even though sterile oscillations are bigger at short baselines, they can alter the oscillation
probabilities also at longer distances. For this reason long baseline experiments are also able to set bounds on
sterile parameters.
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reads

Pµµ ∼ 1− 4|Uµ4|2(1− |Uµ4|2) sin2

(
∆m2

41L

4E

)
(3.3)

should not be negligible. This effect has never been observed so far in disappearance experiments
(see Fig. 3.4), except for some weak signals from IceCube [414]. This results to the so-called
appearance-disappearance tension. The future Short Baseline Neutrino (SBN) [415, 416] experi-
ment at Fermilab, composed by three detectors at three different short baselines, is expected to
give a final answer to the sterile neutrino issue looking at both muon disappearance and electron
appearance channels. First results from the middle detector, namely MicroBooNE [417], showed
no νe excess, further reducing the allowed parameters space. However, the sterile explanation
for the short baseline experiments is still not completely ruled out.
If we want to measure the non-standard mixing angles, we need to choose a parameterization.
Since in the literature different conventions are used, it is complicated to give universal con-
straints. However, if we chose the parameterization [406, 418, 419]

UPMNS = R(θ34)R(θ24)R(θ23, δ2)R(θ14)R(θ13, δ3)R(θ12, δ1) (3.4)

where R are the rotation matrices3, the last column entries are

Ue4 = sin θ14 (3.5)

Uµ4 = cos θ14 sin θ24 (3.6)

Uτ4 = cos θ14 cos θ24 sin θ34 . (3.7)

From these equations, we can obtain the limits on the mixing angles, which are very stringent
on θ14, while more loose on θ24 (see recent reviews [117, 409, 415, 420–423]). The limits on θ34,
on the other hand, are very difficult to obtain from current experiments, since they mostly come
from ντ oscillations. Future experiments may play a big role in constraining such parameter
[16]. The new phases, on the other hand, are not accessible from present data, but they can
have an important effect on the 3×3 PMNS matrix phase (which in such parameterization is δ3)
determination [424–428]. Currently, as it happens for many neutrino BSM models, cosmology
constraints on the new parameters are comparable with the terrestrial ones, but we will not
discuss them in details. For more insights on this topic, see [423, 429–431].

3Notice that if the θi4 are zero, the PMNS matrix reduces to the usual 3× 3 one.
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3.1.3 Theoretical models which can include light sterile neutrinos

Sterile neutrinos appear in many models used to generate neutrino masses. Indeed, when we
introduce a right handed neutrino as a SM singlet, such a particle can be defined as sterile.
However, as discussed in the previous chapter, in order to have small active neutrino masses,
we usually need large masses for the sterile neutrinos. Nevertheless, there exists some models in
which at least one of the sterile neutrinos can have an O(eV ) mass.
For instance, motivated by symmetry reasons [432–434], one can try to lower only one (µs) of
the three sterile Majorana masses in the type-I seesaw model. In this case, after the integration
of the two heavy states, the 4× 4 mass matrix reads

M4×4 =

(
−MDM

−1
M MT

D Ms

MT
s µS

)
(3.8)

whereMs is a vector whose components are the sterile entries of the Dirac Yukawa matrix, while
µS is the Majorana light sterile mass (µS ≪ M1

M ,M
2
M). Diagonalizing such matrix, we obtain

for the active neutrinos

Mν ∼ −MDM
−1
M MT

D −MSµ
−1
S MT

S (3.9)

while for the sterile one

ms ∼ µs . (3.10)

Light sterile neutrinos can appear also in the so called inverse seesaw mechanism [245, 257, 435].
In this case, we introduce two sets of sterile neutrinos N and N ′ which carry lepton number.
Defining a vector n = (νe, νµ, ντ , N

1, ..., Nn, N ′1, ..., N ′n), the neutrino mass term becomes

LIS = −1

2
nTMn = −1

2
nT

 0 MD 0
MT

D 0 M ′
D

0 M
′T
D µ

n+ h.c. (3.11)

The µ matrix, which couples the N ′ sterile neutrinos with themselves, violates lepton number.
Since in the limit ||µ|| → 0 the lepton number becomes a conserved quantity, for naturalness, we
can consider the entries of such matrix very small compared to the entries of the other matrices
MD and M ′

D. It can be showed that, in this limit, some light eigenvalues

Ms ∼
||µ|| · ||M ′

D||2
||MD||2 + ||M ′

D||2
(3.12)

appear, and they can play the role of light sterile neutrinos. In this model it can be shown
that the mixing between active and sterile neutrinos can also be large, since it is proportional
to ||MD||/||M ′

D||. Other seesaw-like frameworks that could contain light sterile states are the
extended type-I seesaw models [188] in which a new singlet fermion S is included in addition
to the three usual heavy right handed neutrinos. Under some hierarchical assumptions on the
Majorana mass matrix related to the S sector, light sterile neutrinos with active-sterile mixing
of O(0.1) can be generated.

3.2 A closer look at the Non Standard Interactions

Non Standard Interactions (NSI) have been introduced in the neutrino context since the first
discussion about the MSW effect [77, 234, 436–443]. With the NSI formalism, it is possible to
describe new physics in a model independent way, introducing four-fermions effective operators
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which arise in presence of heavy mediator fields. We can distinguish two types of NSI, one that
describes charged current interactions and one that describes the neutral current ones. In the
oscillation framework, the former can occur at the neutrino production or at neutrino detection,
while the latter occur in neutrino propagation. The general NSI lagrangian thus contains the
two terms

LNC = −2
√
2GF

∑
f,i,P,α,β

ϵf,Pαβ (ν̄αOiPLνβ)(f̄OiPf) (3.13)

LCC = −2
√
2GF

∑
f,i,P,α,β

ϵf,Pαβ (ν̄αOiPLlβ)(f̄OiPf ′) (3.14)

where f, f ′ = e, u, d are the matter fermions, P = PL, PR are the chirality operators and Oi

are operators that reflect the Lorentz structure of the interactions. The phenomenology of the
NSI is extremely rich and, for this reason, they have been used in many context to interpret
neutrino oscillation data in an unconventional way. We will not go into the details of all the
possible phenomenological implications of NSI, which have been explored in [236, 443] and in
the references therein. In this section, however, we will discuss some implications of the vector
CC NSI on the neutrino production and detection and of the vector and scalar NC NSI on the
neutrino propagation in matter. For discussions on UV complete models which could generate
NSI-like phenomenology, see [236–239, 241, 444–447].

3.2.1 Source and Detector vector NSI

In the Standard model neutrinos can be produced via different weak processes. In oscillation
experiments we usually detect neutrinos coming from nuclear processes (i.e. nuclear fusion
reaction in the Sun core) or nuclei, mesons and muons decays. In all these processes, neutrinos
are produced in a W boson decay together with the corresponding lepton (W+ → ναl

+
α and

W− → ν̄αl
−
α ). If some new physics is present in Nature, then it may be that when neutrinos are

produced, other interactions may occurs. Such interactions can couple neutrinos and leptons
of the same flavor or they can violate the lepton numbers conservation coupling particles of
different generations. Using the effective field theory formalism, one can include all the possible
new physics processes in the neutrino production in the following lagrangian

Ls
NSI = Ls

V±A + Ls
S±P + Ls

T (3.15)

where

Ls
V±A =

GF√
2

∑
f,f ′

εs,f,f
′,V±A

αβ [ν̄βγ
µ(1− γ5)lα][f̄

′γµ(1± γ5)f ] (3.16)

Ls
S±P =

GF√
2

∑
f,f ′

εs,f,f
′,P±S

αβ [ν̄β(1− γ5)lα][f̄
′(1± γ5)f ] (3.17)

Ls
T =

GF√
2

∑
f,f ′

εs,f,f
′,T

αβ [ν̄βσ
µνlα][f̄

′σµνf ] . (3.18)

The εsαβ parameters are the strengths of the interactions and usually are referred as source NSI
parameters. They are in general complex and for this reason they can be written as εsαβ =

|εsαβ|eiϕαβ . The same NSI lagrangian could in principle allow new physics processes also during
neutrino detection. In oscillation experiments usually neutrinos are detected through neutrino
CC interactions with nuclei. In such processes the neutrino is absorbed and the corresponding
lepton is created (ναN → N ′l−α or ν̄αN → N ′l+α ); when NSI are considered, all lepton flavors in
principle could be generated by all incident neutrino flavors, enriching drastically the number
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of possible neutrino interactions. All these new physics processes can be again parameterized
using nine complex εdαβ parameters , called detector NSI parameters.
Source and detector NSI can introduce in the neutrino phenomenology a very large number of new
physics degrees of freedom. Indeed, if we want to separate the vector, axial, scalar, pseudoscalar
and tensor contributions and we want to consider different couplings for each matter particle,
namely electron, protons and neutrons, we have in the most general case hundreds of new
parameters. However, there are some considerations which could be done in order to reduce the
number of parameters. For instance, in most of neutrino experiments, the neutrino production
and detection involves decays of u quarks into d quarks or vice-versa. For this reason, the
only important NSI parameters are the ones for which f = u and f ′ = d. Moreover, τ neutrino
production is very rare in accelerator experiments and impossible for reactor or solar experiments;
thus, the source NSI parameters for which α = τ can be neglected. At the same time, reactor
experiments usually only detect electron neutrinos; for this reason all the detector NSI for which
β ̸= e can be put to zero in these cases. Other considerations involving the allowed and forbidden
Lorentz structures in a given neutrino production or detection process can be done; see [443] for
some discussions about this topic.
From the oscillation phenomenology point of view, it is however convenient to encode all the
possible Lorentz structures in the same parameters, for which we drop all the superscripts except
the ones which refers to either the source (s) and detector (d) NSIs. Thus, in order to obtain
the oscillation probabilities, we can consider that in the neutrino production we do not have a
pure flavor eigenstate, but a mixed state that depends on the source NSI parameters

|νsα⟩ = |να⟩+
∑

β=e,µ,τ

εsαβ |νβ⟩ . (3.19)

At the same time, when a neutrino is observed, the detector is sensitive to the combination

⟨νdβ| = ⟨νβ|+
∑

α=e,µ τ

εdαβ ⟨να| . (3.20)

Notice that in the source NSI parameters the first index refers to the charged lepton flavor while
the second to the neutrino flavor; for the detector NSI it is the opposite. Moreover, the NSI
matrices in this case have no reasons to be unitary, and for this reason the |νsβ⟩ and ⟨νdα| states
are not orthonormal. In this context some approximations can be done. In some studies, for
instance [443, 448–452] the approximation εsαβ = εdβα has been adopted considering that the
detection and production processes are very similar at the fundamental level; in particular this
happens if we consider that the interactions only have the structure (V-A)(V-A) [443]. If not
specified, we will not use this approximation, keeping our discussion completely general without
relying on any consideration about the particular production and detection interactions in a
given experiment. The computation of the oscillation probabilities can be done in the following
way

Pαβ = | ⟨νdβ| e−iHL |νsα⟩ |2 = (3.21)

= |(1 + εd)γβ(e
−iHL
γδ (1 + εs)αδ|2 = (3.22)

= |[(1 + εd)T e−iHL(1 + εs)T ]βα|2 (3.23)

where H is the usual neutrino Hamiltonian and εs and εd are the matrices whose elements are
the NSI couplings. The oscillation probabilities with source and detector NSI are very compli-
cated due to the large number of parameters involved (see for instance [443] for approximated
formulae). It is interesting to notice that νµ → νe probability mostly depends on εs,dµe and εdτe,
while the νµ → νµ probability depends on εs,dµµ, ε

s
µτ and εdτµ. All the phases relative to these

parameters appear in the probability; for this reason, one of the effects of source and detector

45



NSI is to worsen the sensitivity to the PMNS phase δCP .
Bounds from oscillation and non-oscillation experiments on source and detector NSI have been
discussed in [20, 236, 443, 448–450, 450–452, 452–465]. In [448], in particular, it is possible to
find a detailed description of different approaches one can use to set bounds con CC NSI. In
particular, some interesting conclusions that the authors made are the following

• The vector component of the NSI can modify the beta-decay rate. Comparing the CKM
matrix component Vud extracted from beta-decays and the same extracted from other
hadronic processes which are not affected by NSI, we can set limits on εs,d,Veα and εs,d,Vee .

• Lepton universality measurements can set limits on the axial component of all the source
and detector parameters. Indeed, NSI can modify the relative decay rates of charged pions
and τ leptons into pions.

• As already discussed, neutrino oscillation depends on the source and detector parameters.
Looking at very small baseline oscillation rates, since the NSI induce zero-distance effects
on the probabilities, one can set bounds on different source and detector couplings. We
will talk about this topic in details in Sec. 6.2.

• The presence of charged current NSI may induce flavor-changing charged leptons interac-
tions at loop level. However, model independent constraints on the NSI parameters cannot
be set except for a single case, the one which may change the µ− → e− conversion, namely
εs,d,Lµe , where with L we denote the NSI operator that only select left handed particles.

Considering all these effects, it is possible to set 90% CL bounds of O(10−2) for all the source
and detector parameters, except for εττ for which the limit is one order of magnitude bigger.
CKM and lepton universality measurements can set more stringent bounds (10−3 − 10−4) but
only on only vector or axial component of the couplings. Finally, the loop level constraints on
muon transition into electron can set and incredibly strong bounds of 1.8× 10−6 on εs,d,Lµe .
We want to remark that, given the definition of the NSI couplings, they can be linked to the
new physics scale; indeed, if NSI are mediated by a new particles whose mass is MNSI , then,
considering that the effective lagrangian terms are written in terms of the electroweak scale
(GF ), we expect that ε ∼ M2

W/M
2
NSI [466]. Using this consideration, with present bounds we

can only say that, for source and detector NSI, MNSI > TeV .

3.2.2 Propagation vector NSI

Let us now consider how to treat NC-like NSI. In this case, we have neutrinos in both initial
and final states. Such interactions can occur between neutrinos and matter particles, namely
electrons and quarks, while neutrinos propagate in a matter medium. If we stick to only V ±A
interactions, the lagrangian is in this case

Lm
NSI =

GF√
2

∑
f

εm,f,V±A
αβ [ν̄αγ

µ(1− γ5)νβ][f̄γ
µ(1± γ5)f ] + h.c. . (3.24)

These operators are the same as the lagrangian terms we obtain when we consider the matter
potential which affect neutrino oscillations. For this reason, in the hamiltonian formalism, the
effect of this kind of NSI is to modify the matter potential oscillation term in the following way

V

1 0 0
0 0 0
0 0 0

 −→ V

1 + εee εeµ εeτ
ε∗eµ εµµ εµτ
ε∗eτ ε∗µτ εττ

 (3.25)
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where V = 2
√
2GFNeE, Ne is the electron number density and E is the neutrino energy4. We

want to remark that the εαβ parameters that appear in the matter matrix at the Hamiltonian
level are not exactly the ones which appear in eq. (3.24) at lagrangian level. Indeed, when
we write the matter potential matrix, we do so considering the mean electron density; for this
reason, the hamiltonian an lagrangian parameters satisfy the following relation [236]

εαβ =
∑

f=e,u,d

Nf

Ne

εm,f
αβ (3.26)

The fact that at the lagrangian level there can exist two terms which are hermitian conjugates,
assure that the propagation NSI matrix is an Hermitian matrix. For this reason, we expect the
three diagonal parameters (known as non-universal, since they can provide flavor universality
breaking) to be real, while the three independent non-diagonal parameters (known as flavor-
changing) can be complex and they carry a phase. Even though the independent εαβ are 9, only 8
are testable by oscillations. Indeed, we can subtract an identity matrix proportional to one of the
diagonal parameters without changing the probabilities. Since scattering experiments can put
very tight bounds on εµµ [448, 455], usually for oscillation purposes this parameter is subtracted
out, making the diagonal part of the NSI matrix V (1+εee−εµµ, 0, εττ −εµµ) = V (1+ε′ee, 0, ε

′
ττ ).

It is interesting to notice that the presence of NSI can cause an exact degeneracy: a model
without NSI is exactly equivalent to a model with ε′ee = −2 and opposite mass ordering. Another
degeneracy arises since the CPT invariance of the vacuum Hamiltonian can be translated into
a symmetry of the probabilities when the following transformations are performed: ∆m2

31 →
−∆m2

32, θ12 → π/2−θ12 and δCP → π− δCP . Even though this degeneracy is completely broken
in presence of matter (indeed, as discussed previously, solar experiment can univocally determine
θ12) the NSI can recover this degeneracy if matter density is constant and ε′ee → −ε′ee−2, ε′ττ →
−ε′ττ and εαβ → −ε∗αβ. Thus, in principle the NSI can introduce a second-octant solution for θ12
which is called LMA-Dark solution [467–473]. Finally, Non Standard Interactions can increase
the θ23 octant degeneracy increasing the number of parameter sets for which the probabilities
are numerically the same [236, 474].
Using a global analysis on current oscillation data and fixing the ordering to normal, the 90%
CL bounds on the NSI parameters are at the level of 10−1 for |εeµ|, |εeτ |, ε′ee and ε′ττ , while are
one order of magnitude smaller in the |εµτ | case (see [475]) since this last parameter appear at
leading order in the muon neutrino disappearance probability. There are no current bounds on
the phases, however some future experiments are expected to exclude some portions of the their
parameters space [475–477].

In Figs. 3.5 and 3.6 results of the global fit for the LIGHT-NO (θ12 < π/4 and ∆m2
31 > 0) and

DARK-IO (θ12 > π/4 and ∆m2
31 < 0) solutions respectively. It is worth to mention that the best

fit for |εeµ| is not zero, but roughly 0.06; however this result has not a great statistical significance.
Moreover, the bounds in the two quasi degenerate solutions are very similar. However, the LMA-
Dark solution seem to fit T2K long baseline data but on the other hand is completely disfavored
considering solar neutrino data, as already mentioned [475].

3.2.3 Propagation scalar NSI

We have so far considered the effect of NSI induced by ordinary matter on neutrino oscillations
focusing on vector currents, which may be mediated by a vector mediator [478–481]. However,
neutrinos may also couple to scalar fields. Such couplings should be considered even more

4From now on, we will drop the superscript m from the NSI couplings when we refer to the propagation NSI.
Indeed, this type of NSI is the most studied being the one with the less stringent non-oscillation constraints. In
specific models, however, the strengths of source, detector and propagation NSI are predicted to be the same
[236, 443].
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Figure 3.5: Global analysis of solar, atmospheric, reactor and accelerator oscillation experiments in the LIGHT

(θ12 < π/4) side of the parameter space and for Normal Ordering of the neutrino states. For the χ2 analysis, a

marginalization in respect with the undisplayed parameters has been performed. The different contours corre-

spond to the allowed regions at 68%, 95% and 99% CL. Figure from [475].
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Figure 3.6: Same as Fig. 3.5 but for the DARK solution (θ12 > π/4) in Inverted Ordering. Figure from [475].
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natural, since natural mechanisms for neutrinos to acquire masses may come from the presence of
a scalar particle with a non-vanishing vacuum expectation value [243]. It is therefore interesting
to explore the phenomenology of scalar NSI. The effect of this type of NSI has been studied in the
context of neutrinos propagating in some dark matter media [329, 331, 333, 482–486]; however,
we will show that there is a model-independent way to take into account such interactions in
neutrino oscillation considering the ordinary matter density. In this case, the lagrangian four
fermions effective term can be written as

LscalarNSI =
yfYαβ
m2

ϕ

[ν̄ανβ][f̄f ] (3.27)

where mϕ is the scalar mediator mass, yf its coupling with the environmental fermion and Yαβ
5

its coupling with neutrinos. This lagrangian term cannot be converted to a vector current one
[487, 488]; for this reason, differently from the vector NSI, we cannot expect that scalar NSI
modify the standard neutrino matter potential. On the other hand, in the nonrelativistic limit,
the matter fermions spinors reduces to uf = (ξ, ξ)T where ξ+ = (1, 0)T and ξ− = (0, 1)T for the
two spin polarizations. Thus, ūfuf = 2ξ†ξ = nf , where nf is the number density of a given
fermion. In this framework, the term in eq. (3.27) can be written as

∑
f nfyfYαβ/m

2
ϕ [ν̄βνα],

which is a correction to the neutrino mass term. Defining δM =
∑

f nfyfY/m
2
ϕ, the effective

mass matrix which appears in the neutrino oscillation Hamiltonian is modified to

M2 −→ (M + δM)(M + δM)† . (3.28)

Since the scalar NSI modify the mass term instead of the matter potential, we expect such
interactions to produce a different phenomenology in neutrino oscillations. If the mediator mass
is light enough, δM can survive current constraints obtained from different leptons and neutrinos
observables [489–495]. As usual, we can diagonalize the neutrino mass matrix through the PMNS
matrix Uν . However, when such rotation is performed, we cannot rotate away all the unphysical
phases in the scalar NSI contribution δM . We can parameterize after such rotation, in a complete
model-independent way, the scalar NSI correction to the mass term in the following way [243]

M̃ =
√
∆m2

31

ηee ηeµ ηeτ
η∗eµ ηµµ ηµτ
η∗eτ η∗µτ ηττ

 (3.29)

where ηαβ are dimensionless complex parameters (only the diagonal ones must be real in order
to preserve the Hermiticity of the Hamiltonian matrix) and their phases come from both the NSI
couplings and the unphysical phases which appear after the diagonalization. The latter are not
the only standard neutrino parameters which become measurable only in presence of scalar NSI.
Indeed, in absence of new interactions, we only have M2 as mass term in the Hamiltonian; from
this matrix we can subtract one of the absolute masses m2

i without changing the probabilities.
This make the oscillations sensitive only to the mass splittings. When ηαβ ̸= 0, on the other hand,
we cannot perform the subtraction anymore, since the full mass matrix (M + δM)(M + δM)† is
no longer diagonal. For this reason, differently from the vector NSI case, the scalar NSI introduce
a dependence of the oscillation probabilities on the absolute neutrino mass scale. Moreover, the
scalar NSI do not conserve chirality [243, 438, 496].
Considering the scalar NSI Hamiltonian, it seems that the genuine mass term and the scalar
NSI ones have exactly the same effect on neutrino oscillation. Thus, oscillations which seem
to be driven by a neutrino mass splitting, may be driven only by scalar NSI; there is however
an important difference. Indeed, while mass splittings can cause oscillations in vacuum, scalar
NSI cannot, since in the definition of the η-s there is an implicit dependence on the matter

5For a real scalar, Y must be an Hermitian matrix.
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density nf . In general, it is hard to distinguish the true mass splittings from the scalar NSI
induced ones; one of the strategies one can adopt is to look for oscillations at two different
matter densities. In this way, the effective measured mass splittings should be different, since
the scalar NSI-induced modifications may be different in the two cases [243]. For instance, the
presence of a non-zero diagonal term in the scalar NSI matrix could explain the discrepancy of
the ∆m2

21 mass splitting measurements of KamLAND and SNO [123, 497] considering that in the
SNO case the matter density is bigger. Recent Borexino data [498] seems to favor nonzero scalar
NSI. Also atmospheric experiments can be affected by such new interactions, since, depending
on the direction of neutrinos, the matter potential is different. Moreover, it has been shown
[499] that scalar NSI may also alter the sensitivity of accelerator long baseline experiment to the
CP-violating phase δ.

3.3 A closer look at Neutrino Decay

In the Standard Model neutrinos are stable particles since, being massless and interacting only
via weak interactions [13], there are no particles which may be produced in an hypothetical
decay. Even if we consider that neutrinos are massive, we know that their masses must be very
small, and their decay remains impossible. However, as widely discussed, in order to generate
neutrino masses, we need to introduce new physics processes in the SM. Such process may
be responsible of their decay. For instance, neutrino masses can arise from Yukawa couplings
between right-handed neutrinos and the Higgs field. If we need a mechanism that generates the
right-handed neutrino masses, we can introduce a coupling with a scalar singlet (Majoron) that
takes a non-vanishing vacuum expectation value and in most of the models, being a Goldstone
boson, is massless [255, 500–504]. In presence of such scalar massless particle which couple to
neutrinos, we do have a possibility for the neutrino decay. Indeed, in this case, we can build the
following lagrangian terms

LνS =
(gs)ij
2

ν̄iνjS + i
(gp)ij
2

ν̄iγ5νjS (3.30)

where S is the Majoron fields and gs (gp) are scalar (pseudoscalar) couplings. In presence of such
terms, the heaviest neutrino states can decay in the following way

νi → νj + S . (3.31)

Moreover, if neutrinos are Majorana particles, we can have both helicity conserving (ν → ν + S
and ν̄ → ν̄+S) and flipping (ν → ν̄+S and ν̄ → ν+S) decays. In principle, we can distinguish
two types of neutrino decays:

• The neutrino in the final state is an active state, namely one of the other two SM neutrinos.
In this case we talk about visible decay and the final neutrino can be detected. Since
the decay product will have lower energies than the parent neutrino, one of the typical
signatures of such decay is an increase of low-energy events at the detector.

• The final state is completely invisible since the produced neutrino is a sterile state. In
this case the phenomenology is simpler since we only expect less events at the neutrino
detector. This model is known as invisible decay model.

Solar [497, 505–512] and supernovae [513–515] neutrinos observations have been able to put
strong bounds con the ν1 (τ1/m1 > 6 × 10−5 s/eV 6) and ν2 (τ2/m2 > 7 × 10−4 s/eV ) lifetimes
in the invisible hypothesis. On the other hand, the ν3 invisible decay lifetime [260, 516] is

6In this case τ is the lifetime in the center of mass frame and m is the neutrino mass eigenstate.
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much more difficult to bound (τ3/m3 > 3 × 10−10 s/eV at 90% from a current global fit [517])
since it can be measured at atmospheric or accelerator experiments which have relatively small
baselines7. Using only long baseline data (MINOS and T2K), the bound is reduced by two orders
of magnitude [524]. Thus, being the less known, from now on we will only consider the lifetime
of the third eigenstate, which in NO is the heaviest. Moreover, we will consider the Majoron to
be massless.
In the invisible decay case, the neutrino vacuum Hamiltonian is modified in a very simple way
by the presence of the decay width Γ3 = m3/(τ3E) in the following way [260]

H = U r

0 0 0

0
∆m2

21

2E
0

0 0
∆m2

31

2E
− iΓ3

2

 (U r)† (3.32)

where r refers to the neutrino helicity we are considering. The probabilities are thus computed
just replacing the atmospheric mass spitting with ∆m2

31 − iΓ3E. The presence of the imaginary
term produce an exponential dumping of some of the probability terms. If the neutrino lifetime
is very short (Γ3 → ∞), then such terms become negligible and the oscillation probabilities
do not depend anymore on L/E. In presence of matter, we just need to include the matter
potential into the neutrino Hamiltonian (note that here we are considering that the sterile
neutrino which is produced in the invisible decay does not mix with the active ones). Due to
the very simple phenomenology, different studies have been done in order to give bounds on the
invisible decay parameter. It is worth to mention that terrestrial bounds on the invisible decay
are not competitive to the cosmology ones, which can be up to 15 orders of magnitude more
stringent [262, 525–534]; however, such bounds strongly depends on the cosmological model and
for this reason it is still interesting to study the neutrino decay at oscillation experiments.

If the decay is visible, on the other hand, we can define the differential probability that a
neutrino να with energy Eα and helicity r oscillate to a neutrino νβ with energy Eβ and helicity
s as [260]

dPνrα→νsβ

dEβ

= P inv
νrα→νsβ

(Eα)δ(Eα − Eβ)δrs +∆P vis
νrα→νsβ

(Eα, Eβ) (3.33)

where the first term is the probability computed in the invisible decay model; the second one,
namely the visible decay correction, can be obtained in the following way

∆P vis
νrα→νsβ

(Eα, Eβ) =

∫ L

0

|Aνrα→νsβ
(Eα, Eβ)|2dL′ (3.34)

where A is the transition amplitude, L is the experiment baseline and L’ is the distance at which
the decay occurs. The transition amplitude in this case is proportional to the square root of the
normalized energy distribution of the neutrino decay

W rs
3j =

1

Γrs
3j

dΓrs
3j(Eα, Eβ)

dEβ

(3.35)

where Γrs
3j are the νr3 → νsj decay widths. Thus, in this model, the new parameters that may

be probed at oscillation experiments are all possible combinations of the decay amplitudes and
decay energy distribution. The fact that we observe a spectral distortion, due to the dependence
of the probabilities to both energies Eα and Eβ makes the τ3/m3 bounds more stringent in the

7In principle astrophysical neutrinos at IceCube may bound the ν3 lifetime, but the large uncertainties on the
initial flux make this measurements difficult [518–521]. See [522, 523] for recent neutrino decay applications in
IceCube measurements.
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visible decay case than in the invisible decay one [258, 507, 535]. For instance, using MINOS
and T2K data, if ν3 decays visibly we get τ3/m3 > 1.5× 10−11 s/eV [259]. However, due to the
fact that there are more new parameters in the game, such bounds depends on the hypothesis
on the scalar and pseudo-scalar couplings [260].

3.4 A closer look at Non-unitarity

Neutrino masses, as widely discussed, are the motivation for many SM extensions. Neutral heavy
leptons (NHL) arise in several of such extensions, among the others the type-I seesaw. Their
phenomenology, depending on their nature and on the gauge structure of the new physics model,
can be very rich. For instance, they can have relevant implications in cosmology, accelerator
direct searches, lepton flavor violation process, neutrinoless double beta decays.
However, even if they are too heavy to be produced in current experiments or if the new physics
processes they induce are too rare, their presence can be indirectly probed with neutrino oscil-
lations. Indeed, every time we introduce new neutral leptons, they can mix with SM neutrinos.
Thus, the PMNS matrix, in presence of new physics, may be larger than the usual 3 × 3 one
[248]. If new particles are much heavier than the 3 usual neutrinos, their oscillations are too
fast to be resolved and their major observable effect is to break the unitarity of the 3× 3 mixing
matrix, given that only the full matrix must satisfy the unitarity conditions.

3.4.1 Non-unitarity formalism and non-oscillation experiments

A general 3 × 3 mixing matrix, without any unitarity constraints, requires 9 additional real
parameters to be parameterized. One of the most convenient choice for the Non-Unitary mixing
matrix parameterization, is the so-called lower-triangular parameterization. In this case, the
PMNS matrix is written as [203, 249, 536]

N = (1 + α)U (3.36)

where U is the 3× 3 unitary PMNS matrix and

α =

α11 0 0
α21 α22 0
α31 α32 α33

 . (3.37)

As usual, the three diagonal parameters are real, while the three off-diagonal ones are complex
and carry new phases. Due to the zeros in the first two rows of the α matrix, the non-standard
parameters which are important in the neutrino oscillations which are usually studied in acceler-
ator, atmospheric, solar and reactor experiments are α11, α22 and α21 (that appear at the leading
order respectively in the νe → νe, νµ → νµ and νµ → νe probabilities). The other parameters
may be probed using ντ appearance or looking at the matter induced probability terms. Talking
about the matter effects, the fact that the PMNS matrix is no longer unitary does not allow us
to subtract the NC matter potential to the Hamiltonian matrix as a multiple of the unit matrix.
For this reason, in the probabilities two matter potentials appear, which are related to both CC
and NC interactions with enviromental fermions.
In the hypothesis that the Non-Unitarity comes from the presence of HNL, the αij parameters
can be written in terms of complex sines (ξij = e−iϕij sin θij, where ϕij are the CP violating
phases) and cosines (cij = cos θij) of the mixing angles [203, 537–539]. In presence of n− 3 new
HLN, the three diagonal parameters are

1 + α11 = c1nc1n−1c1n−2...c14, (3.38)

1 + α22 = c2nc2n−1c2n−2...c24, (3.39)

1 + α33 = c3nc3n−1c3n−2...c34 (3.40)
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while the three off diagonal ones can be written in a more complicated way, as shown in [249].
However, using such equations, one can derive some relations between off-diagonal and diagonal
parameters8, namely

|αij| <
√
(1 + αii)2(1 + αjj)2 (3.41)

called triangular relations [253].
Bounds on non-unitarity parameters can be extracted, in the HNL hypothesis, using lepton
universality constraints [249, 540]. Indeed, new neutral leptons can enter in the muon and beta
decays amplitude modifying in different ways the effective Fermi constants and breaking the
unitarity constraints of the first row of the CKM matrix [13, 184, 539, 541–546]. From these
measurements one obtain that −2α22 −α2

22 − |α21|2 < 0.0005 at 1σ. From pion decay branching
ratios [547, 548], it is possible to extract other bounds, for instance −2α11−α2

11 < 0.0130 at 90%
CL. If neutrinos are Majorana, bounds con α11 may be set by neutrinoss double beta decays
experiments [203, 549]. Other model-dependent bounds are discussed in [249, 253].

3.4.2 Non-Unitarity and neutrino oscillations

The breaking of the unitarity of the PMNS matrix can certainly change the oscillation probabil-
ities. In this case the flavor transitions will depend not only on the standard mixing parameters,
but also on the new α parameters. This would introduce new phenomenological features of the
oscillations. For instance, the breaking of the PMNS unitarity induces also the breaking of the
probabilities unitarity:

∑
β Pαβ ̸= 1. Moreover, in this case we have the so-called zero-distance

effect, namely Pαβ(L = 0) ̸= δαβ. This can be interpreted, if the non-unitarity is caused by the
presence of new heavy neutral states, as the effect of averaged out very fast oscillations, which
occur at very short baseline.
Thus, from experiments with L ∼ 0, we can extract bounds on α11, α22 and α21 looking at
νe → νe, νµ → νµ and νµ → νe oscillation data, respectively. At 90% CL, one gets α11 ∼ 10−3,
α22 ∼ 10−4 and α21 ∼ 10−3 [80, 253, 411, 550, 551]. Also long baseline experiments data can be
used to set bounds on Non-Unitarity parameters using CC and NC data [551, 552]; however, in
this case, it is crucial to be able to know the flux precisely without the beam monitoring of a
Near Detector, which would be as well affected by non-unitarity via zero-distance effects. We
will discuss this point later.
Another interesting method that has been used to set unitarity bounds on the PMNS ma-
trix consists on the study of the leptonic unitarity triangles9. Indeed, the unitarity relations∑

i UαiU
∗
βi = 0 and

∑
α UαiU

∗
αj = 0 define closed triangles in the complex planes. If we consider

the following parameters

ρxy + iηxy = −
UxβU

∗
yβ

UxγU∗
yγ

or − UαxU
∗
αy

UδxU∗
δy

, (3.42)

in the (ρxy, ηxy) planes, these triangles have two fixed vertices, namely the origin and (1,0) and
a third vertex which depends on the experimental value of the mixing matrix entries. The Non-
Unitarity of the PMNS matrix should cause the opening of the unitarity triangles. A complete
analysis using this approach can be found in [555, 556].

8Notice from eq. 3.40 that in the hypothesis that the unitarity breaking come from the presence of new heavy
states, αii < 0.

9Unitarity triangles are widely used in the context of the CKM matrix, see [13, 90, 553, 554] and references
therein.
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3.5 Equivalence of the oscillation phenomenology in dif-

ferent BSM models

We discussed different BSM models which modify the neutrino oscillation Hamiltonian matrix.
Such matrix, being a simple 3 × 3 Hermitian matrix, has a relatively small number of degrees
of freedom. Thus, it has been studied the possibility to find connections between new physics
parameters of different models [254]. In particular, among the models we discussed in details, it
has been shown the phenomenological equivalence of the 3+1, Non-unitarity and NSI models.
Let us first consider the equivalence between the 3+1 model and Non-unitarity model. In
this case, we can chose for instance (neglecting the CP violating phases), the PMNS matrix
parameterization

UPMNS = R(θ34)R(θ24)R(θ14)R(θ23)R(θ13)R(θ12) . (3.43)

Doing so, we can write, in the 3 active neutrino sector, the PMNS matrix as

U ′
PMNS = NU3ν

PMNS (3.44)

where U3ν
PMNS is the usual PMNSmatrix andN is the 3×3 sector of the matrixR(θ34)R(θ24)R(θ14).

Such matrix, in this particular parameterization can be written as

N =

 cos θ14 0 0
− sin θ14 sin θ24 cos θ24 0

− cos θ24 sin θ14 sin θ34 − sin θ24 sin θ34 cos θ34

 (3.45)

which is a lower triangular matrix, just like the non-unitarity matrix previously discussed. Thus,
we obtain the following relations between Non-unitarity and 3+1 parameters

1 + α11 = cos θ14 (3.46)

1 + α22 = cos θ24 (3.47)

1 + α33 = cos θ34 (3.48)

α21 = − sin θ14 sin θ24 (3.49)

α31 = − cos θ24 sin θ14 sin θ34 (3.50)

α32 = − sin θ24 sin θ34 (3.51)

which in the diagonal sector correspond to eq. (3.40) for n=1. It is worth to mention that the
two models have the same phenomenology only if sterile neutrino oscillations can be averaged
out. If not, the new oscillation frequency driven by ∆m2

41 would modify the probabilities.
Considering source and detector NSI, we pointed out that the oscillation probability can be
directly computed squaring the quantity (1 + εd)Ue−iHLU †(1 + εs). It is evident that we can
map the NSI parameters to the Non-unitarity (and thus to the 3+1) ones using the relations10

εs∗βα = εdαβ = ααβ . (3.52)

Finally, let us consider the propagation vector NSI. In this case it is more complicated to find
a direct correspondence. However, in the Non-unitary case, the matter effect matrix can be
written as

N †

VCC + VNC 0 0
0 VNC 0
0 0 VNC

N (3.53)

10In our previous discussions, we used flavor indices for the NSI parameters and numerical indices for Non-
unitarity parameters. Here, with ααβ we denote αij where e = 1, µ = 2, τ = 3.
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where N = (1 + α)UPMNS. Neglecting higher order terms in αij and using the approximation
that neutron and electron densities are the same, we get

−VCC

2
U †

2− 2α11 α∗
21 α∗

31

α21 2α22 α∗
32

α∗
31 α∗

32 2α33

U . (3.54)

This matrix can be easily mapped to the propagation NSI ones using the relations

εαα = cααααα (3.55)

εαβ =
1

2
α∗
βα (3.56)

where cαα = 1 for α = e, −1 otherwise.
The fact that such correspondences exist between BSM parameters allow us to extract bounds
on one model knowing bounds on another one. However, it is important to consider that even if
the phenomenology seems to be the same for all the models, the physics behind for instance NSI
and sterile neutrinos is very different. Indeed, depending on the experiment, we cannot always
probe all the models in the same way. In very short baseline experiments we have access to the
unitarity violation via zero distance effects, but propagation NSI are not developed yet due to
the absence of matter effects. Moreover, in some conditions, if we try to connect 3+1 mixing
angles and NSI couplings, we may obtain unphysical solutions, such as sin θi4 > 1.
It is worth to mention another important correspondence that has been explored in literature:
the one between the CPT-odd Lorentz violating parameters and the propagation NSI ones
[269, 270]. Only recently it has been recently proposed a way to distinguish between these two
models using Earth core passing atmospheric neutrinos [291].
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Chapter 4

Next Generation Long Baseline
Experiments

We discussed how rich the oscillation phenomenology can be, considering also all the possible
BSM models that may affect the neutrino oscillation probabilities. However, as already pointed
out, current neutrino data are not enough to answer all the open questions in this sector and
there are still different observables that need to be determined. For this reason, a certain number
of future oscillation experiments have been proposed.
The first next-generation experiment to take data will be the reactor experiment JUNO (Jiang-
men Underground Neutrino Observatory) [557], which will be ready to collect neutrino data in
the next few years. Such experiment, considered as a follow-up of Daya-Bay, will be placed at
a distance of 53 km from different reactor plants in China. Its long baseline (with respect to
reactor neutrino energy) will allow JUNO to look at low frequency solar oscillations modulated
by high frequency atmospheric oscillations. The great expected energy reconstruction of this
experiment will hopefully lead to precise measurements of mixing parameters as well as to the
determination of the neutrino mass ordering [558, 559].
After JUNO, in the 2030s, two long baseline experiments will become operative: DUNE (Deep
Underground Neutrino Experiment) in the USA [560, 561] and T2HK (Tokai to Hyper-Kamiokande)
in Japan [156]. While the former can be considered as a completely new experiment (even though
it will share some facilities with the successful NOνA experiment), the latter will be an upgrade
of the T2K experiment. These two experiments are expected to provide a great environment
for the study of oscillations in the SM as well as in BSM scenarios. We will later discuss their
potential in searching for new physics hints; before that, we will describe in this chapter which
are their essential features and which are their expected performances in constraining standard
physics parameters.

4.1 DUNE (Deep Underground Neutrino Experiment)

The DUNE experiment [14, 560–562], proposed in 2014, whose construction began in 2017, is
expected to start taking data by the end of this decade (possibly in 2027). It will consist of a
far detector located 1.5 km underground at the Sanford Underground Research Facility (SURF)
in South Dakota and a near detector complex [157] located at Fermilab, Illinois. The distance
between the two facilities will be roughly 1300 km; for this reason DUNE will be the neutrino
experiment with the longest baseline ever built. Both detectors will be exposed to the world’s
most intense neutrino beam, which is originated at Fermilab. Its primary science goals are

• Neutrino oscillation measurements using νµ and ν̄µ beams from Fermilab. These include
the measurement of the CP phase of the PMNS matrix (the proposed goal is to reach 3σ
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sensitivity for the 75% of the possible values of the phase), the determination of the mass
ordering and a precise measurement of θ23, which will allow to solve the octant degeneracy.

• Search for proton decay in several modes.

• Detection of the νe flux from a core-collapse supernova within our galaxy.

However, the experimental setup will allow DUNE to have a very rich ancillary science program.
Such program includes the study of BSM physics in the oscillation context, the detection of
atmospheric neutrinos, the searches for dark matter and neutron-antineutron oscillation and the
measurements of neutrino cross sections with a focus on the nuclear effects.

4.1.1 DUNE Detectors

Extensive preliminary studies suggested that for the main DUNE goals, a 1300 km baseline was
well-optimized for neutrino oscillation physics. Considering that the beam facility was already
present at Fermilab for the NOνA experiment, the Homestake mine in South Dakota, where the
SURF is located, has been chosen as far site. In order to attenuate the cosmic rays background,
the far detector should have been built sufficiently underground.
The Liquid Argon Time Projection Chamber (LArTPC) technology [563] will be adopted by
DUNE. These kind of detectors provide a good scalability, an high-performance event imaging
as well as calorimetry and particle identification capabilities. Such features are very important
for an experiment in which the neutrino beam has a wide energy range (see following subsection).
We will now briefly describe the main features of the far and the near detectors.

DUNE Far Detector

The DUNE Far Detector (FD) will consist of four LArTPC modules, each contained in a cryostat
filled with 17.5 kt of liquid Argon; each module has a fiducial mass of at least 10 kt. Thus, the
total far detector mass is of about 40 kt. The DUNE collaboration considered two possible
LArTPC technologies.

• Single-phase: in this case, the ionization charges are drifted horizontally and read out
on wires contained in the liquid argon. Such technology has already been used for the
first LArTPC detector, namely ICARUS [142] and for the SBN (Short Baseline Neutrino
Project) [416] detectors: SBND and MicroBooNE. However, for a large detector like the
DUNE one, the electronics requirements in single phase are very stringent.

• Dual-phase: the dual-phase technology is less established but in principle offers some
advantages. In this case, the ionization charges are drifted in the LAr and transferred
into a layer of gas above the liquid. Here, electron multiplier devices amplify the charges.
The improved charge gain in the gas phase reduces the requirements on the electronics.
However, a dual-phase detector needs an higher voltage, allowing on the other hand an
increased drift length.

Two DUNE prototypes, ProtoDUNE-SP and ProtoDUNE-DP are currently running at CERN.
Each detector is one-twentieth of the expected size of the DUNE FD [564, 565].
Very recent studies based on the performances of the two ProtoDUNE detectors, observed that
the gain from the gaseous phase of the dual phase technology may not be needed. For this
reason, the first FD module has been chosen to be a single-phase detector [566]. For the second
module, a third possibility is being currently studied: the Vertical Drift technology [567–570].
A Vertical Drift single-phase detector may benefit from the advantages of the dual-phase design
while eliminating the complexity due to the liquid-gas interface. In particular, such a detector,
compared to a standard horizontal drift single-phase detector, maximizes the active volume, has
a simpler installation and suffers from less mechanical deformations.

58



DUNE Near Detector complex

For long baseline neutrino experiments the presence of a Near Detector (ND) can be crucial.
Indeed, if we analyze the data considering the ratio between the number of the events at the
FD and at the ND, we can reduce many sources of uncertainties. For instance, the ND can be
used to estimate the neutrino flux close to the beam source. In this way one can have a better
understanding of the expected flux composition at the FD. Moreover, if the ND is a rescaled
replica of the FD, most of the systematic uncertainties due to the detector are canceled out when
the ratio between the number of events at the two baselines is computed. Other than that, since
the ND is exposed at a very high intensity flux, it can be used to perform physics measurements,
such as cross sections or BSM oscillation studies.
The DUNE Near Detector complex, located at a distance of 574 metres from the beam source,
will be made up of three components [157]:

• ArgonCube: the main detector, a smaller replica of the FD LAr-TPC. Its fiducial mass
will be at least 50 tons; some references take into account 67 tons. Its main purposes
are the experimental control for the FD as well as the flux composition and spectrum
determinations. This detector can be moved in different off-axis positions in order to
better understand the neutrino beam. Such capability is reffered to as DUNE-PRISM
(DUNE Precision Reaction-Independent Spectrum Measurement). ArgonCube can also
be used to probe BSM models which allow oscillations also at very short baselines.

• Multipurpose detector (MPD): an high-pressure gasseous argon TPC (HPgTPC) with a
fiducial mass of approximately 1 ton. This detector will be placed inside a magnetic field,
differently from the LArTPC-s. For this reason MPD can recognize the charge of the
particles. It can be used as experimental control for ArgonCube and the FD, but also to
measure exclusive final states with low momentum threshold. This last feature makes this
detector very useful for BSM searches not in the neutrino sector. MPD can also be moved
off-axis together with ArgonCube thanks to DUNE-PRIMS.

• System for on-Axis Neutrino Detection (SAND): this detector, which always remains in
the same position, will provide a constant and continuous on-axis flux determination.

4.1.2 Neutrino fluxes, event rates and detectors’ performances

The current generation of long-baseline neutrino experiments (NOνA and T2K) used narrow-
band beams in order to study neutrino oscillations. Moreover, such experiments have their FD
located off-axis. This essentially means that the beam is not exactly focused to the Far Detector.
The main advantage is the low background rate in νe appearance and νµ disappearance channels
from misidentified NC interactions of high-energy neutrinos. However, this comes at a cost of
flux and spectral information with respect to an on-axis configuration [571, 572]. DUNE has
as its basic concept the use of a wide-band on-axis beam, which allows to scan over a wide
L/E ratios and assures an high event statistics. The background mitigation is granted by the
highly-performant detector technology.

Beam Facility and Neutrino Fluxes

The neutrino flux is generated by the collision of a proton beam on a fixed target. After the
protons interactions, a certain number of mesons, mostly pions, are created and focused in a
decay tunnel. While travelling in such tunnel, mesons decay producing neutrinos (mainly νµ
with small νe contamination due to the rare pions electronic decays and kaons decays) and other
particles, like leptons or other hadrons. These last particles are absorbed or deviated away by a
magnetic field: the only remaining particles are the neutrinos which are now relatively focused
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Figure 4.1: Neutrino fluxes at the DUNE FD in neutrino (left) and antineutrino (right) modes. Figure taken

from [561].

in a beam and sent to the Near and Far detectors complexes.
In the DUNE experiment, many configurations are being studied. However, the last DUNE
Technical Design Report (TDR) [560, 561] takes into account 1.2 MW of 120 GeV primary
protons1 sent to a 2.2 m long graphite target. This corresponds to 1.1×1021 POT/year (protons
on target per year) and a total exposure of 480 kt·MW·yrs. Then, the hadrons produced by
proton interactions are focused by magnetic horns: when positive (negative) charged hadrons
are selected, DUNE runs in ν-mode (ν̄-mode), namely the neutrino flux will be mostly composed
by νµ (ν̄µ). Since the negative hadrons produced by proton interactions are less than the positive
ones, we expect the antineutrino flux to be less intense than the neutrino one.
In Fig. 4.1 we show the initial non-oscillated neutrino fluxes at the far detector taken from

the DUNE TDR [561]. It is clear that in both neutrino and antineutrino modes, the flux is
peaked around 2.5 GeV. This is what we need in order to have the largest statistics at the first
atmospheric peak (∆m2

31L/4E ∼ π/2). However, the flux is only reduced of a factor of 4 in the
broad range [0-5] GeV. This clearly shows the meaning of broad-band beam experiment: we have
an important neutrino flux for a wide range of L/E ratios and we can even observe oscillations at
the second atmospheric maximum, which comes at around 0.88 GeV. In each mode, the wrong-
sign neutrinos (ν̄µ in neutrino mode and νµ in antineutrino mode) represent a non-negligible
fraction of the total neutrino flux. This has to be taken into account since the DUNE LArTPC
FD will not be able to distinguish the sign of the lepton produced by the neutrino interaction.
On the other hand, the electron neutrino beam contamination is only a subdominant fraction
of the flux (∼ 1% at the beam peak). Fig. 4.2 shows the νe and νµ spectra expected at the far
detector after oscillation given the initial fluxes described above and the parameters best fits in
NO from [152]. The DUNE running time considered here is 3.5 years in neutrino and 3.5 years
in antineutrino modes. The DUNE running time is divided by the collaboration in different
stages: one year with 20 kt, two years with 30 kt and the rest with the total 40 kt of fiducial
mass; after 6 year, the beam is also upgraded up to 2.4 MW2. For each oscillation channels also
the background events are shown. These are

• For the νe appearance channel, the νe and ν̄e CC events due to the electron neutrino beam
contamination as well as misidentified NC, ντ CC and νµ CC events.

• For the νµ disappearance channel, the misidentified NC, ντ CC and νe CC events.

1In earlier studies also 80 GeV protons have been considered [14, 562].
2When not specified, we do not adopt such running staging.
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Figure 4.2: νe (top left), ν̄e (top right), νµ (bottom left) and ν̄µ (bottom right) fluxes at the Far Detector

considering neutrino oscillations with best fit parameters [152] in NO. The total running time in this case is

3.5+3.5 years staged. Figure taken from [561].
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Expected events (3.5 years staged)
ν mode

νe Signal NO (IO) 1092 (497)
ν̄e Signal NO (IO) 18 (31)
Total Signal NO (IO) 1110 (528)
Beam νe + ν̄e CC background 190
NC background 81
ντ + ν̄τ CC background 32
νµ + ν̄µ CC background 14
Total background 317

ν̄ mode
νe Signal NO (IO) 76 (36)
ν̄e Signal NO (IO) 224 (470)
Total Signal NO (IO) 300 (506)
Beam νe + ν̄e CC background 117
NC background 38
ντ + ν̄τ CC background 20
νµ + ν̄µ CC background 5
Total background 180

Table 4.1: Integrated rates of selected νe and ν̄e events signal and backgrounds. For backgrounds NO has been

assumed. δCP has been fixed to 0. Table from [561].

Expected events (3.5 years staged)
ν mode

νµ Signal 6200
ν̄µ Signal 389
Total Signal 6589
NC background 200
ντ + ν̄τ CC background 46
νe + ν̄e CC background 8
Total background 254

ν̄ mode
νµ Signal 2303
ν̄µ Signal 1129
Total Signal 3432
NC background 101
ντ + ν̄τ CC background 27
νe + ν̄e CC background 2
Total background 130

Table 4.2: Integrated rates of selected νµ and ν̄µ events signal and backgrounds. δCP has been fixed to 0. Table

from [561].
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for the ντ searches (red line). Figure from [561]. We show here only the flux in neutrino mode. For the same in
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In Tabs. 4.1 and 4.2 the total expected number of signal and background events are reported.
Now we can discuss together the tables and the figures. First of all, in the appearance channel,
we expect, roughly 1100 signal events in ν-mode and 300 in ν̄-mode in the Normal Ordering
hypothesis. If we consider the Inverted Ordering, we expect roughly 500 events in both cases.
The total background rate is 300 events in the ν-mode and 180 ν̄-mode. From fig. 4.2 we can
see that, in NO, around the oscillation maximum, the number of background events is 7 (5)
times smaller than the number of signal events in neutrino (antineutrino) modes. Thus, the
backgrounds become very important only below 1.5 GeV and above 5 GeV.
In the disappearance channel, where the mass ordering has not a considerable impact, we expect
6600 signal events in neutrino mode and 3400 in antineutrino mode. The number of background
events are respectively roughly 200 and 150. Thus, the backgrounds are even less important
in this channel. In Fig. 4.2 we observe that the disappearance spectra have two peaks, which
correspond to the atmospheric oscillation minima, around 1.5 GeV and 4 GeV. Around the first
oscillation maximum (2.5 GeV), on the other hand, we have a minimum in the spectra. The
number of background events is negligible. On the other hand, the wrong sign events, which
can be considered as signal since the DUNE detector cannot distinguish the lepton charge, are
negligible in neutrino mode, while very important, in particular for E > 3 GeV in antineutrino
mode.
It is worth to mention that the flux peaked at 2.5 GeV is not the only one which has been

proposed by the DUNE collaboration. Indeed, an high-energy flux, peaked at around 5 GeV (Fig.
4.3) with a considerable high-energy tail, is under consideration. This flux would allow DUNE
to collect many ντ events, which come from νµ → ντ oscillations. Indeed, ντ CC interactions
have a very high energy threshold (3.1 GeV) and with the usual neutrino flux we expect DUNE
to be able to observe only a few tens events (see Sec. 4.1.4). Studying ντ -s may be very
interesting since so far only the DONUT and OPERA experiments were able to detect few of
them [7, 149, 573].

Efficiencies and Energy resolutions

As already mentioned, the DUNE experiment, as usual for long-baseline experiments, will mostly
study the electron appearance and the muon disappearance channels. For the first one, the de-
tector observes νe CC interactions with nuclei. In such processes, an electron is generated, which
creates an electromagnetic shower, which leaves a particular signature in the LArTPC. On the
other hand, in order to collect disappearance events, the detector observes νµ CC interactions
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Figure 4.4: Selection efficiency in neutrino and antineutrino mode for the appearance (top panels) and disap-

pearance (bottom panels). The selected events are the ones for which the probability to be a νe (νµ) event is

greater than 85% (50%). Figures taken from [561].
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Particle type
Detection
Threshold

Energy resolution
Angular
resolution

µ 30 MeV
Contained tracks: track length
Exiting tracks: 30%

1◦

π 100 MeV
µ-like contained tracks: track length
π-like contained tracks: 5%
Showering or exiting tracks: 30%

1◦

e/γ 30 MeV 2%⊕ 15%/
√
E[GeV ] 1◦

p 50 MeV
p<400 MeV/c: 10%

p>400 MeV/c: 5%⊕ 30%/
√
E [GeV ]

5◦

n 50 MeV 40%/
√
E [GeV ] 5◦

other 50 MeV 5%⊕ 30%/
√
E [GeV ] 5◦

Table 4.3: Energy and spatial resolution for particles in the DUNE detector [14].

with nuclei, where a muon is generated. This particle, having a long lifetime and being at its
ionization minimum when the energy is O(GeV ), does not create a shower, but a long single
trace exiting the detector.
Thus, the LArTPC, which has a very good imaging capability, performs very well in distin-
guishing the two types of events. In Fig. 4.4 we show the selection efficiency in the appearance
and disappearance channels in neutrino (FHC, Forward Horn Current) mode and antineutrino
(RHC, Reverse Horn Current) modes in function of the reconstructed neutrino energy. For the
appearance channel, the efficiency is expected to be maximum at the spectrum peak, and it is
about 85% in both FHC and RHC modes. It is clear that the background rejection capability
of DUNE is very good since only a few percents of the total number of background events is
expected to be selected. In the disappearance channel, the selection efficiencies reaches a plateau
around 95% for neutrino energies above 2 GeV.
For the DUNE energy resolution, we need to consider that LArTPCs also act as calorimeters;
thus, we expect that the FD will be performing in reconstructing the neutrino energies. In Tab.
4.3 we summarize the DUNE energy and angular resolutions for several particles, as well as the
detection threshold. More refined simulations were able to produce migration matrices so to
better evaluate the probability that, given a true event energy, the experiment reconstructs a
certain energy value [561]. With these it is possible to summarize the energy response of the
detectors; for this reason, they have been used in order to obtain all the results shown in the
following sections.

Systematic uncertainties

The systematic uncertainties estimations is a very complicated task, which has been extensively
studied by the DUNE collaboration (see Ref. [561] and references therein for detailed discussion
about all the possible source of systematics). In general, we can divide them in three categories.
The flux uncertainties arise primarily due to the hadrons produced off the target and to the
uncertainties in the design parameters of the beamline. These are highly correlated across energy
bins and neutrino flavors. Nowadays they are estimated to be at the level of 8%, but future
hadron production measurements should improve this number. Moreover, flux uncertainties
could be drastically reduced by ND flux measurements.
The interactions uncertainties are related to the cross section estimations. These uncertainties
have many sources, which span from the initial and final state uncertainties, to the multinucleon
hard scattering contribution to the total cross section. As in the previous case, interactions
uncertainties may be reduced by further theoretical and experimental studies and can be partially
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νe appearance channel
Signal νe and ν̄e CC events from νµ oscillations 2% sys

Backgrounds

Beam νe and ν̄e CC events
Misidentified νµ and ν̄µ CC events
Misidentified ντ and ν̄τ CC events
Misidentified NC events

5% sys
5% sys
20% sys
10% sys

νµ disappearance channel
Signal νµ and ν̄µ CC events 5% sys

Backgrounds
Misidentified ντ and ν̄τ CC events
Misidentified NC events

20% sys
10% sys

Table 4.4: Backgrounds and signal systematic uncertainties proposed by the collaboration for the DUNE

simulations [562, 574].

Figure 4.5: DUNE δCP sensitivity and precision as a function of the true phase value. Figures taken from

[561].

simplified if measurements are performed at both ND and FD.
The detector uncertainties come from wrong energy reconstruction, as well as from acceptance
and efficiencies misunderstanding. Again, since near and far detectors share the same technology,
these uncertainties can be reduced.
The total systematic uncertainties estimated for DUNE considering the impact of the Near
Detector as well as the expected improving of our knowledge of the neutrino sector, are listed
in Tab. 4.4. For the νe appearance and νµ disappearance signals, the DUNE collaboration
considers respectively 2% and 5% of normalization error.

4.1.3 Sensitivity to oscillation parameters

In this subsection we will briefly show which are the expected DUNE capabilities in measuring
some neutrino oscillation parameters. Results mentioned here have been taken from the latest
DUNE TDR.
In Fig. 4.5 (left panel) we show the expected sensitivity to δCP using the staged DUNE running
already described for a total exposure of 7 (3.5+3.5) and 10 (5+5) years. The ∆χ2 function is
defined as

∆χ2
δCP

= χ2(δCP )− χ2(δCP = 0, π) . (4.1)
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Figure 4.6: DUNE mass hierarchy sensitivity as a function of the true phase value. The true ordering has been

taken as Normal. Figure taken from [561].

Figure 4.7: Atmospheric angle octant sensitivity of the DUNE experiment. Figure taken from [561].
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Physics Goal Exposure (staged years)
5σ Mass Ordering (δCP = −π/2) 1
5σ Mass Ordering (any δCP ) 2
3σ CP Violation (δCP = −π/2) 3
3σ CP Violation (50% of δCP values) 5
5σ CP Violation (δCP = −π/2) 7
5σ CP Violation (50% of δCP values) 10
3σ CP Violation (75% of δCP values) 13
δCP Resolution of 10◦ (δCP = 0) 8
δCP Resolution of 20◦ (δCP = −π/2) 12
sin2 2θ13 Resolution of 0.004 15

Table 4.5: Exposure in staged years after which the DUNE experiment will reach certain physics goals. The true

value for θ23 has been chosen so that sin2 θ23 = 0.58 (the timing shown here is very sensitive to the atmospheric

angle true value). Figure taken from [561].

We can observe that the oscillation parameters variation (in particular the θ23 variation, as we
will discuss later) have a huge impact on the sensitivity. Indeed, for the 7 years configuration,
5σ (

√
∆χ2 = 5 for the Wilk’s theorem [575, 576]) median sensitivity is reached only for positive

values of δCP in the range [0.3-0.7]π, but such interval can drastically change varying the param-
eters. On the other hand, the 3σ sensitivity, which is considered to be the main goal for DUNE,
may be reached even with 7 years running for more than 50% of the possible phase values. In
the right panel of Fig. 4.5 we show the δCP resolution which may be reached by DUNE, defined
as the 1σ uncertainty. In this case the minimum uncertainty, namely 13◦ for 7 years, is reached
for CP conserving values of δCP , 0 and π. On the other hand, if the CP violation is maximum,
the uncertainty will be between 21◦ and 27◦.
The neutrino mass hierarchy, on the contrary, will be determined by DUNE at a very high sta-
tistical significance for any value of δCP , as shown in Fig. 4.6. The ∆χ2 function is defined here
as

∆χ2 = χ2
NO − χ2

IO (4.2)

The maximum (minimum) sensitivity is reached for the negative (positive) maximal value of the
PMNS matrix phase [96]. The DUNE experiment should also be able to establish the θ23 octant.
Indeed, as shown in Fig. 4.7, where

∆χ2
θ23

= χ2(θ23)− χ2(π/2− θ23) , (4.3)

after 10 years of staged data taking, DUNE will distinguish the atmospheric angle octant at 3σ
if sin2 θ23 < 0.46 or sin2 θ23 < 0.56 (θ23 ∈ [0.24− 0.26]π). We will discuss later how the presence
of matter effects will negatively affect the capability of DUNE to measure θ23 if its true value
is close enough to π/4 (see Sec. 5.2). The measurements of ∆m2

31 and θ13 performed by DUNE
are also expected to be extremely precise [14, 561]. We quote in Tab. 4.5 after how many years
of staged running DUNE will reach some physics milestones regarding the mass hierarchy, the
CP violation and the θ13 measurement for sin2 θ23 = 0.58.

4.1.4 The ντ channel

The tau neutrino is the last fermion to be discovered so far. Indeed, only in 2000 the DONUT
experiment [7] was able to see this particle. The reason why ντ -s are so difficult to observe is that
their CC interactions, as already mentioned, have a relatively high energy threshold (3.1 GeV)
with respect to the usual detectable neutrinos. Thus, even if in long baseline experiments we
study atmospheric oscillations, which are dominated by the νµ → ντ transition, we usually look
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for the disappearance of muon neutrinos instead of the appearance of taus. Only the OPERA
[149, 573] experiment3, where a 17 GeV peaked neutrino beam was employed, has been able to
detect ντ -s in the context of neutrino oscillations.
Even in presence of enough energetic neutrinos, however, the ντ detection results to be very
challenging; if νe CC and νµ CC interactions produce stable or long-living particles, ντ CC
interactions produce the very short living τ leptons which, at neutrino beam energies, decay
very close to the interaction vertex. The charged decay products can be electrons (18%), muons
(18%) or hardons (64%). These particles can leave traces in the detector and their identification
may in principle lead to the possibility of the ντ detection.
DUNE, considering its high energy flux tail and its very good imaging capability, should be

ν mode
ντ Signal 277
ν̄τ Signal 26

Total Signal 303
νe + ν̄e CC Bkg (beam) 333 + 38

νe + ν̄e CC Bkg (oscillation) 1753 + 12

ν̄ mode
ντ Signal 68
ν̄τ Signal 85

Total Signal 153
νe + ν̄e CC Bkg (beam) 117 + 104

νe + ν̄e CC Bkg (oscillation) 90 + 188

Table 4.6: Expected total number of events after oscillation at the 40-kt far detector for Signals and Backgrounds

(Bkg) obtained using no selection efficiencies hypothesis in the case of the standard flux and for Normal Hierarchy

(NH). δCP = 215◦ is assumed [578]. The events correspond to DUNE running for a total of 7 years (3.5 years in

neutrino mode and 3.5 years in anti-neutrino mode).

ν mode
ντ Signal 2673
ν̄τ Signal 34

Total Signal 2707
νe + ν̄e CC Bkg (beam) 688 + 63

νe + ν̄e CC Bkg (oscillation) 1958 + 11

ν̄ mode
ντ Signal 98
ν̄τ Signal 983

Total Signal 1081
νe + ν̄e CC Bkg (beam) 176 + 177
νe CC Bkg (oscillation) 76 + 324

Table 4.7: Same as table 4.6 but for the optimized flux.

able to identify a few ντ events. These events may come from the identification of the τ hadronic
[579] or electronic [16] decays. In the former case, the most important source of background
should be misidentified NC events, where hadrons are produced. On the other hand, in the
latter case, the background events mainly come from νe CC interactions4. The studies of the
physics potentials of the ντ appearance channel at DUNE produced many results in the last years
[16, 18–21, 555, 579, 582–585]; a review about the perspectives about the τ neutrino physics at
DUNE and other experiments can be found here [586].
In [16], we showed that in DUNE roughly 450 ντ and ν̄τ events are expected; this number can
be increased of almost a factor of 10 if an high energy flux will be used for the same amount
of time (see Tabs. 4.6 and 4.7). To this number one should apply the selection efficiencies,
which depend on the decay mode we are considering and on the detector efficiency. In Fig. 4.8
we show the potentials of the DUNE Far Detector in constraining θ23, θ13 and ∆m2

31 using the
ντ appearance channel with subsequent electron decay in different hypothesis on the selection
efficiency (100% and 30% of electron events, respectively 18% and 6% of the total events)

3High energy neutrino candidates have been recently observed by neutrino telescopes [577].
4The performances of LArTPCs in the ντ detection have been studied in the context of the first LArTPC

ever built, the ICARUS detector, in [142, 580, 581].
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and on the signal over background ratio (18.6 and 2.45). These choices have been taken from
the LArTPC detector of the ICARUS experiment predictions [580, 581]. We estimated the
systematic uncertainties related to this channel to be at the level of 20%, much larger than
the other channels’ ones; this is so mainly because reconstructing the ντ interaction topology is
much difficult, and because we do not have many information about the ντ CC cross section.
It is clear that the performances of this channel are not comparable to the other channel’s
ones. These results can be improved with the high-energy flux (in Fig. 4.9 we show the results
in this case with an aggressive 10% systematics hypothesis) but still very large portions of the
parameters space (θ23 ∈ [30−60]◦, θ13 < 20◦ and ∆m2

31 ∈ [2.3−2.8]×10−3 eV 2) are allowed. This
essentially means that this new transition channel will not be able to substantially improve the
standard oscillation parameters measurements. In Fig. 4.10 we show a comparison between the
performances of each channel, considering a running time of 3.5+3.5 years with the standard flux,
where it is clear that the performances of the ντ appearance channels are poor in constraining
standard oscillation parameters. Similar results have been obtained in [579] using the events in
which the τ leptons decay in hadrons. They estimate that 30% of the hadronically decaying τ
leptons (20% of the total ντ sample) may be observed at DUNE. The main backgrounds in this
case are misidentified NC events.
However, the ντ sample at DUNE could be useful not only to study the properties of this particle,
like the interaction cross section, but also to study BSM physics [16, 18–21, 555, 579, 582–586],
as we will discuss later on.
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Figure 4.8: Correlations among oscillation parameters using only ντ appearance channel with the DUNE

standard flux and 20% systematics. The curves show the allowed parameters space regions at 68% confidence

level with different efficiencies and S/B (signal/background) ratios.

4.2 Hyper-Kamiokande (HK)

In 2013, the T2K experiment in Japan established νµ → νe oscillation at 7.3σ [587], opening,
together with the NOνA measurements, the road towards the CP violation determination in
neutrino experiment. The T2K success lead in 2015 to the proposal of an experiment upgrade,
which is known as Hyper-Kamiokande (HK) [156, 159]. Hyper-K, which will use all the already
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Figure 4.9: Same as Fig. 4.8 but with the τ -optimized flux and 10% systematics.
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Figure 4.10: Correlations among oscillation parameters using separately νµ disappearance (red solid line), νe

appearance (blue dashed line) and ντ appearance channels (6%, 2.45 S/B and 20% systematics, green dotted

line) with the DUNE standard flux. The curve shows the allowed parameters space regions at 68% confidence

level. The star represent the best fit point.

well-proven technologies tested at T2K, will be an highly performing long baseline neutrino
experiment, which in principle will be able to observe also proton decays, atmospheric, solar and
supernovae neutrinos. The construction has been approved in 2019 and the begininning of data
taking is planned for 2027, the same year as DUNE.
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4.2.1 HK Detectors

The HK facilities will be placed at J-PARC (proton accelerator and Near Detector Complex) and
in the Kamioka mines where, 8 km south from the T2K far detector, the HK far detector will
be built. The distance between the neutrino source and the main detector will be 295 km. This
distance needs 0.6 GeV neutrinos in order to sit at the first atmospheric oscillation maximum.
It is interesting to notice that in this case, even though we measure the same oscillation features,
HK has a much smaller baseline compared to DUNE. This will drastically reduce the matter
effects, which can negatively affect the δCP measurements, but on the other hand will not allow
to observe high energy neutrinos.

HK Far Detector

The T2K detector, known as Super-K, is a huge water Cherenkov detector. The Hyper-K
detector, will be built using the same technologies, but its fiducial mass will be almost 9 times
larger, namely 187 kt. The enormous Hyper-K water tank5 proposed dimensions are 60m of
height and 73 m of diameter. The detector will be placed 650 m underground and it will be
surrounded by almost 105 photon multiplier. These devices will be able to catch the Cherenkov
light produced by charged particles generated in neutrino interactions. Differently from the
DUNE LArTPC, which is going to observes particle traces, the HK Cherenkov detector will see
light rings, which depending on the particle and on its energy will have different features. This
type of detector, being filled with purified water and not with Liquid Argon can reach bigger
dimensions. However, some features of the detector are relatively worse in the water Cherenkov
detectors. The high transparency of the water is crucial for the HK detector: this feature allow
us to be able to observe most of the Cherenkov light produced in the detector. At the same
time, the transparency assure that the number of impurities (like the Radon nuclei) which can
produce background events are extremely low. One option that is being explored for the HK Far
Detector is the Gadolinium addition in water. This element is highly performing in capturing
thermal neutrons. Since the neutron capture produce a well known light signature (which has
been used since the first neutrino detection experiments), the Gadolinium doping may be very
useful for several reasons [588–592]. For instance, it can help in distinguishing neutrinos from
antineutrinos since the interactions of the latter produce more neutrons. Moreover, the doping
can improve the energy determination or the NC background reduction. It is worth to mention
that the Gadolinium nuclei should not compromise the water transparency.

HK Near Detectors

The HK Near detector complex consists in a few detectors, each having a crucial role in the
experiment. Indeed, they should be able to reduce systematic uncertainties and determine the
neutrino beam properties like the νe and the wrong-sign νµ contamination. Moreover, they
should be able to measure other interactions features like the neutron multiplicity.
The first Near Detector will be an improvement of the T2K ND280 detector. ND280 will be a 4.3
tons 2.5◦ off-axis detector placed 280 m far from the neutrino source. Differently from the HK
Far Detector, it will be composed by a Time Projection Chamber (TPC) tracker6 surrounded
by a neutral pions detector, an electromagnetic calorimeter and a muon detector. The flux
determination made by this Near Detector will reduce the systematic uncertainties on flux and
cross section of a factor of 3 [156]. However, being ND280 a different detector with respect to
the FD, it will not be able to reduce the detector systematic uncertainties.
At the same ND280 distance, the on-axis INGRID detector will be built using 16 iron-scintillator

5A configuration with two identical tanks is also under consideration [156, 159].
6The target nuclei have not been decided yet. However, the current T2K ND280 uses water [593].
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Figure 4.11: Neutrino spectra composition at Hyper-Kamiokande without oscillations in neutrino (left panel)

and antineutrino (right panel) mode. Figure from [156].

signal BG
Total

νµ → νe νµ → νe νµ CC νµ CC νe CC νe CC NC BG Total

ν mode
Events 1643 15 7 0 248 11 134 400 2058
Eff.(%) 63.6 47.3 0.1 0.0 24.5 12.6 1.4 1.6 —

ν̄ mode
Events 206 1183 2 2 101 216 196 517 1906
Eff. (%) 45.0 70.8 0.03 0.02 13.5 30.8 1.6 1.6 —

Table 4.8: Expected number of νe/νe signal and backgrounds events and efficiencies at HK. Normal mass

hierarchy with sin2 2θ13 = 0.1 and δCP = 0 are assumed. Table from [156].

modules in a cross pattern. Its primary purpose will be to constrain precisely the neutrino beam
direction.
The third 1 kt HK Near Detector, called IWCD (Intermediate Water Cherenkov Detector) is
going to be placed off-axis, around 1-2 km from the neutrino source. Since IWCD will use the
same technology of the Far Detector, being a water Cherenkov Detector, it will help in reducing
the detector uncertainties at the FD. Such detector will be complementary to ND280, that, on
the other hand, should be capable of tracking particles which are below the Cherenkov light
production threshold, performing more precise measurements. The two main IWCD features
will be the capabality to be moved at different off-axis angles and the Gadolinium doping.

4.2.2 Neutrino fluxes, event rates and detectors’ performances

The accelerator neutrinos detected by Hyper-Kamiokande will be produced at the Japan Proton
Accelerator Research Complex (J-PARC). All the accelerator facilities and the ND complex will
be located there. Differently from the DUNE experiment and just like the previous experiment
T2K, HK is going to adopt the well-known strategy based on a narrow-band 2.5◦ off-axis neutrino
beam. As already mentioned, this type of beam assures a reduction of the NC background to
both disappearance and appearance channel. This is crucial for a water Cherenkov detector,
where the event reconstruction is more difficult with respect to a tracker. However, having an
off-axis detector reduces the total number of neutrinos; moreover, the narrow beam does not
allow to study the oscillation at different L/E ratios.

Beam Facility and Neutrino Fluxes

The T2HK experiment has a much smaller baseline than DUNE. For this reason, in order to
study oscillations at the first atmospheric oscillation maximum, it needs neutrino with an energy
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νµCCQE νµCC non-QE νµCCQE νµCC non-QE νe + νe CC NC νµ → νe total

ν mode
Events 6043 2981 348 194 6 480 29 10080
Eff. (%) 91.0 20.7 95.6 53.5 0.5 8.8 1.1 —

ν̄ mode
Events 2699 2354 6099 1961 7 603 4 13726
Eff. (%) 88.0 20.1 95.4 54.8 0.4 8.8 0.7 —

Table 4.9: Same as Tab. 4.8, but for the disappearance channel. Th number of events here is divided in

Quasi-Elastic (QE) events and non-Quasi Elastic (non-QE) events. Table from [156].
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Figure 4.12: Far Detector HK neutrino spectra after oscillations in neutrino (left panels) and antineutrino

mode (right panels). Top panels refer to the appearance channel while bottom ones to the disappearance channel.

Oscillation parameters in NO have been taken from [578], while δCP = 0. Figures from [156].
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of about 0.6 GeV. For this purpose, at J-PARC, 30 GeV protons will be sent to a 91 cm long
graphite target. The beam power will be 1.3 MW, that corresponds to 2.7×1021 POT/year. The
total expected experiment exposure will be 2431 kt·MW·years, five times the DUNE one. Like in
the DUNE experiments, magnets will be able to select the charge of the mesons produced in the
proton interactions. This will create neutrino or antineutrino enhanced beams. After a decay
tunnel, an absorber should stop all the particles but the neutrinos, which will be mainly νµ. At
the T2HK energies, the νe beam contamination is expected to be less than 1% and it should
mainly come from muon decays. The 2.5◦ off-axis location of the detector takes advantage of
the pion decay kinematics that produces a narrow band beam peaked at 600 MeV, which is the
desired energy. Neutrino fluxes are shown in Fig. 4.11. It is evident how the beam is much
less broad than the DUNE one. On the other hand, the compositions of the DUNE and T2HK
fluxes are very similar.
In [156] it is possible to find a detailed discussion about all the possible analysis that may be
performed at Hyper-Kamiokande. For accelerator neutrino oscillation purposes, the Japanese
experiment will be, as already mentioned, very powerful in studying the νe appearance and
the νµ disappearance. For the former, taking into account only neutrino CC interactions with
oxygen nuclei, the events candidates should satisfy the following criteria: the reconstructed ring
is an electron-like (fuzzy) ring, the visible energy is greater than 100 MeV, the reconstructed
energy is less than 1.25 GeV and the event is not compatible with a π0 decay. The irreducible
background to this channel is made of νe → νe events from the beam contamination as well as
misidentified νµ and NC events. The total number of signal events is 1600 in ν-mode (2.5 years)
and 1400 in ν̄-mode (7.5 years)7. On the other hand, the total number of background events
is expected to be 400 in ν mode and 500 in ν̄ mode (see Tab. 4.8 for details). The resulting
events spectrum at the far detector, considering the best fits for oscillation parameters, NO and
δCP = 0 is shown in Fig. 4.12 (top panels).
For the νµ disappearance events, the criteria are a muon-like Cherenkov ring, reconstructed en-
ergy greater than 200 MeV/c and at most one decay electron associated to the event. Irreducible
backgrounds are misidentified νe and NC events. The total number of expected events are 9500
in ν mode and 13000 in ν̄ mode (mostly Quasi-Elastic), with 500 and 600 background events,
respectively (see Tab. 4.9). Top panels of Fig. 4.12 show the resulting neutrino spectrum for
the disappearance channel at the far detector. It is possible to see how, due to the narrow beam,
the double peaked shape observed in DUNE is less pronounced even though the total number
of events is larger.

Efficiencies and Energy resolutions

The narrow-band T2HK beam allows us to neglect the energy dependence of the detector effi-
ciency. We summarize the selection efficiencies at the Far Detector in Tabs. 4.8 and 4.9. It is
clear that for the νe appearance channel, the T2HK experiment should reach 64% (71%) signal
efficiency in ν (ν̄) mode. The wrong-sign signal efficiency should be around 45%. The great
background rejection capabilities will reduce the selection efficiency of the misidentified events
up to 1.6% in both modes; the component which is difficult to reject the most is, obviously,
the one related to the νe events from the flux contamination. For the disappearance channel,
the T2HK collaboration distinguish the various types of interactions. For the CC-quasi elastic
(CCQE) interactions, the selection efficiency is around 90% (95%) for νµ (ν̄µ). The efficiency
after all the kinematics and energetic cuts for the non-QE interactions is around 21% for muon
neutrinos and 50% for muon antineutrinos. In this case, the remaining background events are
only a very small fraction of the total non-νµ CC events.
The energy resolution functions suggested by the collaboration are, for the electron appearance

7The running time ratio 1 : 3 has been chosen by the collaboration in order to have a similar number of events
in both modes.
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Appearance channel Normalization Error Calibration Error
νe (ν̄e) Signal 5% 5%
Intrinsic νe (ν̄e), misidentified νµ (ν̄µ) and NC Backgrounds 10% 5%

Disappearance channel
νµ (ν̄µ) Signal 3.5% 5%
Misidentified νe (ν̄e) and NC Backgrounds 10% 5%

Table 4.10: Proposed systematics for the HK experiment [15]. See [156, 597] for other possible less conservative

hypothesis.

channel [156]

ν −mode −→ σ(E) = 12%E + 7%
√
E (4.4)

ν̄ −mode −→ σ(E) = 12%E + 9% (4.5)

where the term proportional to E encodes the instrumental effects, the one proportional to
√
E

reflects the statistical fluctuations and the constant term is due to the redout electronic noise.
For the disappearance channel, on the other hand, we have, for both modes [156]

σ(E) = 6%
√
E + 6% . (4.6)

Systematic uncertainties

The T2HK collaboration based their estimation of the systematic uncertainties on the T2K
experiment results [594, 595]. The main sources of systematics, as for DUNE, are the flux and
cross section uncertainties as well as near and far detectors response uncertainties.
In order to reduce the flux prediction systematics, measurements about the proton beam, the
horn field, the beam-line alignment and the hadron production are needed. These uncertainties
are the dominant source of systematics. The presence of a Near Detector can reduce the impact of
the flux uncertainties, but still the near-to-far flux extrapolation have a residual 0.5% fractional
error.
The interaction model uncertainties can come from the poor knowledge of the neutrino cross
sections. The nuclear model, for instance, can increase the total uncertainty up to 20%; this
number can be reduced of a factor of 10 using the Near Detector constraints. For this purpose,
the presence of IWCD is very useful.
The detector uncertainties in T2K have been estimated using atmospheric neutrinos as a control
sample. Thus, the error reduction is limited by statistics. However, since Hyper-Kamiokande
is expected to collect a much larger number of atmospheric events, we expect to have a better
knowledge of the detector performances.
Discussion about correlation between errors in different types of events can be found in [159, 596].
The total systematics suggested by the T2HK collaboration are listed in Tab. 4.10. In particular,
we expect 5% normalization error for the νe appearance signal and 3.5% normalization error for
νµ disappearance signal. The collaboration also proposes 5% energy calibration error. It is worth
to mention that, compared to DUNE, the T2HK experiment is expected to behave better, in
terms of systematics, in the disappearance channel and worse in the appearance channel. This is
mainly because the huge dimension of the Hyper-K water Cherenkov detector allow to observe
more precisely long-living particles events, while the DUNE imaging capabilities allow to better
reconstruct the more complicated electromagnetic showers produced by νe CC events.

4.2.3 Sensitivity to oscillation parameters

Let us now discuss briefly the perfomarnces of T2HK in the determination of the PMNS phase,
the mass hierarchy and the atmospheric angle octant. The ∆χ2 analysis described here are the
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Detector Location Signal Wrong-sign Signal Intrinsic νe, ν̄e NC CC νµ,ν̄µ Total
OAA, L Neutrino Mode
2.5◦, 1100 km 87.9 1.7 28.3 12.5 1.7 132.2
2.0◦, 1100 km 122.6 2.0 33.8 21.4 2.4 182.3
1.5◦, 1100 km 140.6 2.4 39.1 39.1 3.7 224.8
OAA, L Antineutrino Mode
2.5◦, 1100 km 89.8 15.5 39.4 14.3 0.8 159.8
2.0◦, 1100 km 131.5 19.8 46.3 23.4 1.1 222.1
1.5◦, 1100 km 159.1 23.9 54.3 39.5 1.7 278.5

Table 4.11: Expected number of νe and ν̄e candidate events at different proposed locations for the second

Korean Detector. Normal mass ordering with sin2 θ13 = 0.0219 and δcp = 0 are assumed. The first column refers

to different off-axis angle (OAA) and baseline (L) combinations. Table from [15].

same as the DUNE ones.
Using a 10 years (2.5+7.5) experiment running, as showed in left panel of Fig. 4.13, T2HK should
be able to reach 5σ sensitivity for wide range of possible δCP values8, namely [−135,−40]◦ and
[40, 145]◦. Comparing these intervals to the DUNE ones, T2HK is expected to perform better;
however, this highly depends on the θ23 true value, as we will discuss in the following chapter.
The better T2HK performances can come from smaller matter effects, since the matter potential
can induce a larger fake CP violation in DUNE [598–600]. The error on δCP is also expected to
be similar to the DUNE one, after 6 years of T2HK running time (Fig. 4.13, right panel).
About the mass hierarchy determination (see Fig. 4.14), the T2HK measurements are not ex-
pected to discover the sign of the atmospheric mass splitting at high confidence level for any true
value of the oscillation parameters, differently from DUNE. This is mainly because of the smaller
matter effects, which in DUNE enhance the probability terms sensitive to the mass hierarchy and
the narrower T2HK neutrino beam, which does not allow for a full spectral analysis. Moreover,
the true value of the atmospheric angle may have a huge impact on such measurement. The
addition of the atmospheric neutrino sample to the accelerator one, may drastically improve the
mass hierarchy sensitivity [156]. On the other hand, the θ23 octant determination capabilities
are expected to be very similar to the DUNE ones (see Fig. 4.15).
It is clear that, from the standard oscillations point of view, DUNE and T2HK will indepen-
dently determine most of the neutrino oscillation unknown. However, as we will show later, the
complementarity between the two experiments can play an important role for both standard and
BSM physics measurements.

4.2.4 Second oscillation maximum physics: T2HKK

For the T2HK experiment, the main strategy which has been investigated is to build two identical
260 kton water Cherenkov detectors [159]. For the second detector, different locations are under
investigation. One of the most promising choices benefits of the fact that South Korea is ∼1100
km far from the J-PARC facility [15, 156]. This distance correspond to the one needed to study
oscillations at the second atmospheric oscillation maximum for 0.6 GeV neutrinos. Even though
the neutrino beam in Korea would not be as intense as in Japan, a second detector placed at the
second oscillation maximum should further enhances the physics capabilities related to neutrino
oscillations [15, 156, 160, 601, 602]. Let us for instance consider the νe appearance probability
in presence of matter in the atmospheric regime, neglecting higher order terms in the small solar

8As true values for the oscillation parameters, T2HK collaboration used sin2 2θ13 = 0.1 and sin2 θ23 = 0.5
[15, 156].
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Detector Location Signal Wrong-sign Signal NC CC-νe,ν̄e Total
OAA, L Neutrino Mode
2.5◦, 1100 km 1275.0 32.7 58.5 1.9 1368.1
2.0◦, 1100 km 2047.2 42.8 107.7 2.5 2200.2
1.5◦, 1100 km 3652.0 55.4 210.4 2.9 3920.7
OAA, L Antineutrino Mode
2.5◦, 1100 km 1119.5 300.6 61.9 2.0 1484.0
2.0◦, 1100 km 1888.5 390.0 102.6 2.4 2384.4
1.5◦, 1100 km 3579.2 490.8 185.1 2.8 4257.9

Table 4.12: Same as Tab. 4.11 but for disappearance channel.

splitting [15]

P (νµ → νe) ∼ sin2 θ23 sin
2 2θ13

sin2(∆31 − aL)

(∆31 − aL)2
∆2

31 + (4.7)

+ sin 2θ23 sin 2θ13 sin 2θ12 cos θ13
sin(∆31 − aL)

∆31 − aL
∆31

sin(aL)

aL
∆21 cos∆32 cos δ +

− sin 2θ23 sin 2θ13 sin 2θ12 cos θ13
sin(∆31 − aL)

∆31 − aL
∆31

sin(aL)

aL
∆21 cos∆32 sin δ +

+cos2 θ13 cos
2 θ23 sin

2 2θ12
sin2(aL)

(aL)2
∆2

21

where ∆ij = ∆m2
ijL/4E and a = GFNe/

√
2 is the matter potential. For antineutrino probabil-

ities, a changes its sign, as well as δCP . It is clear that the oscillation phase, which in vacuum
is ∆31, is shifted by the quantity aL; thus, at a fixed energy, the second and the third terms
are enhanced when the baseline is bigger. This makes the oscillations at the second oscillation
maximum more sensitive to both the mass hierarchy and the CP-violating phase. For this rea-
son, the matter effects, which at the first oscillation maximum induce a fake CP-violation that
can reduce the sensitivity to δCP at the second oscillation maximum, enhancing the subleading
terms in the probabilities, can improve the phase measurements.
The resulting neutrino-antineutrino oscillation asymmetry is therefore bigger in correspondence
of the second maximum, and this can partially compensate the larger statistical uncertainties
we may have at a longer baseline (see event tables 4.11 and 4.12 for different locations of the
Korean detector). However, many complications [15], such as the fact that the second oscillation
maximum is narrower than the first one, do not allow a stand-alone detector in Korea to have the
same performances of Hyper-Kamiokande in Japan. On the other hand, the combination of the
two detectors placed at the two oscillation maxima can improve significantly the performances of
the whole T2HK experiment. From now on, we will refer to the T2HK detector in Japan equiv-
alently as JD (Japanese detector) or T2HK; conversely, the Korean detector will indicated as
KD or T2HKK (Tokai to Hyper-Kamiokande to Korea). In Fig. 4.16 we show the mass ordering
sensitivity (with maximal θ23) for five different configurations: JD only, two copies of JD in the
same place and JD+KD with the Korean detector at an off-axis angle of 2.5◦, 2.0◦ and 1.5◦. It is
evident that the presence of KD will improve significantly the T2HK capability to discover the
mass hierarchy for most of the values of δCP , reaching the same DUNE performances. In Fig.
4.17, the sensitivity to δCP is also shown for the same experimental configurations. When the
mass ordering is fixed, the presence of the a second detector, independently from its location,
will improve the sensitivity to the CP violation. This suggests that at the second oscillation
maximum location, the improvement of the δCP effect completely balance the reduction of the
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Figure 4.16: Mass Hierarchy sensitivity T2HK (JD) only and different combinations of two detectors. With

JDx2 we refer to the possibility of having two identical detectors close to each other in Japan. Figures from [15].

number of the events. On the other hand, if we marginalize over the mass hierarchy (we per-
form the fit with both ∆m2

31 > 0 and ∆m2
31 < 0), the Korean detector drastically improves the

sensitivity for δCP ∈ [0, π] if the true ordering is normal and for ∆CP ∈ [−π, 0] when the true
ordering is inverted. All these results suggest that the most convenient location for the second
T2HK detector should be in Korea. From now on, we will consider in our following results the
2.5◦ off-axis location for KD9 for the sake of simplicity, being this the same JD off-axis angle.
However, we must consider that, as shown in the previous figures, other off-axis angle choices
may improve the experimental performances.

9In this case, the detector would be build under the Minjuji mountain.
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Figure 4.17: CP violation sensitivity TCPV (in unity of σ-s), for different combinations of detector locations.

In the top panels the hierarchy is assumed to be fixed (left NO, right IO); in the bottom, a marginalization over

the mass ordering is performed. Figures from [15].
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Chapter 5

Complementarity between future long
baseline experiments

Characteristics DUNE JD/KD

Baseline (km) 1285 295 (1100)
Beam extension of NuMI beam JHF beam

Beam Type wide-band, on-axis narrow-band, 2.5◦ off-axis
Beam Power 1.2 MW 1.3 MW
Proton Energy 120 GeV 80 GeV
P·O·T·/year 1.1 × 1021 2.7 × 1021

Exposure (kt·MW·yrs) 480 2431
Flux peaks at (GeV) 2.5 0.6

Pµe 1
st ( 2nd) max. (GeV) 2.6 ( 0.9) 0.6 (0.6)

Detector mass (kt) 40, LArTPC 187 each, water cherenkov
run-time (ν + ν̄ ) yrs 5 + 5 2.5 + 7.5

Sig. Norm. Err. (App.) 2% 5%
Sig. Norm. Err. (Disapp.) 5% 3.5%

Binned events
[574] [15]

matched with

Table 5.1: Charateristic features of long-baseline experiments.

DUNE and T2HK, which represent the next generation of long-baseline experiment, despite
being similar from the point of view of their concept, are very different experiments. In Tab.
5.1 their main features are summarized. DUNE will see higher energy neutrinos travelling for
1300 km, while T2HK will study oscillations at a shorter baseline and lower energies, without
being affected strongly by matter effects. Moreover, DUNE will be an on-axis broad band beam
experiment, while T2HK will be an off-axis narrow band beam experiment. For this reason,
even though they are both meant to determine the oscillation unknowns, the two experiments
will have different performances. However, due to their differences, the combination of their
data may contain more information than the single experiment ones. In this chapter, we will
discuss two examples in which the complementarity between DUNE and T2HK can improve the
performances of the two experiments taken one at a time. Before showing the numerical results,
we will first discuss the software that has been used to perform the experiments simulations.
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5.1 The GLoBES software and the oscillation analysis at

LBL experiments

Before discussing the main results of this manuscripts, which have been obtained by a full sim-
ulation of the future LBL experiments, we want to briefly describe a very useful tool that can
be used in order to simulate long baseline experiments. This is the GLoBES (General Long
Baseline Experiment Simulator) software, developed since 2004 [603, 604]. It is very useful to
simulate and analyze neutrino oscillation at LBL or reactor experiments using a complete three
flavor description of the probabilities. The definition of the experiment can be done in a specific
abstract language, the AEDL (Abstract Experiment Definition Language), which allows to eas-
ily describe the experimental features of a given experiment. One can split the description of a
neutrino experiments in three parts: source, oscillation and detection.
About the source, the GLoBES software can simulate experiments which have stationary point
sources. Moreover, the best description is obtained for experiments that have only one single
point like source. However, some approximated simulations can be obtained in the case of re-
actor experiments using several distant reactor blocks (i.e. Daya Bay [369]). The geometrical
effect of a source distribution, on the other hand, are not implemented in the software; for this
reason, atmospheric or solar experiments cannot be simulated properly. Also time-dependent
sources like supernovae are not covered by GLoBES.
The description of the oscillation is very simple; the software numerically diagonalize the Hamil-
tonian matrix in matter and propagates the neutrino transition amplitudes. This method is
called evolution operator method [605]. For the probability computation, the matter density
profile is divided into layers of constant matter; however, since the uncertainty on the matter
density can be included in the simulation, usually it is enough to consider a single layer with an
average density.
The detection of the neutrinos, on the other hand, is much more complicated to evaluate. Indeed,
in this case many detector features have to be considered at the same time. The basic assump-
tion of a detector description is the linearity, namely the fact that two neutrino events never
interfere with each other. Then, another basic concept is that the true neutrino energy and
the true neutrino flavor are reconstructed by the detector: they cannot be directly observed,
but the observation of secondary particles translates into a distribution of possible energy or
flavor values1. The features of this distribution depends on the detector performances, which
are encoded in the experiment efficiencies and resolutions given as an input. Of course, these
quantities must be obtained by a full detector simulation outside GLoBES.
The full experiment definition is obtained using some abstraction levels (see Fig. 5.1). The
first is the channel, which basically is the link between the oscillation physics and the detection
properties of a given oscillation pattern (i.e. νµ disappearance, νe appearance...). In particular,
it maps a specific flavor produced at the neutrino source into a reconstructed neutrino flavor in
the detector.
With different channels we can build a rule. The rule is a description of what the experiment
actually sees when searching for a certain type of neutrino events. Indeed, it contains one or
more signal and background oscillation channels normalized to their efficiencies. In each rule,
the GLoBES software implements the signal and background normalization and calibration sys-
tematic errors separately. At the rule level, the total number of observed events is computed by
the software; this number can be used to perform a χ2 analysis. The sum of all the χ2 computed
for all the rules defines the experiment, which is the final simulation level.

1Neutrino reconstructed energy and flavor are the only observables considered in a neutrino event in GLoBES.
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Figure 5.1: Schematic view of the most important GLoBES components: channel, rule and experiment. Figure

from [603].

5.1.1 The computation of the number of events

The number of events spectra in function of the reconstructed energy E ′ can be computed by
the GLoBES software. The event rate is given by2

dnIT
β

dE ′ =N

∫ ∞

0

∫ ∞

0

dEdÊ Φα(E)×
1

L2
P(να→νβ)(E,L, ρ; θ23, θ13, θ12,∆m

2
31,∆m

2
21, δCP )×

σIT
β (E)kITβ (E − Ê)× Tβ(Ê)Vβ(Ê − E ′)

(5.1)

where we can recognize four different contributions.

• The first one is the production term: it depends on the flux of να, where α is the initial
flavor. The energy E is the true incident neutrino energy, which is not directly accessible
to the experiment.

• The second term is the propagation term. It depends on 1/L2, where L is the baseline of
the experiment, and on the oscillation probability from the initial flavor α to the final one
β. ρ is the matter density.

• The third term is the interaction term. σIT
β is the total cross section for νβ and for the IT

interaction type. kITβ is the energy distribution of the particle produced in the interaction,

namely the one that is detected. Ê is the energy of such a particle.

• The last term is the detection term. It depends on a threshold function Tβ and on a energy
resolution function Vβ, both features of the detector. The energy E ′ is the reconstructed
neutrino energy, namely the one measured by the experiment.

Given this formula, it is clear that, as inputs, the GLoBES software needs several information.
In particular, the initial flux Φα(E) as a function of the true energy and of the neutrino flavor,
which have to be computed in a full MonteCarlo simulation, must be specified in the simulation.
Then, in order to numerically compute the probabilities, the needed inputs are the experiment
baseline L, the oscillation parameters and the matter density (or the matter densities if we
consider neutrinos passing through several layers). For the interaction term computation, on

2We include here also a normalization factor N which may be useful in some experimental configurations and
encodes for instance information about detector mass, and beam power.
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the other hand, we need to know the interaction cross section; finally, the detection term encodes
the detector responses, which can be contained in the so called smearing matrices. The detector
efficiencies can be included at this level, if they are energy dependent3 or at the rule level if they
can be treated as an overall number.

Notice that given its simplicity, the GLoBES software can be used also to simulate neutrino
oscillation in presence of new physics; in this case, it only needs to be modified at the probability
level.

5.1.2 The systematics implementation and the χ2 function definition

The systematic uncertainties implementation is one of the most delicate issue in GLoBES. By
default, the software supports four types of systematical errors: signal and background normal-
ization error and signal and background tilt or energy calibration energy. The tilt (T) error is
implemented as a linear distortion of the spectrum around the center, while the calibration (C)
is considered like a stretching of the reconstructed energy scale.
In order to include the systematics, GLoBES uses the pull-method [606–608]. In this case, nui-
sance parameters ζi are introduces, so that the signal and background event rates in each energy
bin i are scaled in the following way

s(ζ1) = (1 + ζ1)si bi(ζ2) = (1 + ζ2)bi . (5.2)

The χ2 function, which can be used to fit simulated data with a given theory, includes the
systematics in this fashion

χ2(λ⃗) = min
{ζi}

(
χ2(λ⃗, ζ1, ...ζk) +

k∑
j=1

ζ2j
σ2
ζj

)
(5.3)

where χ2(λ, ζ1...ζk) is the usual Poissonian4 χ2 function, which depends on the oscillation pa-

rameters vector λ⃗ and the nuisance parameters. Added to the χ2 we find the Gaussian penalties
ζ2j /σ

2
ζj

where σ are the actual systematics indicated in the GLoBES code. As an example, for

a simple background free measurement, with only normalization errors, the χ2 definition, in the
Poissonian case, can be written by

χ2(λ⃗, a) =
n∑

i=1

2

(
(1 + a)Ti −Oi +Oi log

Oi

(1 + a)Ti

)
+
a2

σ2
a

(5.4)

where σa is the normalization error, n is the number of energy bins, Oi are the observed rates and
Ti are the theoretical ones we are using for the fit. The χ2 value will be thus obtained not only
minimizing on the theory input values, but also on the nuisance parameter a. The χ2 function,
however, can be also defined with user-defined systematics; for this reason, the complexity of
the GLoBES software allows us to better control with a simple software all the sources of errors.
Whenever we include a prior on the oscillation parameters, take for instance a Gaussian prior
on θ13 from reactor experiments, the χ2 is modified in the following way

χ2
pull(λ⃗) → χ2

pull(λ⃗) +
θ13 − θ013
σ2
θ13

(5.5)

where θ013 is the central value for the input and σθ13 is the 1σ Gaussian error; if the error on a
given parameter is not Gaussian, custom error functions can be implemented..

3Energy dependent efficiencies are fundamental for broad band beam where a spectral analysis can be per-
formed.

4For large number of events, the Poissonian definition coincides with the usual Gaussian one, which we will
use in following chapters for simplicity.
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5.2 The DUNE-T2HK complementarity and the CP cov-

erage

As widely discussed, one of the main goals of the future LBL experiments will be to determine
the PMNS phase δCP . The DUNE collaboration [561] suggested as milestone for the next gener-
ation experiment, the reach of 75% 3σ CP coverage; this means that a great result for the future
LBL experiment would be to have at least a 3σ sensitivity for the 75% of the possible δCP values.
The reach of this goal, however, strongly depends on the true value of the atmospheric angle,
which has a strong impact on the CP violation determination and has not been determined yet
with a satisfactory precision by other experiments. Indeed, current measurements allow at 3σ
all the values of θ23 between 40◦ and 60◦ (sin2 θ23 ∈ [0.4, 0.6])5.
Let us now consider what happens at the probability level. At long-baseline (LBL) experiments,
we mostly probe the νµ(ν̄µ) → νµ(ν̄µ) disappearance and the νµ(ν̄µ) → νe(ν̄e) appearance chan-
nels. Following the approach in Ref. [161], we can further simplify the appearance probability
expression in Ref. [94] that considers series expansion up to the second order term in α and
sin θ13 as follows

Pµe ≈ N sin2 θ23 +O sin 2θ23 cos(∆ + δCP) , (5.6)

where,

N = 4 sin2 θ13
sin2[(Â− 1)∆]

(Â− 1)2
, (5.7)

O = 2α sin θ13 sin 2θ12
sin Â∆

Â

sin[(Â− 1)∆]

Â− 1
. (5.8)

This grouping of terms allows us to visualize the dependence on the atmospheric mixing angle
(θ23). In the above equations, ∆ = ∆m2

31L/4E, α = ∆m2
21/∆m

2
31, and Â = A/∆m2

31, wherein
A = 2

√
2GFNeE = 7.6 × 10−5 × ρ (g/cm3) ×E (GeV). From eq. (5.6), we observe that the

CP-violating term contains sin 2θ23 and thus is insensitive to the octant of the atmospheric an-
gle [96, 164, 165, 609–611]. Moreover, changing from neutrino to antineutrino mode notably
Â changes its signs, thus leading to matter-induced or fake (extrinsic) CP violation [598–600].
This will have a dominant contribution as it is present in the coefficient of the leading term N
(refer to eq. (5.7)). While the presence of the Dirac CP phase in the sub-leading term gives rise
to the genuine (intrinsic) CPV (refer to eq. (5.8)).
One useful observable to probe CPV in oscillation experiments is to note the difference between
neutrino and antineutrino probabilities. The quantity which is strongly correlated to the sensi-
tivity in δCP is the CP asymmetry [612–615].
The CP asymmetry in the appearance channel is defined as

Aµe
CP =

Pµe − P̄µe

Pµe + P̄µe

. (5.9)

Different expansions have been done to understand the behavior of such an asymmetry in terms
of mixing angles [21]. However, if we want to outline the role of the atmospheric mixing angle
in the δCP sensitivity, we can fix the other mixing angles to their best-fit values (sin θ13 ∼ 1/7
and sin θ12 ∼ 1/

√
3) and expand Â up to the first order since the matter parameter is small at

the future LBL experiments under consideration. The resulting asymmetry can be written as
follows:

Aµe
CP = [Aµe

CP]vac + Â[Aµe
CP]mat +O(Â2) , (5.10)

5Depending on the global fit and on the used dataset, upper or lower octant values are preferred [111–113].
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Figure 5.2: The Absolute CP asymmetry (|Aµe
CP|) as a function of δCP and sin2 θ23 for first oscillation maximum

(L = 1285 km, E = 2.5 GeV) and second oscillation maximum (L = 1285 km, E = 0.9 GeV) in DUNE are

shown in the top and bottom panels, respectively. The left and middle panels in both top and bottom plots are

obtained in a vacuum (intrinsic or genuine Aµe
CP) and finite matter density (both intrinsic and extrinsic Aµe

CP)

scenarios, respectively. While the right panel represents the difference between the first two (only extrinsic or

fake Aµe
CP). Best-fit values of the other oscillation parameters are taken from Ref. [113]. NO is assumed.

where

[Aµe
CP]vac =

−28α∆cos θ23 sin δCP sin∆

3
√
2 sin θ23 sin∆ + 28α∆cos θ23 cos δCP cos∆

(5.11)

[Aµe
CP]mat = − sin2 θ23(∆ cos∆− sin∆) 126α∆cos θ23 cos δCP cos∆+18 sin2 θ23 sin∆

(3 sin2 θ23 sin∆+7
√
2α cos δCP cos∆ sin2(2θ23))2

(5.12)

It is clear that, when the value of θ23 increases, the denominator of both the contributing term in
eq. (5.11) and eq. (5.12) increases. For this reason, the absolute value of the asymmetry becomes
smaller, and we expect less CP violation sensitivity. So, at the first oscillation maximum,
(∆ = π/2)6 the asymmetry reduces to:

Aµe
CP ∼ −7

3
α
√
2π cot θ23 sin δCP + 2Â , (5.13)

whose modulus decreases with an increase in θ23. Notice that the genuine CP contribution has the
opposite sign to the fake or matter-induced contribution. Thus, there exists some combination
of θ23 and 0◦ < δCP < 180◦, such that the asymmetry vanishes. It is interesting to note that
the vacuum contribution becomes three times larger when considering the second oscillation
maximum (∆ = 3π/2). Therefore, observing the CP violation at such L/E combinations can give
much more sensitivity to δCP [160, 601, 602]. The exact numerical behavior of the CP asymmetry
in the appearance channel (|Aµe

CP|) is shown in Figs. 5.2 for (L = 1285 km, E = 2.5 GeV), (L =
1285 km, E = 0.9 GeV) which corresponds to the first and second oscillation maxima in DUNE.

6To be maximally sensitive to the oscillation probability, we must have ∆ = (2n+ 1)π2 , where n = 0, 1, 2, ...
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Figure 5.3: |Aµe
CP| as a function of δCP and sin2 θ23 for first oscillation maxima in JD (L = 295 km, E = 0.6

GeV) and second oscillation maxima in KD (L = 1100 km, E = 0.6 GeV) assuming NO are shown in the top

and bottom panels, respectively. The left and middle panels in both top and bottom are obtained in a vacuum

(intrinsic or genuine Aµe
CP) and finite matter density (both intrinsic and extrinsic Aµe

CP) scenarios, respectively.

While the right panel represents the difference between the first two (only extrinsic or fake Aµe
CP). Best-fit values

of the other oscillation parameters are taken from Ref. [113].

For each L/E combination, we show three panels: in the left column, we show the vacuum or
δCP-induced contribution (intrinsic). In the central panel, we illustrate the total asymmetry, and
in the right column, we display the contribution due to the matter effects (extrinsic). In all the
panels, we only plot the absolute value of the asymmetries since the most important aspect is to
stress the difference between the asymmetries in the CP-violating cases with the CP-conserving
ones. For the top left panel in Fig. 5.2, we observe that the intrinsic contribution is the same in
both maximal CP-violating values of δCP (90 and -90◦). Moreover, keeping the CP phase fixed
to any value, the asymmetry reduces when we increase the value of θ23 from lower octant (LO)
to higher octant (HO) (as expected from eq. (5.11) and eq. (5.12)). Contrastingly, the extrinsic
CP asymmetry (top right panel), which occurs solely due to the matter effect, is asymmetric,
being larger for favorable δCP in NO (negative half plane) and smaller for unfavorable δCP in
NO (positive half plane). Therefore, the total asymmetry (middle panel) is no longer the same
for the maximal cp-violating values of δCP. Further, due to contribution from Â, the intrinsic
|Aµe

CP|, which was zero at CP-conserving values (δCP = 0◦, 180◦), now has a finite value. Hence,
from the top middle panel, it is clear that the asymmetries in CP-violating cases tend to shift
closer to the CP-conserving value when θ23 increases. For the bottom row, where we plot the CP
asymmetry at the second oscillation maxima (E = 0.9 GeV), the matter effect becomes smaller,
and the intrinsic component completely dominates the total asymmetry. Similarly, in Fig. 5.3,
we plot the CP asymmetry for the T2HK (JD) setup with L = 295 km and E = 0.6 GeV at
the first oscillation maxima (top row) and T2HKK with L = 1100 km and E = 0.6 GeV at
the second oscillation maxima (bottom row). The top panel does not observe any significant
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contribution due to matter (L = 295 km). Thus we can expect the J-PARC based experiments
to provide a cleaner environment for the measurements of δCP, even though the values reached
by the asymmetries in these cases are not as large as the DUNE one. On the other hand, the
bottom panels of Fig. 5.3, which correspond to the second oscillation maximum L/E choice for
T2HKK, behaves just like the bottom panels in Fig. 5.2.
One interesting aspect that has an important role on the δCP determination, is the fact that
also in the disappearance channel the asymmetry is different from zero in presence of matter
effects. For this reason, also the disappearance channel may have an impact on the measurement
of the PMNS phase. Following the same convention, as discussed in Ref. [161], we write the
disappearance probability as

Pµµ ≈ 1−M sin2(2θ23)−N sin2 θ23 −R sin 2θ23 + T sin 4θ23 , (5.14)

where:

M = sin2∆− α cos2 θ12∆sin 2∆ +

+
2

Â− 1
sin2 θ13

(
sin∆ cos(Â∆)

sin[(Â− 1)∆]

Â− 1
− Â

2
∆ sin 2∆

)
, (5.15)

R = 2α sin θ13 sin 2θ12 cos δCP cos∆
sin Â∆

Â

sin[(Â− 1)∆]

Â− 1
, (5.16)

T =
1

Â− 1
α sin θ13 sin 2θ12 cos δCP sin∆

(
Â sin∆− sin Â∆

Â
cos[(Â− 1)∆]

)
.

(5.17)

and N has already been defined in eq. (5.7). The detailed analytical discussion of fake CP
asymmetry in the disappearance channel results in a cumbersome expression. However, for first
oscillation minima (∆ = π/2) and using the approximated numerical values of the solar and the
reactor mixing angles (sin θ12 = 1/

√
3 and sin θ13 = 1/7), one can calculate the CP asymmetry

in the νµ → νµ disappearance channel, defined as

Aµµ
CP =

Pµµ − P̄µµ

Pµµ + P̄µµ

, (5.18)

neglecting the higher order terms, obtaining

Aµµ
CP ∼ Â

24 sin2 θ23 + 7
√
2(π2 − 4)α cos δCP sin 2θ23

6 + 141 cos 2θ23
. (5.19)

This asymmetry increases with the increase in θ23 until the expansion breaks at cos 2θ23 =
−6/141. This occurs for sin2 θ23 > 0.5 (HO). While after this value, the magnitude in asymmetry
starts decreasing with the increase in θ23. In Fig. 5.4 we exhibit the absolute value of the
disappearance asymmetry (|Aµµ

CP|) for (L = 1285 km, E = 2.5 GeV) and (L = 295 km, E =
0.6 GeV) that also corresponds to DUNE and JD at their respective first oscillation maxima
energy. We do not show the plots corresponding to the second oscillation maxima since the
fake CP asymmetry in disappearance is solely due to the interaction with the Earth matter
potential, whose effect becomes minimal in such conditions. It can be noticed that JD, bearing
a relatively small baseline (L = 295 km) and for this reason suffering for very small matter
effects, exhibits very minute fake asymmetry even at first oscillation maximum, as shown in the
right panel of Fig. 5.4. On the other hand, DUNE has a larger baseline (L = 1285 km), thus
exhibiting consequential |Aµµ

CP| that reaches values as large as ≈ 0.6 (see left panel in Fig. 5.4),
which is almost comparable to the total |Aµe

CP| (≈ 0.8 ) (see top middle panel in Fig. 5.2). We
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observe that |Aµµ
CP| is minimal at the two extremes of octant of θ23 for any value of δCP. The

asymmetry gradually increases while proceeding towards the MM from either side for almost all
δCP. However, |Aµµ

CP| manifests two maxima around δCP = 0◦, one each in the two octants: LO
(sin2 θ23 ≈ 0.49) and HO (sin2 θ23 ≈ 0.52). As discussed previously in the analysis of eq. (5.19),
we observe a critical point in HO in the figure as well, around which the nature of Aµµ

CP changes;
in that point, while our expansion breaks, the full asymmetry Aµµ

CP ≈ 0 due to higher order terms
that we neglected in our expansion. This nature of fake Aµµ

CP is crucial in our result. Given all

|Aµµ
CP|
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Figure 5.4: The asymmetry |Aµµ
CP| as a function of δCP and sin2 θ23 assuming NO for first oscillation maxima in

DUNE (L = 1285 km, E = 2.5 GeV) and JD (L = 295 km, E = 0.6 GeV) is shown in the left and right panels,

respectively. The best-fit values of the other oscillation parameters are taken from Ref. [113].

these discussions, we expect that the CP sensitivity, and consequently the CP coverage, are
mainly driven by the electron appearance channel, as it is well known in the literature [616].
The fact that the related asymmetry decreases with θ23 let us expect that the coverage decreases
when the atmospheric angle increases. However, we should take into account another issue: we
do not know exactly the value of θ23, which should be determined, together with the PMNS
phase, at LBL experiments. For this reason, we expect that, while fitting the T2HK and DUNE
data, we would need to marginalize over the current allowed range for θ23, which at 3σ, as
already mentioned, is rather large and contains, in NO, all the values between 40◦ and 60◦. In
the marginalization process, it may occur that, given the couple of true values (θ23,δCP ), it exists
a degenerate couple (θ̄23,δ̄CP ) for which

Pµe(θ23, δCP) = Pµe(θ̄23, δ̄CP) , (5.20)

P̄µe(θ23, δCP) = P̄µe(θ̄23, δ̄CP) . (5.21)

Using the above expressions (eq. (5.6)) for the probability, we obtain that, for θ23 = 45◦,
sin θ13 = 1/7, and sin θ12 = 1/

√
3,

Pµe(π/4, δCP) =
2 sin[(A− 1)∆]2

49(A− 1)2
+

4
√
2α cos(δCP +∆) sin[(A− 1)∆] sin(A∆)

21A(A− 1)
. (5.22)

Assuming that the degenerate atmospheric angle is not too far from the maximal value, we
define it as θ̄23 = π/4 + x. Now, considering terms only up to the first order in x we obtain:

Pµe(π/4 + x, δ̄CP) = Pµe(π/4, δ̄CP) +
4x sin[(A− 1)∆]2

49(A− 1)2
. (5.23)
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For the above scenario, the system of equations in eq. (5.20) and eq. (5.21) reduces to the
following two equations-

√
2α sin(A∆)

3A
[cos(∆− δCP)− cos(∆− δ̄CP)] = x

sin[(A− 1)∆]

7(A− 1)
(5.24a)

cos(∆ + δCP)− cos(∆ + δ̄CP)

cos(∆− δCP)− cos(∆− δ̄CP)
=

sin[(A− 1)∆]

sin[(A+ 1)∆]

1 + A

A− 1
. (5.24b)

It is clear that, in vacuum (A→ 0), the only solution is x = 0 and δ̄CP = δCP ; on the other hand,
when the matter effect is non-negligible, it is possible to find solutions in which, for instance,
δCP = 0, π, while δ̄CP has a value that violates CP. This degeneracy is thus important and can
affect the CP coverage for DUNE, in which the long baseline increases the effect of the matter
potential. On the other hand, the θ23-δCP has almost no effect on T2HK for which A ∼ 0.
However, there is a way for DUNE to reduce the effect of such degeneracy. If the analysis is
performed using both appearance and disappearance data, the degenerate solution is valid only
if it solves also the two equations

Pµµ(θ23, δCP) = Pµµ(θ̄23, δ̄CP) (5.25)

P̄µµ(θ23, δCP) = P̄µµ(θ̄23, δ̄CP). (5.26)

This is unlikely to happen, since the disappearance probability has only a mild dependence on
the PMNS phase. Thus, when a full analysis is performed, the disappearance channel provides
an almost δCP -independent measurement of θ23 that breaks the degeneracy in the appearance
channel, which is now able to measure better the PMNS phase. There is an important exception:
when the true value of the atmospheric angle is around its maximal value, the matter effects
enhance the δCP dependence of the disappearance probability (see Fig. 5.4). In this case, it is no
longer possible to provide a δCP -independent measurement of θ23 and the appearance degeneracy
cannot be broken.
All the discussed effects are clearly shown in Fig. 5.5, where we show for DUNE and T2HK the
CP coverage as a function of θ23 in three cases:

• The dotted line has been obtained fixing the atmospheric angle in the fit to its true value;
in this case we know from external inputs which is exactly the value of θ23

• The dashed curve has been obtained marginalizing θ23 over its current 3σ allowed range
using only the appearance channel

• The solid curve shows the case in which in the marginalized fit, we include also the disap-
pearance channel.

In all simulations, the other mixing parameters have been fixed to their best fit values (shown
in Tab. 5.2). Firstly, the general decreasing tendency of the coverage when θ23 increases is
clear for both experiments. Looking at the single experiments, in the T2HK (JD) case, the
three blue lines almost overlap. This happens because, in absence of matter effects, neither
the marginalization nor the disappearance channel has any impact on the coverage, since in
this case the appearance channel alone completely drives the sensitivity. At DUNE, on the
other hand, the marginalization has an important role which can be drastically reduced by
the disappearance channel, through which, as already mentioned, it is possible to measure the
atmospheric angle precisely. However, around the maximal mixing, the disappearance channel
becomes less important for our purposes, since the measure of θ23 is now δCP dependent and
therefore we observe a dip in the coverage.
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sin2 θ12 sin2 θ23 sin2 θ13
∆m2

31 (eV2) ∆m2
21 (eV2) δCP Mass

×10−3 ×10−5 (◦) Ordering

0.303 0.455 0.0223 2.522 7.36 - 43 Normal
[0.263 : 0.345] [0.4 : 0.6] [0.0204 : 0.0244] [2.436 : 2.605] [6.93 : 7.93] [-175 : 139] (NO)

Table 5.2: The benchmark values of the oscillation parameters (refer to the second row) and their respective

3σ uncertain ranges (refer to the third row) from [113]. In our study, we only use the 3σ allowed range of sin2 θ23

when a marginalization is performed.
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Figure 5.5: CP coverage as a function of true sin2 θ23 assuming NO. The solid curves considers all possible con-

tributions from both appearance and disappearance channels in establishing the CP coverage when marginalized

over sin2 θ23 in our theory. The dashed curves are obtained by considering contribution from only the appearance

channel after marginalizing over sin2 θ23. The dotted curves correspond to CP coverage by fixing identical sin2 θ23

in both data and theory (fixed-parameter scenario). The curves red and blue are for DUNE and JD, respectively.

5.2.1 Reaching the 75% CP coverage milestone

In our simulations, in which we fix all the oscillation parameters to their best values and we
marginalize over the atmospheric angle only, it is clear from Fig. 5.5 that neither T2HK, nor
DUNE are able to reach 75% coverage using their nominal values for the systematics, the running
time and the exposure (Tab. 5.1). Moreover, it is possible to notice that the DUNE coverage
is always better than the JD one when we marginalize over the atmospheric angle and we use
also disappearance data, except for the θ23 values around 45◦. This is mainly due because of the
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lower appearance systematic uncertainties in DUNE (2%) with respect to T2HK (5%).
We can now ask ourselves what happens if we combine DUNE and T2HK data, or if we consider
also the possibility of the second T2HK detector in Korea (KD). We show in Fig. 5.6 the CP cov-
erage results as a function of the θ23 true value, considering the full appearance+disappearance
analysis in the marginalized case. We observe that the combination of at least two experi-
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Figure 5.6: Percentage of true δCP which can effectively establish CPV with a sensitivity of at least 3σ C.L. as

a function of true sin2 θ23. The curves represent the CP coverage when marginalizing over the uncertain range of

sin2 θ23 as mentioned in Table 5.2. The curves: red, blue, black, magenta, and orange are for DUNE, JD, DUNE

+ JD, JD + KD, and DUNE + JD + KD neutrino oscillation experiments, respectively. We assume true NO,

benchmark exposure, and the nominal run-time as mentioned in Table 5.1.

ments makes CP coverage for the entire canvas of sin2 θ23 above 75%. This points out that the
complementarity between DUNE and JD or JD and KD can help attain a better CP coverage
irrespective of the sin2 θ23 value in Nature. Thus, if we are concerned about only CP coverage,
there may be no remarkable advantages in adding a second detector to T2HK as DUNE + JD
attains a better CP coverage than JD + KD combined. In all the setups, there is a general trend
of CP coverage decreasing as we increase sin2 θ23 in our data; the reason for that can be found
in the behavior of the appearance asymmetry, as previously discussed. In the DUNE+JD case,
the 3σ CP coverage decreases from 82% to 77% when θ23 increases from 40◦ (sin2 θ23 = 0.4) to
60◦ (sin2 θ23 = 0.6), while in the JD+KD case it decreases from 80% to 76% for the same.
It is interesting to see if the complementarity between the two different experiments may allow
us to reach the coverage milestone also after a fraction of the running time or if the systematics
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are larger than those predicted by the collaborations. In Fig. 5.7, we show how the CP cov-
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Figure 5.7: The CP coverage as a function of scaled exposures assuming true NO for true sin2 θ23 = 0.45 (LO,

left panel), 0.5 (MM, middle panel), and 0.55 (HO, right panel). Here, we define scaled exposure as the ratio of

assumed exposure with the nominal exposure of each experiment. Thus, (chosen/nominal exposure) = 1 is the

benchmark exposure of the considered experiment. The solid curves are obtained by marginalizing over θ23 in

our theory. The curves: red, blue, black, magenta, and orange are for DUNE, JD, DUNE + JD, JD + KD, and

DUNE + JD + KD neutrino oscillation experiments, respectively.

erage is influenced by the change in total exposure of the experiments for sin2 θ23 = 0.45 (left
panel), 0.5 (middle panel), and 0.55 (right panel). The curves are shown for DUNE (red), JD
(blue), DUNE + JD (black), JD + KD (magenta), and DUNE + JD + KD (orange). We obtain
these by marginalizing the atmospheric angle. Looking first at the performances of the single
experiments, we observe that by keeping the true value for sin2 θ23 fixed in LO and doubling the
exposure from the nominal value of 2431 (480) kt·MW·yrs in JD (DUNE), the coverage increases
from 74% to 79% in DUNE and from 71% to 75% in JD. On the other hand, if the exposure is
reduced up to half the nominal value, the CP coverage drastically reduces for both experiments.
It is worth mentioning that DUNE has better performances than JD on comparing both the ex-
periments with their 70% of exposure. Even though going from LO to MM we observe a similar
trend of increasing CP coverage with exposure, the maximum reachable coverage is now reduced
(76% for DUNE, 72% for JD). Moreover, JD performs better than DUNE in this scenario at the
nominal exposures. This happens due to strong θ23− δCP degeneracy in DUNE near MM, which
results in the reduction of CP coverage as compared to JD. In the HO case, coverage worsens
further for JD (maximum coverage 70%), but not for DUNE, which now suffers less from the
θ23 − δCP degeneracy in the non-maximal case. We have checked that, following the previous
results, if we fix the value of sin2 θ23 then the DUNE performance considerably increases in MM,
while it slightly improves in the HO case. Coming back at our discussion about the comple-
mentarity between DUNE and T2HK (JD). we observe that the combination between the two
experiments datasets enhances our result to much more than 75% coverage even if we consider
half the exposure in both DUNE and JD for any value of θ23. As discussed earlier, the addition of
KD to JD also increases the CP coverage for any value of true sin2 θ23. Also, under the nominal
exposure, the combination of DUNE, JD, and KD achieves CP coverage always above ∼ 80%
irrespective of the values of θ23. On the other hand, in Fig. 5.8, we illustrate the effect of the
systematic uncertainties in the appearance channel for various setups on the CP coverage when
marginalized over sin2 θ23. It is clear that the JD curve has a steeper slope than the DUNE;
however, one must remember that the nominal uncertainties in JD (5%) are higher than that of
DUNE (2%). Recently the T2K collaboration [617] has been considering conservative uncertain-
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Figure 5.8: CP coverage as a function of scaled systematic uncertainties in νµ → νe assuming NO is portrayed

wherein, 1 represents the benchmark-systematic uncertainty for DUNE as 2% while for both JD and KD it refers

to 5%. In the left, middle, and right panels we show the CP coverage by considering true sin2 θ23 = 0.45 (LO),

0.5 (MM), and 0.55 (HO) when marginalized over the uncertain range of sin2 θ23 in our theory, respectively. The

curves: red, blue, black, magenta, and orange are for DUNE, JD, DUNE + JD, JD + KD, and DUNE + JD +

KD neutrino oscillation experiments, respectively. The blue colored filled and unfilled circles in the figure depict

the CP coverage corresponding to 2.7% and 4.9% systematic uncertainties, respectively.

ties in the νe appearance systematics of about 4.9%, which they further expect to improve to
about 2.7% by the time T2HK starts taking data [597]. These two possibilities have been shown
in Fig. 5.8 (refer to blue unfilled and filled circles). Thus, comparing now the CP coverage
obtained with the expected T2HK systematics of 2.7% (filled blue circles) and the nominal in
DUNE (2%), we observe that T2HK outperforms DUNE for all three possible choices of θ23. We
have also checked that in DUNE, the impact of the marginalization becomes negligible when
systematics are higher than 5%, so the scenario is completely systematics dominated. Thus even
if we consider half the nominal systematics (2.5%) for each value of the sin2 θ23 (true), DUNE
fails to reach the landmark of 75% CP coverage in both the MM and the HO cases, while JD
does (notice that, for equal systematics JD always has better performances than DUNE due to
its larger statistics). . If the real systematics turns out to be about 1.5 times higher than their
nominal values in both DUNE and T2HK experiments, combining them is the only option to
achieve 75% of CP coverage in all the three possible choices of θ23: 0.45, 0.5, and 0.55. Also,
with the second proposed detector KD, when included in the analysis, we achieve our goal easily
even if systematics are increased by a factor of 2.5 for all the three possible choices of θ23.
Another interesting factor to be taken into account is the fraction of total running time in which
the experiments run in antineutrino mode. For DUNE and T2HK, we find two completely dif-
ferent approaches. In DUNE, the collaboration proposes 5 years in neutrino and 5 years in
antineutrino modes. In this way we have a time-balanced running. However, being the antineu-
trino flux lower than the neutrino one, with this configuration we expect that the number of
DUNE events in neutrino mode will be much higher than the number of events in antineutrino
mode. The T2HK collaboration, on the other hand, proposes to run in antineutrino mode for
a time which is 3 times bigger than the neutrino mode running time (2.5+7.5 years). In this
way, being the antineutrino flux approximately 1/3 of the neutrino one, one expects roughly the
same number of neutrino and antineutrino events. We show this in Tab. 5.3 where we compute
the number of DUNE and T2HK events for different choices of θ23 and δCP . We also show here
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PPPPPPPPPExp.
Param.

θ23
δCP= 0◦ δCP = 90◦ δCP = −90◦

(νe, ν̄e, N µe
CP) (νe, ν̄e, N µe

CP) (νe, ν̄e, N µe
CP)

DUNE
40◦ 1274, 354, 0.56 965, 398, 0.41 1611, 270, 0.71
45◦ 1526, 417, 0.57 1213, 462, 0.44 1869, 332, 0.69
50◦ 1779, 480, 0.57 1471, 524, 0.47 2117, 396, 0.68

JD
40◦ 1242, 920, 0.14 875, 1191, -0.15 1622, 618, 0.45
45◦ 1489,1098, 0.15 1116, 1373, -0.1 1875, 790, 0.4
50◦ 1736, 1275, 0.15 1369, 1546, -0.06 2117, 972, 0.37

Table 5.3: Total νe appearance event rates in ν, ν̄ modes, and N µe
CP (see eq. (5.27)) for DUNE (JD) corre-

sponding to different sets for δCP : 0◦, 90◦,−90◦ and θ23 : 40◦, 45◦, and 50◦ are shown in the second (third) set

of rows, respectively.

the integrated asymmetry, namely

N µe
CP =

Nµe − N̄µe

Nµe + N̄µe

(5.27)

where Nµe (N̄µe) is the number of events in the neutrino (antineutrino) mode, with the aim of
demonstrating that also at the events number level the asymmetry decreases for high values of
the atmospheric angle.
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Figure 5.9: CP coverage as a function of ratio of the run-time in neutrino and antineutrino (ν : ν̄) modes. The

left, middle, and right panels represent CP coverage with true sin2 θ23 = 0.45 (LO), 0.5 (MM), and 0.55 (HO),

respectively. The dashed lines are obtained by considering identical sin2 θ23 in both data and theory, while the

solid lines show CP coverage when marginalized over θ23 in the theory. The curves: red, blue, black, magenta,

and orange are for DUNE, JD, DUNE + JD, JD + KD, and DUNE + JD + KD neutrino oscillation experiments,

respectively. The red and blue dots depict the CP coverage for nominal run-time in DUNE [5 ν + 5 ν̄] years and

T2HK [2.5 ν + 7.5 ν̄] years, respectively. We assume true NO.

In Fig. 5.9, we represent how the ratio between neutrino and antineutrino run-time affects
the coverage for all the considered setups and the usual three choices of sin2 θ23 (true) (LO, MM,
and HO). We distinctly show two possible scenarios: first by fixing the same set of oscillation
parameters in both data and theory (dashed curves) and second by marginalizing sin2 θ23 (solid
curves) in our theory and fixing all other parameters to our best-fit from Table 5.2. In the
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LO case, while the nominal choice for JD [2.5 + 7.5] turns out to be the best, DUNE has no
advantage of running in antineutrino mode. Instead, we observe that the best coverage (77%)
for DUNE is acquired when only neutrino mode is employed for the full 10 years of run-time.
The reason is simply due to the δCP independent measurement of sin2 θ23 by the disappearance
channel in LO. Once the atmospheric angle is constrained by disappearance, the appearance
channel benefits more from the increment in statistics by following [10 + 0] years instead of a
balanced number of neutrino and antineutrino events, because of the small DUNE systematics
(2%). In the maximal mixing case, the JD remains almost the same; contrastingly for DUNE,
the subdued abilities of the disappearance channel in the marginalized θ23 scenario are overcome
by the balanced run-time of [5 + 5] years, achieving the best coverage of 68%. While the HO
case is intermediate: the best coverage in DUNE is neither obtained by the balanced [5 + 5]
years nor with the highest number of events in [10 + 0] years, but the [6.5 + 3.5] years scenario.
This can be understood from our previous discussions. We observe that sin2 θ23 (true) = 0.55 is
still in the dip region (refer solid red in Fig. 5.5) but not completely, thus disappearance is not
able to constrain sin2 θ23 in the fit much and so we can see the effect of θ23 − δCP degeneracy
that requires both neutrino and antineutrino modes to resolve.
However, the complementarity between the experiments plays a crucial role irrespective of sin2 θ23
in Nature. On combining DUNE and JD or adding KD, the coverage becomes almost insensitive
of the choices in run-time and undisputedly reaches 75% in all the cases.

5.3 Complementarity and BSM: the Non-Unitarity case

So far we have discussed how the two future long baseline experiments may be used together
to perform the desired measurement of the CP-violating PMNS matrix phase. However, the
complementarity between DUNE and T2HK can be fundamental also in the context of BSM
models. We present here a detailed discussion about the capabilities of the future LBL in
constraining the full new physics parameters space in the Non-Unitarity case (see Sec. 3.4).
We already discussed how to parameterize a Non-Unitary PMNS matrix. One possibility consists
of factorizing the deviation from unitarity into a matrix α in such a way that the non-unitary
neutrino mixing matrix N is expressed as7:

N = (I + α)UPMNS , (5.28)

where the matrix α has a lower triangular structure and contains nine free parameters organized
as follows:

α =

 α11 0 0
|α21|eiϕ21 α22 0
|α31|eiϕ31 |α32|eiϕ32 α33

 . (5.29)

This parameterization simplifies the oscillation probabilities and let the parameter αij to be
the main source of non-unitarity for the oscillation channel νi → νj (i, j = e, µ, τ). Bounds on
the αij parameters have been recently computed, among others, in Ref. [551] and reported for
convenience in Table 5.4. These results have been obtained using data from the short-baseline
experiments NOMAD and NuTeV, and the long-baseline experiments MINOS/MINOS+, T2K,
and NOνA. For the off-diagonal Non-Unitarity Neutrino mixing (NUNM) parameters, the au-
thors also used the triangular inequalities8: αij ≤

√
1− (1 + αii)2

√
1− (1 + αjj)2 [253], which

7We choose the convention in which the matrix α, which invokes non-unitarity, is added to the identity
matrix. Note that other phenomenological studies adopt the relation N = (1−α)UPMNS [254]. Our results can
be compared to the others just changing the sign in front of the diagonal elements.

8Note that, in this model, the diagonal parameters can only be negative.
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α11 α22 α33 |α21| |α31| |α32|
< 0.031 < 0.005 < 0.110 < 0.013 < 0.033 < 0.009

Table 5.4: 90% confidence level (C.L.) limits on the NUNM parameters using data from various short-baseline

and long-baseline experiments, as obtained from the Ref. [551].

appear due to the assumption that the standard 3×3 active neutrino mixing matrix is a non-
unitary sub-matrix of a larger unitary mixing matrix. In the following discussion, we do not take
into account these inequalities with the aim of studying the capability of long-baseline experi-
ments in constraining NUNM parameters in a complete model-independent fashion. Taking into
account the expression in eq. (5.28), the complete effective neutrino propagation Hamiltonian in
the mass-eigenstate is:

H =
1

2Eν

 0 0 0
0 ∆m2

21 0
0 0 ∆m2

31

+N †

 ae + an 0 0
0 an 0
0 0 an

N

 . (5.30)

As usual, the matter potential parameters are given by ae = 2
√
2EνGFNe and an = −

√
2EνGFNn

where, Ne and Nn are the electron and the neutron number densities, respectively. Note that in
this framework, the neutral current (NC) matter potential is necessary since the non-unitarity
of the matrix N does not allow the subtraction of an identity matrix proportional to an. From
the Schroedinger equation, the transition probability at a given baseline L is obtained from the
following expression:

Pαβ = |(Ne−iHLN †)βα|2. (5.31)

The relevant probabilities for long-baseline experiments are the νµ → νe appearance and νµ → νµ
disappearance channels. In order to get approximate analytical expressions for the transition
probabilities, we observe that the vacuum approximation cannot be sufficiently precise in exper-
iments like DUNE, since the matter effects can modify the appearance probability up to about
10%. For this reason, we derive approximate analytical expressions in the presence of matter.
We use perturbation theory in the small expansion parameters (r, s, and a) defined as follows:

sin θ13 =
r√
2
, sin θ12 =

1√
3
(1 + s) , sin θ23 =

1√
2
(1 + a) , (5.32)

where, r, s, and a represent the deviation from the tri-bimaximal mixing values of the neutrino
mixing parameters, namely, sin θ13 = 0, sin θ23 = 1/

√
2, and sin θ12 = 1/

√
3 [618, 619]. Given

the recent global fit of neutrino oscillation data, we can assume that r, s, a ∼ O(0.1) and we can
expand them up to the second order [111–113, 620]. To further simplify the notation, we also
introduce ∆31 = ∆m2

31L/4Eν , ∆e = aeL/4Eν and ∆n = anL/4Eν ; at the DUNE peak energy,
namely, Eν = 2.5 GeV, ∆e ∼ 0.36 and ∆n ∼ 0.18, we can further expand in the small matter
potentials up to the first order. Note that for the other experimental facilities discussed in this
paper, this approximation is even better; in fact, for the Tokai to Hyper-Kamiokande (T2HK)
setup with a far detector in Japan (JD), at beam energy of Eν = 0.6 GeV, we have ∆e ∼ 0.08
and ∆n ∼ 0.04, while with a second in Korea (KD) at a distance of 1100 km from the source
with same energy, we get ∆e ∼ 0.30 and ∆n ∼ 0.15. Also, we use one mass scale dominance
(OMSD) approximation (∆31 >> ∆21, where ∆21 = ∆m2

21L/4Eν) in our derivation; this is a
valid approximation in the atmospheric regime (∆31 ∼ π/2).

98



In the case of the νµ → νe appearance probability, we thus obtain:

Pµe =

(
r2

∆31

)
sin∆31 [(∆31 + 2∆e) sin∆31 − 2∆31∆e cos∆31] +(

2|α31|r
∆31

)
∆n sin∆31 [cos(δCP − ϕ31) sin∆31 −∆31 cos(δCP +∆31 − ϕ31)] +( |α21|r

∆31

)
{sin∆31 [2∆31(∆e +∆n) cos(δCP +∆31 − ϕ21)−∆n sin(δCP −∆31 − ϕ21)] +

sin(δCP +∆31 − ϕ21) [(−2∆31 − 2∆e +∆n) sin∆31 + 2∆31∆e cos∆31]}+( |α21|α31|
∆31

)
∆n [−2∆31 sin(ϕ21 − ϕ31) + cos(2∆31 − ϕ21 + ϕ31)− cos(ϕ21 − ϕ31)] +( |α21|2

∆31

)
[∆31 −∆n(1− cos 2∆31)] . (5.33)

From the above expression, it is clear that the νµ → νe appearance probability strongly depends
on |α21| and |α31|. The parameter |α21| survives in the vacuum case while |α31| always appears
with the matter potential ∆n. This essentially means that an experiment in which the matter
effect is not negligible is able to put strong bounds also to |α31| which, otherwise, would not be
accessible by Pµe. Note that due to the loss of unitarity property of the neutrino mixing, some
terms remain non-zero in νµ → νe appearance probability expression even when the neutrino
propagation length L is zero, which is known as zero-distance effect:

PL=0
µe ∼ |α21|2 . (5.34)

So, it is clear that even the near detectors (ND) of long-baseline experiments could contribute to
the bounds of non-unitarity parameters. Finally, we point out that the vacuum limit of eq. (5.33)
assumes a particularly simple expression:

P vac
µe = |α21|2 + r2 sin2∆31 − 2|α21|r sin∆31 sin(δCP +∆31 − ϕ21) , (5.35)

which, in the limit of vanishing solar mass difference, agrees with the results presented in
Ref. [249].

In order to assess the modifications in the νµ → νe appearance probabilities caused by the
presence of non-unitary neutrino mixing, in Fig. 5.10, we show the exact νµ → νe appearance
probabilities as a function of energy. In the extreme left column, we consider a baseline of
1300 km for DUNE. In the middle column, we show the results for the JD baseline of 295 km.
In the extreme right column, we deal with the KD setup having a baseline of 1100 km. Note
that for both JD and KD, we consider the neutrino energy range of 0 to 1.5 GeV having a
peak around 0.6 GeV. In every rows, we switch-on one off-diagonal NUNM parameters at a
time, while maintaining the others to zero. The effect of |α21| is shown in the top panels, |α31|
in the middle panels, and |α32| in the bottom panels. In each panel, the solid black curves
correspond to the probabilities in the unitary neutrino mixing (UNM) case, while the colored
curves correspond to the NUNM cases with four benchmark values of the phases associated with
each off-diagonal NUNM parameters, as reported in the legend. As we can see, the impact of
the NUNM parameter |α21| (top panels) is comparatively larger than the other two off-diagonal
NUNM parameters |α31| and |α32| even though the strength of the |α21| is much smaller than
the other two. This feature is more clear for JD in the middle columns. In fact, from the
approximated analytical expression of νµ → νe appearance probability in Eqs. 5.33 and 5.35,
we see that only terms containing |α21| survive in vacuum, while the effect of |α31| and |α32| is
linked to ∆e and ∆n which are very small at the considered baseline. This is not the case for
DUNE (L ≃ 1300 km) where, given the largest baseline under consideration, ∆e and ∆n are no
longer negligible and the impact of |α31| and |α32| on Pµe is of the same order as |α21|.
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Figure 5.10: νµ → νe appearance probability as a function of energy in the presence of off-diagonal NUNM

parameters. Left, middle, and right columns correspond to the baselines of 1300 km (DUNE), 295 km (JD), and

1100 km (KD), respectively. The four colored curves correspond to four benchmark values of the phases associated

with off-diagonal NUNM parameters: 0◦, 90◦, 180◦, and −90◦. We consider δCP = 0◦ and sin2 θ23 = 0.5. The

values of the other oscillation parameters are taken from Table 5.2.

For the νµ → νµ disappearance channel, we get:

Pµµ = cos2∆31(1 + 4α22)− 2|α32|∆n sin 2∆31 cosϕ32 + 4a2 sin2∆31 +

2|α21|2 cos∆31 [2 sin∆31(∆e +∆n) + cos∆31] + 6α2
22 cos

2∆31 −
2|α21|r sin(2∆31)(∆e +∆n) cos(δCP − ϕ21) +(

8a

∆31

)
(α22 − α33)∆n sin∆31(sin∆31 −∆31 cos∆31)

−2|α21||α31|∆n sin 2∆31 cos(ϕ21 − ϕ31)− 8α22|α32|∆n sin 2∆31 cosϕ32

−2|α32|α33∆n sin 2∆31 cosϕ32 , (5.36)

from which we learn that all the NUNM parameters αij but α11 enter into the probability
expression. Also, in this case, we get the zero-distance expression of the νµ → νµ survival
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Figure 5.11: νµ → νµ disappearance probabilities as a function of neutrino energy in the presence of the

NUNM parameters α22 and |α32| assuming ϕ32 = 0 one at a time. Left, middle, and right columns correspond

to the baselines of 1300 km (DUNE), 295 km (JD), and 1100 km (KD), respectively. We consider δCP = 0◦ and

sin2 θ23 = 0.5. The values of the other oscillation parameters are taken from Table 5.2.

probability, given by:

PL=0
µµ ∼ 1 + 2|α21|2 + 6α2

22 + 4α22 , (5.37)

and the vacuum approximation (also in agreement with Ref. [249] in the limit of vanishing
∆m2

21):

P vac
µµ = cos2∆31

(
1 + 2|α21|2 + 4α22 + 6α2

22

)
+ 4a2 sin2∆31 . (5.38)

In Fig. 5.11, we show the exact νµ → νµ oscillation probabilities as a function of energy for the
baseline lengths corresponding to DUNE (left panel), JD (middle panel), and KD (right panel)
setups. In each panel, the black solid curves correspond to the UNM case, while the red and
blue curves show the presence of α22 and α32, respectively with strength reported in the legend9,
one at a time. The impact of these two NUNM parameters can be understood from our approx-
imated analytical expressions in eq. (5.36). When matter effects are negligible (for example, in
the middle panel of Fig. 5.11), we expect that the parameter α22 dominates the deviation from
UNM since it appears already at first order in Pµµ. This remains true when matter parameters
are switched-on; the relevant difference compared to the vacuum case relies on the fact that also
|α32| enter at first order, although suppressed by ∆n. Thus, we expect that for DUNE and KD,
one can see deviation from the UNM predictions, as visible in Fig. 5.11. Note that the impact
of α32 is amplified by the larger benchmark value compared to the choice for α22.
At the number of events level, we summarize for some benchmark values of the NUNM parame-
ters the expected rates at DUNE, JD and KD, considering for DUNE a running time of 3.5+3.5
years in Tabs. 5.5 and 5.6. The impact of NUNM parameters on the number of events is fully
in agreement with our analytical discussions. First of all, as shown in eq. (5.33), the appearance
channel is mainly influenced by |α21|, even in vacuum. This reflects in an enhancement of the
number of events by roughly 5% in both JD and DUNE. On the other hand, the NUNM param-
eters |α31| and α33 are also relevant but they are coupled to the matter potentials, so we expect

9Even though the analytical expression of Pµµ reported in eq. (5.36) shows the presence of other NUNM
parameters, we have numerically checked that they do not have any significant impact.
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νe appearance ν̄e appearance
DUNE JD KD DUNE JD KD

UNM 1259 1836 169 221 767 31

NUNM DUNE JD KD DUNE JD KD

|α21| (= 0.025) 1328 1893 169 232 756 29
|α31| (= 0.1) 1420 1893 187 264 754 30
|α32| (= 0.25) 1300 1855 172 213 756 30
α11 (= -0.02) 1203 1761 162 214 738 29
α22 (= -0.015) 1223 1782 164 215 744 30
α33 (= -0.15) 1208 1817 168 227 779 30

Table 5.5: Comparison of the total signal rate for the νe and ν̄e appearance channels in DUNE, JD, and KD

setups in UNM case as well as in presence of various NUNM parameters. The relevant features of these facilities

are given in Table 5.1. The values of the standard oscillation parameters used to calculate event rate are quoted

in Table 5.2. The phases associated with the off-diagonal NUNM parameters are considered to be zero.

νµ disappearance ν̄µ disappearance
DUNE JD KD DUNE JD KD

UNM 10359 9064 1266 6034 8625 1144

NUNM DUNE JD KD DUNE JD KD

|α21| (= 0.025) 10371 9074 1264 6045 8640 1149
|α31| (= 0.1) 10351 9062 1261 6035 8627 1168
|α32| (= 0.25) 10978 9203 1255 6005 8467 1158
α11 (= -0.02) 10359 9064 1266 6034 8625 1145
α22 (= -0.015) 9748 8531 1192 5681 8120 1077
α33 (= -0.15) 10406 9077 1268 6040 8619 1145

Table 5.6: Comparison of the total signal rate for the νµ and ν̄µ disappearance channels in DUNE, JD, and KD

setups in UNM case as well as in presence of various NUNM parameters. The relevant features of these facilities

are given in Table 5.1. The values of the standard oscillation parameters used to calculate event rate are quoted

in Table 5.2. The phases associated with the off-diagonal NUNM parameters are considered to be zero.

them to be relevant primarily for DUNE, where matter effects are more important: in fact, |α31|
causes an increase in the number of events up to 10%, while α33 provokes a small but visible
reduction of the order of 4%. Finally, some impact on the number of signal events is also given
by α11, even though it only appears at higher orders in our perturbative expansion and has not
been displayed (but it present in the vacuum probabilities reported in Ref. [249]). Note that
the number of νe and ν̄e events in KD is only slightly influenced by the NUNM parameters due
to fact that the experiment works close to the second oscillation maximum of the atmospheric
oscillation (νµ → ντ ), where the νµ → νe appearance probability approached one of its minima
and the effects of new physics are suppressed.
For the disappearance channel, the parameter α22, which enters at the first perturbative order
in eq. (5.36), produces a reduction of about 6% in the number of events for all three detec-
tors. This can be roughly understood from the fact that the standard disappearance probability
is multiplied by 4α22 = 0.06, which causes a reduction by a similar factor in the number of
events. The other relevant NUNM parameter is |α32| which, being coupled to matter potential
in eq. (5.36), can cause a ∼ 6% increase of events especially in DUNE. The other parameters at
their benchmark values only have a negligible impact on the number of disappearance events.
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5.3.1 Constraining all the NUNM parameters at the Far Detectors

In this subsection, we present our numerical results showing the expected constraints on the six
NUNM parameters (αij) that DUNE, JD, KD, and JD+KD setups can place. We study the
NUNM parameters by fixing the mixing angles θ12, θ13, and two mass-squared differences ∆m2

21,
and ∆m2

31 both in data and theory at their best fit values as given in Table 5.2. We check that the
marginalization over the atmospheric mass-squared difference ∆m2

31 does not have any significant
effect on our analysis. On the other hand, the only notable effect of the marginalization over
the reactor mixing angle θ13 (which has a very small experimental uncertainty of 3%), is the
worsening of the α11 bound at the level of 15%. This is due to the fact that there is a correlation
between these two parameters, which appear in a term proportional to α2

11 sin
2 2θ13 in the νµ → νe

transition probability as shown in Ref. [249]. Finally, we marginalized θ23 in its current 3σ allowed
range [113], which is approximately [40◦, 50◦] and the CP phase δCP in its entire possible range
[−180◦, 180◦]. We keep both these parameters with true values as in Table 5.2. Moreover, we
consider one NUNM parameter at a time, i.e., when a parameter is taken into account the
others are considered to be zero. Finally, the phases associated with each off-diagonal NUNM
parameters are marginalized over the entire possible range from −180◦ to 180◦. The statistical
significance with which we can constrain the NUNM parameters (αij) in a given experiment is
defined as

∆χ2 = min
(θ23, δCP, ϕij , λ1, λ2)

[
χ2(αij ̸= 0)− χ2(αij = 0)

]
, (5.39)

where, χ2(αij ̸= 0) and χ2(αij = 0) are calculated by fitting the prospective data assuming
NUNM (αij ̸= 0) and UNM (αij = 0). Note that χ2(αij = 0) ≈ 0 because the statistical fluctu-
ations are suppressed to obtain the median sensitivity of a given experiment in the frequentist
approach [621]. While estimating the constraints, we marginalize over the most uncertain oscil-
lation parameters (θ23, δCP) and the phases associated with the off-diagonal NUNM parameters
(ϕij) in the fit. We also minimize over the systematic pulls on signal (λ1) and background (λ2).

In Fig. 5.12, we plot the ∆χ2 function for the six NUNM parameters analyzed in our paper
considering only the far detectors in a given setup. Upper (lower) panels show the results for the
diagonal (off-diagonal) NUNM parameters. The red curves in each panel refer to the sensitivities
obtained for the DUNE setup considering a total of 336 kt-MW-yrs exposure, corresponding to
a total 7 years of data collection with equal run-time in neutrino and antineutrino modes. The
green curves show the results for JD for which we consider a total exposure of 2431 kt-MW-
yrs with 10 years of total run-time (2.5 years in neutrino mode and 7.5 years in antineutrino
mode). The magenta curves correspond to KD assuming the same exposure. We also estimate
the results for JD+KD as shown by the blue curves. From the upper left panel, we observe
that DUNE and JD+KD place similar constraints on α11. The sensitivity to this parameter
comes from two contributions: the intrinsic νe beam contamination disappearance background
and the νe appearance. For both contribuiting channels, DUNE has better systematics and
JD+KD more statistics. As a result, limits on α11 are found to be almost the same for the
two setups. However, for α22 (upper middle panel), JD+KD has significantly better sensitivity
compared to DUNE setup. This is because α22 is mainly constrained by the disappearance
channels, which due to the large statistics, is primarily limited by the systematic uncertainties.
Since the normalization error for this channel is 3.5% (5%) for JD+KD (DUNE), it is clear
that JD+KD can put better limit than DUNE. We have checked that if we consider the same
amount of systematic uncertainties for both the setups, DUNE shows slightly better sensitivity
than T2HKK. For |α21|, DUNE and JD+KD have comparable sensitivities (see lower left panel).
The slightly better limit on |α21| achieved in the case of JD+KD as compared to DUNE, is due
to the fact that JD+KD has larger statistics in the appearance channels. For the other three
parameters |α31|, |α32| and α33, which enter the νµ → νe appearance channel through matter
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Figure 5.12: Expected limits on the NUNM parameters from DUNE (red curves), JD (green curves), KD

(magenta curves), and JD+KD (blue curves). The upper (lower) panels are for the diagonal (off-diagonal) NUNM

parameters one at a time. True values of θ23 and δCP are 45◦ and − 90◦, respectively. For the diagonal NUNM

parameters, we marginalize over θ23 in the range [40◦, 50◦] and δCP in the range [−180◦, 180◦] in the fit. For the

off-diagonal NUNM parameters, apart from θ23 and δCP, we also marginalize over the associated NUNM phases

in the range of −180◦ to 180◦.

parameters ∆e and ∆n (see eq. (5.33)), DUNE outperforms JD+KD setups because of its large
matter effects.

DUNE JD KD JD+KD JD+KD+DUNE T2K+NOνA
α11 [-0.020, 0.020] [-0.025, 0.025] [-0.040, 0.040] [-0.022, 0.022] [-0.017, 0.017] [-0.06, 0.06]
α22 [-0.014, 0.014] [-0.0087, 0.0087] [-0.013, 0.013] [-0.007, 0.007] [-0.006, 0.006] [-0.02, 0.02]
α33 [-0.2, 0.17] < 0.6 < 0.63 < 0.476 [-0.17, 0.17] < 0.64
|α21| < 0.022 < 0.015 < 0.10 < 0.016 < 0.012 < 0.06
|α31| < 0.15 < 0.48 < 0.70 < 0.34 < 0.11 < 2.20
|α32| < 0.33 < 1.2 < 0.85 < 0.71 < 0.27 < 1.4

Table 5.7: Bounds on the NUNM parameters at 90% C.L. (1 d.o.f.) using DUNE (second column), JD (third

column), KD (fourth column), and JD+KD (fifth column). Sixth column shows the results for the combination

of DUNE and JD+KD. Last column depicts results using the full exposure of T2K and NOνA.

We summarize our results in Table 5.7, where we give the bounds on the six NUNM parame-
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Parameter DUNE (3.5 yrs+3.5 yrs) DUNE (5 yrs+5 yrs)
α11 [-0.020, 0.020] [-0.020, 0.018]
α22 [-0.014, 0.014] [-0.013, 0.013]
α33 [-0.2, 0.17] [-0.19, 0.15]
|α21| < 0.022 < 0.016
|α31| < 0.15 < 0.12
|α32| < 0.33 < 0.31

Table 5.8: 90% C.L. (1 d.o.f.) limits on the NUNM parameters considering two different exposures of DUNE:

total run-time of 7 years (see second column) and 10 years (see third column) equally divided in neutrino and

antineutrino modes.

ters at 90% C.L. for the various long-baseline experimental setups discussed so far. As clear from
our previous discussion, the expected constraints on NUNM parameters from DUNE is better
than the other two experiments JD and KD (and their combination) except for the parameters
α22 and |α21|, where JD has better sensitivity than DUNE. Finally, in the sixth column of the
Table, we give the final constraints on the NUNM parameters by combining the expected re-
sults from DUNE and JD+KD setups. As we have anticipated, the bounds experience a general
improvements by ∼ 20%, with the precise magnitude depending on the parameter under consid-
eration. For a comparison with the ongoing long-baseline experiments, we also add the expected
constraints from the combination of the T2K and NOνA setup in the last column. For T2K, we
consider a total exposure of 84.4 kt-MW-yrs with 22.5 kt detector mass, 750 kW proton beam
power, 5 years run-time (2.5 years each for neutrino and antineutrino mode). For NOνA, the
considered exposure is 58.8 kt-MW-yrs with 14 kt detector mass, 700 kW proton beam power,
and 6 years for total run-time (3 years each for neutrino and antineutrino modes). Also, due to
the limited statistics, we observe that the expected constraints from T2K+NOνA setup is worse
than the DUNE or JD+KD setup.

Note that the if some information coming from Near Detector measurements (e.g. the initial
neutrino flux) are used to analyze Far Detector data, constraints on α22 and α11 could be
deteriorated (see Sec. 5.3.2). However, our approach in which the far detector data alone are
considered, is in principle valid also for the diagonal parameters α11 and α22 if the initial fluxes of
both experiments can be determined without relying on the ND data. For instance, theoretical
data and simulations could be used to predict the neutrino flux. Moreover, as it happened for the
flux determination at MINOS/MINOS+, one could obtain the neutrino flux using only hadronic
data, which are not affected by oscillations [622]. In such cases, the systematic uncertainties
used in our simulations may be too optimistic. Nevertheless, we verified that for α22 and α11 our
bounds are mostly dictated by systematics; hence, for example, a doubling of the systematics
will roughly cause a doubling of the upper limits. We compare now our results summarized
in Table 5.7 with the bounds reported in Table 5.410. We observe that the bound we achieve
from the DUNE+JD+KD (DUNE+T2HKK) setup for the diagonal α11 is ∼ 80% better than
the bound quoted in Ref. [551]. In the α22 case, the two results are comparable, with a slightly
better limit when the global neutrino data analysis is performed. For the remaining diagonal
parameter α33, NC data from MINOS/MINOS+ give a 60% stronger bound [551] compared
to the one expected from the DUNE+JD+KD setup. As for α21, the authors of the Ref. [551]
make use of the triangular inequality as well as the data from the short-baseline experiments; this
allows to constrain the mentioned parameter very tightly. However, due to the large statistics
and good systematics of DUNE and JD+KD setups, we can achieve an almost similar bound

10In order to get their results, the authors of Ref. [253] left free the standard oscillation parameters θ23, δCP,
and ∆m2

31 and the NUNM parameters α11, α21, α22. Conversely, in our work we marginalize over δCP and θ23
only, but we have checked that the marginalization over ∆m2

31 does not have any significant impact.
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Parameter Other αij’s zero Other αij’s free
α11 [-0.017, 0.017] [-0.02, 0.02]
α22 [-0.006, 0.006] [-0.006, 0.006]
α33 [-0.20, 0.17] [-0.35, 0.33]
|α21| < 0.012 < 0.017
|α31| < 0.11 < 0.18
|α32| < 0.27 < 0.40

Table 5.9: 90% C.L.(1 d.o.f.) limits on various NUNM parameters. Second column shows the constraints

considering only one NUNM parameter at a time, while other NUNM parameters are assumed to be zero in the

fit. Third column depicts the bounds on a given NUNM parameter when all other NUNM parameters and the

phases associated with the off-diagonal parameters are kept free in the fit. True values of the standard oscillation

parameters are taken from Table 5.2. We marginalize over θ23 and δCP in the fit (see text for details).

without using any external hypothesis on the relations between the αij. On the other hand,
constraints on α31 and α32 in Table 5.4 are substantially better than the ones we obtain from
DUNE+JD+KD setup. Also, in these cases, the triangular inequalities which link them to the
diagonal NUNM parameters play an important role, together with the short-baseline experiments
limits on the ντ appearance. However, it is important to stress that all our results are obtained
in a complete model independent fashion, relying only on the expected data from DUNE and
T2HKK. We checked that for our best setup, namely DUNE+T2HKK, the only bound which
would benefit using the inequalities in a considerable way is the |α32|, but only if the near detector
normalization is not taken into account. The poor limits obtained for α33 and the already strong
ones for |α21| do not allow improvements for the other parameter’s bounds.

As already pointed out in the previous subsection in the context of the CP coverage, the
DUNE collaboration [574] exploited the possibility of increasing the exposure of the experiment
from 336 kt-MW-yrs to 480 kt-MW-yrs (corresponding to an increase of the data taking time
from 7 years to 10 years with 5 years in neutrino mode and 5 years in antineutrino mode). In
Table 5.8, we compare our previous constraints from the DUNE experiment, Table 5.7, with those
obtained in the (5 + 5) years configuration. We observe that the constraints on all six NUNM
parameters improve by small amount except for |α21|, which shows a significant improvement.
This happens because the higher run-time increases statistics of the νµ → νe appearance channel,
which is the one driving the α21 sensitivity. On the other hand, the νµ → νµ disappearance
channel is almost already saturated by systematics after 3.5 years + 3.5 years of running. This
leads to only small improvements on the other NUNM parameters sensitivities.
For sake of completeness, we show in Tab. 5.9 the limits that the combination of DUNE, JD
and KD would be able to put if a full marginalization over the NUNM parameter space is
performed. It is clear that the three most constrained parameters α11, α22 and |α21| do not
suffer much the marginalization, while the bounds on the other three are considerably worsened.
This happens because in νµ disappearance and νe appearance channels, |α31|, |α32| and α33 often
appear multiplied to other NUNM parameters.
Our discussion on the Non-Unitarity has a very important outcome: DUNE and T2HK, in this
context, have very different performances: T2HK can put stringent bounds, due to the higher
statistics, to the parameters which affect the most the probabilities, namely α22 and |α21|. On
the other hand, DUNE, should be able to bound the other parameters due to the matter effects.
This means that with the combination of the two experiments dataset, we may be able for the
first time a full model independent set of bounds on all the NUNM parameters.
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5.3.2 NUNM and the Near Detectors

Near detectors (ND), as already widely discussed in Ch. 4 are a fundamental component for long-
baseline neutrino experiments. Indeed, a detector placed very close to the beam source (from
hundreds of meters to a few kilometers) is able to monitor the neutrino beam, measuring the
flavor composition, and the total number of neutrinos emitted from the source. Near detectors
are not expected to improve any of the standard oscillation parameter measurements, since at
such short distances, oscillations do not develop for neutrinos with energies in the GeV range.
However, in some new physics scenarios, in which, oscillation probabilities contain zero-distance
terms, near detectors can be used to constrain non-standard parameters in a very straightforward
way. This is the case of the non-unitarity framework under discussion where, as already pointed
out, at vanishing distances we have zero-distance terms in case νµ → νe appearance channel:
PL=0
µe ∼ |α21|2, and νµ → νµ disappearance channel: PL=0

µµ ∼ 1+ 2|α21|2 +6α2
22 +4α22 . Thus, we

can expect that T2HKK and DUNE near detectors would be able to constrain two parameters
|α21| and α22 from νµ → νe appearance and νµ → νµ disappearance channel, respectively, but
also α11 considering the νe beam contamination, since it can be showed that [18]

PL=0
ee ∼ 1 + 4α11 + 6α2

11 . (5.40)

So, in this section, we analytically infer the order of magnitude of bounds implied by ND
measurements. Let us consider the total number of events of a given channel as [20]:

N = N0Pαβ(αij) , (5.41)

where, the normalization factorN0 includes all the detector properties. For an oscillation channel
να → νβ, N0 can be defined as (see Ch. 5.1):

N0 =

∫
Eν

dEν σβ(Eν)
dϕα

dEν

(Eν) εβ(Eν) , (5.42)

where, σβ denotes the production cross-section of the β lepton, εβ represents the detector effi-
ciency, and ϕα stands for the initial neutrino flux of flavor α. If we want to put bounds on new
physics parameters, we can use a simple χ2 test with a gaussian χ2 defined as

χ2 =
(Nobs −Nfit)

2

σ2
, (5.43)

where, σ represents the uncertainty on the number of events; in this case, neglecting the back-
grounds, we get:

χ2 =
N2

0

σ2

[
δαβ − Pαβ(α

fit
ij )
]2
. (5.44)

For the νµ → νµ disappearance channel, the leading term of the probability is PL=0
µµ = 1+ 4α22.

Therefore, the χ2 assumes the form:

χ2 =
16N2

0α
2
22

σ2
. (5.45)

At a chosen confidence level, represented by a cut at χ2
0, it is possible to exclude the region

satisfying:

|α22| >
√
χ2
0σ

4N0

. (5.46)

Since the disappearance channel is expected to produce a huge number of events at the near
detector, one can consider the uncertainty to be dominated by systematic errors σsys. Thus, it
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α11 α22

Expt. w/o norm w/ norm w/o norm w/ norm

DUNE [-0.02, 0.02] [-0.043, 0.034] [−0.014, 0.014] [-0.036, 0.048]

JD+KD [−0.022, 0.022] [-0.048, 0.040] [−0.007, 0.007] [-0.038, 0.050]

DUNE+JD+KD [−0.017, 0.017] [-0.036, 0.026] [−0.006, 0.006] [-0.026, 0.039]

Table 5.10: 90% C.L. (1 d.o.f.) limits on the NUNM parameters α11 and α22 for the two setups, DUNE,

JD+KD, and combination of them. Second and fourth column correspond to the constraints assuming only

far detector. Third and fifth columns correspond to the constraints using the FD and ND correlation (or with

normalization factor in the probability).
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Figure 5.13: Upper panels show the improvements in the sensitivities to α11, α22, and |α21| due to the presence

of 67 tons LArTPC near detector placed at distance of 574 meters from the neutrino source for DUNE. Lower

panels portray the same for JD+KD having a 1 kt water Cherenkov near detector placed at a distance of 1 km

from J-PARC. The blue curves show the performance with only near detectors. The red curves represent the

combined sensitivities due to both near and far detectors. True values of the standard oscillation parameters are

taken from Table 5.2. We obtain our resultsamount of non-unitarity is even marginalizing over δCP in the range

[−180◦, 180◦] and θ23 in the range [40◦, 50◦] in the fit. We also marginalize over the associated phase ϕ21 in the

range [−180◦, 180◦] for the off-diagonal NUNM parameter |α21|.

is possible to approximate σ ∼ N0σsys, where N0 represents the number of events in absence of
zero-distance effects, being the disappearance probability in that case equal to 1. This allows to
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simplify eq. (5.46) as follows:

|α22| >
√
χ2
0σsys
4

, (5.47)

which tells us that, neglecting backgrounds effects, the near detector limits would be of the order
of the chosen systematic uncertainty. A similar approach can be used for the νe → νe oscillation
channel, which arises from the νe beam contamination, obtaining an inequality for |α11| of the
similar form:

|α11| >
√
χ2
0σ

νe
sys

4
, (5.48)

where σνe
sys refers to the systematic uncertainty on the νe → νe transition.

For the appearance channel, the zero-distance probability reads PL=0
µe = |α21|2; the χ2 function

can therefore be written as:

χ2 =
N2

0 |α21|4
σ2

, (5.49)

and the excluded region is expected to be determined by the following relation:

|α21| < 4

√
χ2
0σ

2

N2
0

. (5.50)

Since the number of events at the near detector is in principle very small (being only caused
by new physics), the uncertainty is dominated by statistics. Thus, given a certain number of
observed events, σ ∼ √

Nobs and the excluded values of |α21| reduced to:

|α21| < 4

√
χ2
0Nobs

N2
0

, (5.51)

suggesting that the bounds are very sensitive to the number of events and to the running time
of the experiment.

Both DUNE and T2HKK, as discussed previously, will have near detectors [157, 623, 624]
which may play a crucial role to probe various new physics scenarios including the possibility
of non-unitarity of the PMNS matrix which is the main thrust of this work. In our analysis, for
DUNE, we consider a 67 tons LArTPC near detector placed at a baseline of 574 meters from
Fermilab [157]. For JD+KD, we consider a 1 kt water Cherenkov near detector located at a
baseline of 1 km from J-PARC which is known as IWCD [625, 626]. In order to simulate their
responses, we scale the far detector fluxes for ND baselines and take into account their fiducial
masses. We follow a very conservative approach as far as the systematic uncertainties at the
near detectors are concerned. We multiply the FD systematic uncertainties by a factor of three
and consider them as inputs for the ND. In DUNE near detector, we expect O(107) νµ and ν̄µ
events, which provide bounds on α22. DUNE can place stringent constraints on α11 and α21 using
O(106) νe and ν̄e events at ND, which stem from both intrinsic νe (ν̄e) beam contamination and
via νµ → νe (ν̄µ → ν̄e) appearance caused due to zero-distance effect. For the NDs, we consider
their appropriate baselines, fiducial masses, and systematic uncertainties which we assume to be
larger than the systematic uncertainties considered for the FDs.

Before discussing the limits that the Near Detectors could be able to set using their own data,
we want to quantify the effect of the ND flux measurements on the Far Detector constraints.
Indeed, if the initial neutrino flux is monitored at the near site and then extrapolated to the far
site, the probability which could be inferred at the FD is the effective probability defined as

P eff
αβ =

Pαβ

PL=0
αα

. (5.52)
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Parameter DUNE (ND) DUNE (FD+ND) JD+KD (IWCD) JD+KD (FD+IWCD)
α11 [-0.020, 0.024] [-0.043, 0.034] [-0.029, 0.033] [-0.048, 0.040]
α22 [-0.033, 0.037] [-0.036, 0.048] [-0.019, 0.020] [-0.038, 0.050]
|α21| < 0.007 < 0.022 < 0.01 < 0.015

Table 5.11: 90% C.L. (1 d.o.f.) bounds on the NUNM parameters α11, α22, and |α21| obtained with and

without near detectors in DUNE and JD+KD. Note that IWCD is the near detector for JD+KD setup.

The PL=0
αα term that appears in the denominator is the initial flavor neutrino survival probability

at the source or the zero-distance term which acts as a normalization factor. If we normalize
the νµ → νµ survival probability at the far detector using the zero-distance term in eq. (5.37),
it is observed that the contribution from α22 gets canceled at the leading order. As a result,
sensitivity to the parameter α22 is worsened for a given setup. The same happens for α11,
whose contribution in the effective νe → νe disappearance probability is canceled at the leading
order (see [18]). Since the sensitivity to such parameter arises partially due to the intrinsic νe
that we have in the beam to begin with, the near detector normalization causes a deterioration
of α11 limits. In Table 5.10, we show how the constraints on α11 and α22 would be modified
when taking into account the FD and ND correlation for the three setups DUNE, JD+KD, and
DUNE+JD+KD. We observe that the bound on α11 is increased by a factor of almost two when
we consider the correlation between the FD and ND. For α22, the bound is deteriorated at least
three times compared to the FD case only. We have checked that no other NUNM parameter
is affected significantly if we consider the FD and ND correlation. Indeed, the non-diagonal
parameters and α33 can be constrained using appearance channels (for which we do not have
full cancellations in the effective probabilities) or using the interplay with matter effects, which
are not developed at the near site.

The bounds obtained using the above-mentioned near detectors are shown in Fig. 5.13 for
DUNE and T2HKK together with the results we got using the far detectors data with effective
probabilities. For α11, the two near detectors can put by themselves bounds better than the one
set by the FDs considering the ND normalizations due to the very high statistics and the strong
α11 dependence of the zero-distance probability. The improvement is roughly a factor of two for
DUNE and 60% for T2HKK (see Table 5.11). Note that the obtained limits are in agreement
with the predictions deduced from eq. (5.48), once we insert a normalization uncertainty of 6%
(15%) for DUNE (JD+KD).

For the second diagonal parameter α22 we can observe a similar situation, in which the
ND alone can put more stringent bounds than the Far Detector when the normalization is
considered, despite of the increased systematics. The improvement can be quantified as rougly
25% in DUNE and a factor of two in T2HKK. Once again, the analytical predictions from
eq. (5.48) are sufficiently recovered by the numerical simulations, considering that the near
detectors normalization systematics are 15% for DUNE and 10.5% for T2HKK. Notice that the
bounds that the far detector alone could set if the near detector data are not taken into account
would be considerably better than the near detector ones.

Finally, for the NUNM parameter |α21| the near detectors bounds are considerably better
than the far detector ones, thanks to the zero-distance effect outlined in eq. (5.34). In particular,
the limits are ∼ 3 times smaller than the one set by the far detector in the DUNE facility and
∼ 70% smaller in the case of T2HKK. Considering a number of observed events of O(10), and
taking into account that we expect N0 ∼ 106 per year [157], our analytic estimate for |α21| is
comparable with the numerical results.
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5.3.3 NUNM and ντ appearance in DUNE

It has been recently pointed out the possibility of collecting a ντ sample at the DUNE experiment,
considering that the high energy tail of the neutrino flux should overcome the τ lepton production
threshold. In presence of Non-Unitarity, also the ντ appearance probability is modified. In
particular we have that, using the expansion already described in this section, the probability
reads

Pµτ = sin2∆31

(
1 + 2α22 + 2α33 − 4a2 + α2

22 + α2
33 + 4α22α33

)
+

|α32| sin 2∆13 [2∆n cosϕ32 − sinϕ32] +(
r2

∆31

)
sin(∆31) [2∆31∆e cos∆31 − sin∆31(∆31 + 2∆e)] +(

2

∆31

)(
|α21|2 + |α31|2

)
∆n sin∆31 [sin∆31 −∆31 cos∆31] +( |α32|2

∆31

)[
∆n sin 2ϕ32(sin 2∆31 − 2∆31 cos 2∆31) + ∆31 cos

2∆13

]
+(

2|α21|r
∆31

)
sin∆31 [sin∆31 cos(δCP − ϕ21)(∆31 +∆e −∆n)−∆31∆e cos(δCP +∆31 − ϕ21)+

∆31∆n cos(δCP −∆31 − ϕ21)] +(
2|α31|r
∆31

)
[sin∆31(sin∆31 cos(δCP − ϕ31)(∆31 +∆e −∆n)−∆31∆e cos(δCP −∆31 − ϕ31)+

∆31∆n cos(δCP +∆31 − ϕ31)] +

(
8a

∆31

)
(α22 − α33)∆n sin∆31(∆31 cos∆31 − sin∆31) +

4a|α32| sin2∆31 cosϕ32 +(
2|α21||α31|

∆31

)
sin∆31 [2∆31(∆e +∆n) cos(∆31 − ϕ21 + ϕ31) + 2∆n sin∆31 cos(ϕ21 − ϕ31)−

∆31 sin(∆31 − ϕ21 + ϕ31)] +

4α22|α32| sin∆31

(
∆n cosϕ32(sin∆31 + 2∆31 cos∆31)

∆31

− cos∆31 sinϕ32

)
+

−
(
2|α32|α33

∆31

)
sin∆31 [2∆n cosϕ32(sin∆31 − 3∆31 cos∆31) + ∆31 cos∆31 sinϕ32] . (5.53)

This rather complicated equation, depends at the leading order, without the matter coupling,
on the ”third generation” parameters α33 and |α32|. Since these parameters are only weakly
constrained by the DUNE experiment using the νµ disappearance and the νe appearance chan-
nels, we may wonder if the inclusion of the ντ appearance could improve the already discussed
NUNM bounds. In fact, introducing the ντ channel as discussed in Sec. 4.1.4, we obtain the
results shown in Fig. 5.14. It turns out that the allowed range of α33, which appears only at
the second order in the probability, is reduced of ∼ 13% by the inclusion of the new oscillation
channel, and the new limits are set into the range [-0.16, 0.15] (see Table 5.12). On the other
hand, the sensitivity to |α32|, which impacts linearly the ντ appearance probability, is signifi-
cantly improved: in this case, the new upper bound is roughly 60% smaller than the one set by
the standard oscillation channels, namely |α32| < 0.19.

5.3.4 NUNM and the δCP determination

It is well known that the Non-Unitarity model, as well as most of the BSM models that affects
neutrino oscillations, introduces new phases in the probabilities. This can affect the measurement
of δCP . Let us consider, for instance, the νe appearance probability in eq. (5.33). The dominant
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Figure 5.14: Comparison between the DUNE sensitivities on |α32| (left panel) and α33 (right panel) when

ντ appearance channel is included in the analysis (red lines) and the case where no τ events are analyzed (blue

lines). True values of the standard oscillation parameters are taken from Table 5.2. All results have been obtained

marginalizing over δCP in the range [−180◦, 180◦] and θ23 in the range [40◦, 50◦]. For |α32| (left panel), we also

marginalize over ϕ32 in the range [−180◦, 180◦].

Parameter w/o ντ appearance w/ ντ appearance
α33 [-0.2, 0.17] [-0.16, 0.15]
|α32| < 0.33 < 0.19

Table 5.12: 90% C.L. limits on the NUNM parameters α33 and |α32| from the DUNE setup. Second (third)

column shows the results without (with) τ in the analysis.

term which contains a non-standard phase is

−2|α21|r sin∆31 sin(δCP − ϕ21 +∆31). (5.54)

In the hypothesis of a non-vanishing |α21| this term can contribute to the total asymmetry; this
contribution will be proportional to sin(δCP − ϕ21) and for different values of the new phase
can affect the sensitivity of a given experiment to δCP

11. Not only, this term also changes the
precision that an experiment may achieve. If we sit at around the first oscillation maximum,
namely ∆31 = π/2 + ϵ, we can study the derivative of this term, which will give information of
its contribution to the reachable uncertainty on the standard CP-violating phase. We obtain,
expanding in ϵ and neglecting O(ϵ2) terms

2|α21|r[ϵ cos(δCP − ϕ21)− sin(δCP − ϕ21)]. (5.55)

This show us that both modulus and phase of α21 affect the precision we can reach with a given
experiment. Moreover, it is also clear that the non-standard phase can also be responsible for a
shift of the δCP value for which we obtain the best precision, namely

δ̄CP = arctan ϵ+ ϕ21 + nπ. (5.56)

11Notice that this term will affect the probabilities also if we neglect the small ∆m2
21, while the leading term

in δCP in the standard oscillation framework is always proportional to the small ratio ∆m2
21/∆m

2
31.
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Figure 5.15: δCP sensitivity of the DUNE and JD+KD experiments in the standard case (black line) and in

presence of NU. In the fit procedure we marginalized over θ23, θ13 and the phase of the NU parameter which

was considered to be different from zero. True values for the non-standard phases are 90◦ (top plots) and −90◦

(bottom plots)

.
In Fig. 5.15 we show the δCP sensitivity at DUNE and T2HKK (JD+KD) when the true

values of the new phases (we consider here also ϕ31) is 90
◦ or 90◦. In this analysis we marginalize

over θ23, θ13 and the NUNM phases, while we set the new NUNM moduli to |α21| = 0.025 and
|α31| = 0.1. When the true value of the phases are 90◦ (in particular in the case of |α21|), the
sensitivities are mostly reduced if the δCP true value is positive, while are almost unaffected by
new physics if it is negative. The main reason is that when the δCP and ϕij have opposite sign
and are maximal, sin(δCP − ϕij) is suppressed, while cos(δCP − ϕij) is maximized but negative.
This leads to a reduction in the number of neutrino appearance events due to terms like the one
in eq. (5.55).
When on the other hand, the phase true value is −90◦, the situation is different. In the DUNE
case, the reduction of the sensitivity (25% in the case of |α21| and 30% in the case of |α31|) is
similar for positive and negative values of the true PMNS phase value. This is due to some terms
which appears in the appearance probability only if the solar mass splitting is not neglected,
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Figure 5.16: δCP precision (1σ) range in the case of standard oscillation and Non-Unitarity. θ13, θ23, and the

phases associated with the NUNM parameters are marginalized with the fit. At the top (bottom) panel, true

value of the NUNM phases are assumed to be 90◦ (−90◦) in the simulation.
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which are proportional to sinϕij and negative in the case of neutrinos (see for instance Ref.
[249]); such terms are responsible to a reduction of the statistics for any value of the true δCP

phase value. In JD+KD this effect is less visible and the sensitivity results to be reduced of
roughly 15% only in the case of positive δCP values.
In the context of the precision on the δCP measurement, we considered fixed the true values of
the phase δCP then we fitted the data varying its value in the entire allowed range and eventually
we determine the 1σ uncertainty on the parameter finding the values for which ∆χ2 = 1. Since
the interval could be asymmetrical, we define

∆δCP =
δfit> − δfit<

2
(5.57)

where δfit> ( δfit< ) is the δCP fit value for which ∆χ2 = 1 which lies on the right (left) of δtrueCP . It
is well known [602, 627, 628] that the behaviour of the precision of the phase measurement is
the opposite that of the sensitivity. Indeed, the best δCP sensitivity is reached when the phase
is maximal, while the best δCP precision is reached when the phase is CP-conserving. In Fig.
5.16, we show the precision on the δCP measurement at DUNE and T2HKK when |α21| = 0.025,
for ϕ21 = 90◦,−90◦. According to our analytical prediction of the contribution to the precision
due to the leading new physics term, we find that when the new phase is positive, the minimum
is shifted to the right, while when negative, it is shifted to the left. Moreover, the precision in
this case is worsen of about 20% for DUNE when new physics is present. The worsening is less
important for JD+KD, which is more performing also in the NU scenario. The combination of
the DUNE and the T2HKK data set has been shown to be able to improve the δCP precision
in the standard oscillation framework [629]; we expect the same to happen also in presence of
BSM phases.
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Chapter 6

The DUNE experiment: new
approaches to the study of BSM models

In this final chapter, we will discuss some new approaches to search for BSM effects in neutrino
oscillation at DUNE. In the literature, DUNE simulations have been performed in the context
of several BSM models (see references in the next sections). However, its unprecedent experi-
mental features may allow us to develop new strategies to find great limits on the new physics
parameters, overcoming the capabilities of the other experiments.

6.1 Invisible neutrino decay: the multi-channel analysis

We introduced the invisible decay model in Sec. 3.3. In LBL experiments, it is interesting to
consider that the only decaying mass eigenstate is the third one, the heaviest in normal mass
ordering (NMO). So far, the terrestrial limits1 set by current and past LBL experiments are the
following [524, 630]

τ3/m3 > 7.8× 10−13 s/eV (T2K) (6.1)

τ3/m3 > 2.8× 10−12 s/eV (MINOS) (6.2)

τ3/m3 > 1.5× 10−12 s/eV (T2K + NOνA) (6.3)

where τ3 is the third neutrino lifetime and m3 its mass. On the other hand, a combined analysis
of atmospheric and LBL data set the limit [517]

τ3/m3 > 9.3× 10−12 s/eV (SK + K2K +MINOS) . (6.4)

In the context of the DUNE experiment, the expected bound using the standard analysis based
on the νµ disappearance and νe appearance channels with a 5+5 years exposure is [631]

τ3/m3 > 4.5× 10−11 s/eV DUNE . (6.5)

while other bounds that may be obtained by future experiments can be found in [632–635].
As discussed, in the invisible decay model, a sterile neutrino is involved, but in this case we
consider the hypothesis in which this fourth sterile state does not mix with the active states.
Thus we can neglect the sterile sector and the Hamiltonian is simply [636]:

H = U

 1

2E

0 0 0
0 ∆m2

21 0
0 0 ∆m2

31

− i
1

2β3E

0 0 0
0 0 0
0 0 1

U † +

A 0 0
0 0 0
0 0 0

 , (6.6)

1For cosmological bounds, see [262, 525–534].
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where β3 = τ3/m3 and the term A = 2
√
2GFneE is the neutrino electron scattering in matter,

GF is the Fermi constant, E the energy of the neutrino, and ne the electron density.
In a long baseline experiment, the impact of the matter potential on the oscillation probabili-

ties depends on the L/E ratio. In the case of a matter density of 4 g/cm3, the comparison of the
energy behavior of the oscillation probabilities with and without matter effects (in the standard
case of stable neutrinos) for an approximately 1300 km baseline shows the largest difference in
the νe appearance probability, where the vacuum case can be roughly 9% smaller for energies
around 2 GeV. However, the related effect on the number of events is not so relevant since the
integral of the probability between 0.2 and 15 GeV is only 5% bigger in the matter than in
the vacuum case; this difference does not change much even when β3 < ∞. For this reason,
throughout the rest of the paper, matter effects will not be taken into account in the numerical
simulations of the rates in DUNE.

We now derive the oscillation probabilities in the case of unstable ν3 eigenstate. If λi are
the eigenvalues of the Hamiltonian matrix and S is the diagonalizing matrix, the transition
amplitude can be obtained in the following way:

⟨νβ|να⟩ =
∑
i

SβiS
−1
iα e

−iλiL , (6.7)

where L is the distance travelled by the neutrino after its creation. Notice that the hamiltonianH
in Eq.(6.6) is non-Hermitian, thus the inverse of S must appear in the amplitude. The expression
of the resulting transition probabilities are quite cumbersome, thus we prefer to present the
νµ → νf oscillation formulae (with f = e, µ, τ) expanded up to the second order in the parameter

α =
∆m2

21

2E
L. We separate various terms according to the convention Pµf = P

(0)
µf +αP

(1)
µf +α2P

(2)
µf ,

where the superscripts (0), (1), (2) refer to the respective perturbative order. For the sake of
simplicity, we quote here the zeroth-order results only, which capture the main effects of the
decay; for higher order expansions, see [19]. For the νµ → νe transition we obtain:

P (0)
µe =sin2 2θ13 sin

2 θ23

[
e
− 1

β3

L
2E sin2

(
∆m2

31L

4E

)
+

(
1− e

− 1
β3

L
2E

2

)2]
, (6.8)

while for the νµ → ντ appearance we get:

P (0)
µτ =cos4 θ13 sin

2 2θ23

[
e
− 1

β3

L
2E sin2

(
∆m2

31L

4E

)
+

(
1− e

− 1
β3

L
2E

2

)2]
. (6.9)

Finally, for νµ disappearance our result reads:

P (0)
µµ =1 + 2

(
e
− 1

β3

L
2E − 1

)
cos2 θ13 sin

2 θ23 +
(
e
− 1

β3

L
2E − 1

)2
cos4 θ13 sin

4 θ23

− e
− 1

β3

L
2E
(
cos4 θ13 sin

2 2θ23 + sin2 2θ13 sin
2 θ23

)
sin2

(
∆m2

31L

4E

)
.

(6.10)

We see that the decay parameter has two main roles. On the one hand, it acts as a damp-

ing factor, reducing the amplitudes by the quantity e
− 1

β3

L
2E . On the other hand, it adds to

the probabilities constant terms (i.e., not depending on the mixing angles) that contain the

factor
(
1− e

− 1
β3

L
2E

)
. Thus, for small values of the decay parameters, we expect the appear-

ance probabilities no longer to depend on the ratio L/E and to converge to a fixed value
(1/4 for both νµ → νe and νµ → ντ transitions). In the disappearance channel we observe
again the same behaviour for small β3 although the constant limiting value is approximated by
P

(0)
µµ = (1−cos2 θ13 sin

2 θ23)
2 ∼ 0.21. The explanation of this effect resides on the fact that, if the

decay parameter is small, all neutrinos in the third mass eigenstate decay before reaching the far
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detector and since at leading order we are neglecting the mass difference between ν1 and ν2, the
three neutrinos are no longer affected by oscillations. We finally observe that, since the effect
of decay is encoded in the damping factor which is common for every transition, all oscillation
channels will be equally sensitive to the decay parameter. Thus a collection of events in each
channel can be very powerful in constraining β3.

Notice that, in the presence of neutrino decay, Eqs. (6.8), (6.9) and (6.10) imply:

e,µ,τ∑
α

Pµα = 1 + (e
− 1

β3

L
E − 1) cos2 θ13 sin

2 θ23 ̸= 1 ; (6.11)

indeed, if ν3 can decay into a sterile neutrino during its travel, the total number of active
neutrinos will decrease when the distance travelled by the particles increases. So we expect that
the total number of active neutrinos will decay exponentially from the maximum, obtained when
we are close to the neutrino source (small L), to an asymptotic value that depends at the leading
order on θ23 and θ13 only.

Plots showing the exact dependence in vacuum of Pµα on L/E between 0 and 1300 km/GeV
are reported in Fig.(6.1) for different values of the decay parameter: β3 = 10−10 s/eV (blue
dashed line), 5 × 10−11 s/eV (green dotted line), 10−11 s/eV (magenta dot-dashed line) and
2 × 10−12 s/eV (yellow densely dotted line). These values have been chosen being of the order
of the decay parameter limits set by oscillation experiments as discussed above. For the sake
of comparison, we also show with red solid lines the behavior in the absence of decay, that
is in the standard three neutrino framework. As it can be seen, the main effect of the decay
parameter in the L/E region accessible by long baseline experiments like DUNE is a decrease
of the probabilities around the atmospheric peak (L/E ∼ 500 Km/GeV). This reduction is
approximately of 1.5% when β3 = 10−10 s/eV, 3% when β3 = 5 × 10−11 s/eV, 15% when
β3 = 10−11 s/eV and 45% when β3 = 2×10−12 s/eV. The flattening of the probabilities previously
discussed can be noticed around the valleys, where on the other hand Pµe and Pµτ increase.

6.1.1 The inclusion of the NC channel

Parameter Central Value Relative Uncertainty
θ12 33.82◦ 2.3%
θ23 48.3◦ 2.2%
θ13 8.61◦ 1.4%
δCP 222◦ 13%
∆m2

21 7.39×10−5 eV2 2.8%
∆m2

31 2.523×10−3 eV2 1.3%

Table 6.1: Best fit value and relative uncertainty of neutrino oscillation parameters used in our simulation from

a global fit to neutrino oscillation data [578].

We have already mentioned that in [631] the authors performed a DUNE simulation in
presence of invisible neutrino decay using the νµ disapperance and the νe appearance channels.
We observed that also the ντ appearance depends on the decay parameter. Moreover, also the
number of Neutral Current events will depend strongly on β3, since in this model the total number
of active neutrinos is not conserved. In fact, the number of NC events will be proportional to
the

∑
α Pµα, which, as showed in eq. 6.11 depends on the decay parameter. For these reasons,

we decided to include in our DUNE analysis both the ντ appearance and the NC channels, in
order to study which may be their impact on the β3 sensitivity.
The ντ channel has been included as described in Sec. 4.1.4, while the NC channel has been
defined as in [637], namely with an overall 90% signal detection efficiency; since the backgrounds
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Figure 6.1: Exact L/E dependence in vacuum of Pµe (top-left panel), Pµτ (top-right panel) and Pµµ (bottom

panel). Different values of the decay parameter are shown: β3 = 10−10 s/eV (blue dashed line), 5× 10−11 s/eV

(green dotted line), 10−11 s/eV (magenta dot-dashed line) and 2× 10−12 s/eV (yellow densely dotted line). Red

solid lines refers to the behavior of Pµf in the absence of decay.

come from the mis-identification of charged current events, we add to the background sample a
conservative 10% of the νµ and νe CC events and all the ντ CC events where the τ lepton decays
hadronically.
In Fig.(6.2) we report our results for the sensitivity to β3 when only CC (blue dashed line) and
CC+NC events (red solid line) are taken into account. The curves have been obtained with true
values of the standard oscillation parameters listed in Tab.(6.1). As fit values, we considered the
same central points with their quoted uncertainties. For this analysis we used the full matter
Hamiltonian showed in Eq. (5.30).
First of all, we notice that the addition of the NC events will be able to increase the lower

bound on β3 by roughly 16%. In particular, the lower limit from the CC+NC analysis, β3 >
5.2 × 10−11 s/eV, would be the best world limit set by a single long-baseline experiment. It is
worth to mention that the limit set by the CC-only analysis (namely β3 > 4.4× 10−11 s/eV) is
very similar to the one discussed in Ref. [631] where only νµ disappearance and νe appearance
channels (and a longer DUNE running time) were considered. This essentially means that the
inclusion of the ντ events in the analysis provides only a small contribution to the sensitivity,
due to the (somehow) limited statistics. This fact can be appreciated in Fig.(6.3), where we split
the contributions to the DUNE sensitivity to β3 given by the different channels (see the caption
for details). We see that the ντ appearance is sensitive only to very small decay parameters,
while the largest contribution comes from the νµ → νµ disappearance channel because, beside
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Figure 6.2: DUNE sensitivity to the decay parameter. The blue dashed line has been obtained using only the

CC channels, while the red solid one has been obtained adding the NC channel. Here ∆χ2 = χ2 − χ2
min.
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Figure 6.3: Contributions to β3 by the different transition channels: red solid line refers to the νµ CC events,

the magenta dot-dashed line to the νe CC events, the green densely-dot-dashed line to the νe CC events while

the blue dashed line represents the NC contribution.

providing a larger number of interactions, the variation of the events as β3 decrease is larger
than in the other channels.

As for a precision measurement of a possibly finite decay parameter, we show in Fig.(6.4) an
example in which the true value β3 = 8.5× 10−12 s/eV (best fit obtained by MINOS and T2K
data [524]) is assumed; the numerical results highlight that roughly 23% and 20% precision can
be achieved, if CC only or CC + NC are considered in the analysis, respectively. Finally, in
Tab.(6.2) we collect both the 90% CL bound and the 90% CL error regions that DUNE will be
able to set on β3. For reference, we also included the results for two more assumptions on the
true β3 value: β3 = 1.2 × 10−11 s/eV (MINOS best fit) and β3 = 1.6 × 10−12 s/eV (T2K best
fit [524]). We clearly see that the precision we can achieve varies from a maximum of ∼ 30% for
β3 = 1.2× 10−11 s/eV to a minimum of ∼ 10% for the smallest β3; this is due to the fact that
the difference among the values of a given transition probability computed at two different β3’s
is amplified in the case of small decay parameter.
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Figure 6.4: ∆χ2 as a function of β3 obtained with a true value β3 = 8.5× 10−12 s/eV , corresponding to the

best fit from MINOS and T2K data analysis [524]. The blue dashed line has been obtained using only the CC

channels, while the red solid has been obtained adding the NC channel.

CC only CC+NC

β3 = ∞ β3 >4.4× 10−11 s/eV β3 >5.1× 10−11 s/eV
β3 = 1.2× 10−11 s/eV β3 ∈ [0.91− 1.78]× 10−11 s/eV β3 ∈ [0.94− 1.67]× 10−11 s/eV
β3 = 8.5× 10−12 s/eV β3 ∈ [0.65− 1.12]× 10−11 s/eV β3 ∈ [0.70− 1.05]× 10−11 s/eV
β3 = 1.6× 10−12 s/eV β3 ∈ [1.46− 1.83]× 10−12 s/eV β3 ∈ [1.48− 1.79]× 10−12 s/eV

Table 6.2: 90% CL lower bound (β3 = ∞) and ranges on the decay parameter β3 that will be set by DUNE

when using the CC sample only (second column) or CC+NC events (last column). Several assumptions on a

finite β3 are reported.

6.2 Source and detector NSI: the Near Detector sample

Discussing the source and detector Non Standard Interactions (see Sec. 3.2.1), we pointed out
that oscillation experiments, in particular LBL, may not provide the clearest environment where
to probe them. Indeed, it is clear that we would need a simultaneous determination of all
standard and non standard mixing parameters, including the propagation NSI ones. Selected
classes of neutrino experiments, however, have been used to constrain some of the entries of
the εs,d matrices. This is the case of solar neutrino experiments2, where 90% confidence level
(CL) bounds on |εdee,ττ | ∼ O(10−1 − 10−2) [453, 454] are extracted. Also reactor as well as
long baseline experiments have been probed to be useful, in particular, to restrict the various
|εs,deα | ∼ O(10−2) [448, 449]. Although the bounds achieved from non-oscillation experiments on
source and detector NSI [236, 455–459] are strong and robust at the level of (generally speaking)
percentage, future LBL experiments may improve current oscillation bounds [450–452, 460–465];
in this panorama, DUNE places itself in a relevant position thanks to the capability of improving
the NSI bounds, in particular the propagation NSI ones [16, 579, 638–641]. However, as discussed
in [642], the DUNE Far Detector (FD) is expected to be less performing in constraining source
and detector NSIs. Indeed, the bounds obtained in their analysis with εm = 0 and summarized
in Tab. 6.3, are just a 10-40% improvement with respect to the existing literature pertinent
to long baseline experiments. These constraints are further relaxed when propagation NSI are
taken into account into the fit. We can try to (partially) fill the gap, trying to constrain a
subset of the εs,d matrix elements by means of data that will be collected at the DUNE Near

2Notice that the NSI parameters that affect neutrino oscillations are combinations of those entering the
Lagrangian describing the interaction processes. We assume here that the quoted bounds directly apply to εs,d.
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Parameter DUNE FD 90% CL bounds
|εsµe| 0.017

|εsµµ| 0.070

|εsµτ | 0.009

|εdµe| 0.021

|εdτe| 0.028

Table 6.3: 90% CL limits on the source and detector NSI parameters obtained in [642] using the DUNE Far

Detector analysis for a total of 10 years of data taking. New phases are unconstrained.

Detector only. Since the ND is not affected by NSI in the same way as the FD [254], we expect
on the one side to scrutinize more in details those parameters also accessible at the FD and,
on the other hand, to access to a complete new set of parameters on which the DUNE FD is
not particularly sensitive. In this context, the role of the ND is promoted as a complementary
tool to FD studies [319, 328, 623, 643–648], more than a mere (although important) indicator
of fluxes and detection cross sections [649]. It is worth to mention that at the Near Detector,
we do not have any flux monitor; for this reason, in order to perform any kind of analysis, we
need external inputs like MonteCarlo simulation, theoretical calculations or data from another
zero-distance detector whose data are not affected by neutrino oscillation [157, 650, 651].
Let us first discuss the oscillation probabilities at zero distance. The transition probabilities can
be simplified to:

Pαβ = |[(1 + εd)T (1 + εs)T ]βα|2. (6.12)

Considering that the oscillation phase (∆m2
31L/4E) ∼ O(10−3) and the current bounds on εs,d

are of the order of 10−1−10−2 [236, 448, 449, 455–459], we expect the approximation in eq.(6.12)
to be reliable up to the second order in ε. Parameterizing the new physics complex parameters

as ε
s/d
αβ = |εs/dαβ |eiΦ

s/d
αβ , the disappearance probabilities (α = β) read:

Pαα =1 + 2|εsαα| cosΦs
αα + 2|εdαα| cosΦd

αα + |εsαα|2 + |εdαα|2+
+ 4|εsαα||εdαα| cosΦs

αα cosΦ
d
αα + 2

∑
β ̸=α

|εsαβ||εdβα| cos (Φs
αβ + Φd

βα) ,
(6.13)

while the appearance probabilities (α ̸= β) are given by:

Pαβ = |εsαβ|2 + |εdαβ|2 + 2|εsαβ||εdαβ| cos (Φs
αβ − Φd

αβ). (6.14)

In the disappearance case, the dependence on the diagonal NSI parameters appears already
at the first order and the whole probabilities (including second-order corrections driven by the
off-diagonal matrix elements) depend on twelve independent real parameters; in addition, the
leading order and the diagonal next-to-leading terms display a complete symmetry under the
interchange s↔ d, so that we expect similar sensitivities to εs,dαα. The off-diagonal second order
corrections are no longer symmetric since two flavor changes are needed to have the same flavor
at the source and at the detector.

In the appearance case, the new parameters appear at the second order and only four inde-
pendent of them are involved. The relevant Pµe and Pµτ are completely symmetric under s↔ d
because, at short distances, the flavor changing can happen at both source or detector with no
fundamental distinction.

The drastic reduction of independent NSI parameters the ND is sensitive to, allows to derive
simple rules on how their admitted ranges can be strongly limited compared to the existing
literature. Indeed, let us work in the simplified scenario where the experiment counts a certain
number N of events when searching for να → νβ oscillations; since the probabilities in eq.(6.12)
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show no dependence on neutrino energy, baseline, matter potential and standard mixing param-
eters, N assumes the form:

N = N0Pαβ(ε
s, εd) , (6.15)

where the normalization factor N0 includes all the detector properties and, given an observation
mode να → νβ, is defined by:

Nαβ
0 =

∫
Eν

dEν σβ(Eν)
dϕα

dEν

(Eν) εβ(Eν) , (6.16)

in which σβ is the the cross section for producing the lepton β, εβ the detector efficiency and
ϕα the initial neutrino flux of flavor α. Suppose now that we want to exclude a region of the
parameter space using a simple χ2 function defined as:

χ2 =
(Nobs −Nfit)

2

σ2
, (6.17)

where σ represents the statistical uncertainty on the number of events. Assuming vanishing true
values of all NSI parameters, the χ2 function becomes:

χ2 =
N2

0

σ2
[δαβ − Pαβ(ε

s
fit, ε

d
fit)]

2 . (6.18)

For appearance analysis, eq.(6.14) allows us to write:

χ2 =
N2

0

σ2
[|εsαβ|2 + |εdαβ|2 + 2|εsαβ||εdαβ| cos (Φs

αβ − Φd
αβ)]

2 , (6.19)

whose minimum can always be found when cos∆Φ = −1. Thus, for every pairs of (|εsαβ|, |εdαβ|):

χ2
min =

N2
0

σ2
(|εsαβ| − |εdαβ|)4 . (6.20)

Indicating with χ2
0,αβ the value corresponding to the cut of the χ2 at a given CL, we can exclude

the region delimited by:

||εsαβ| − |εdαβ|| > 4

√
χ2
0,αβ σ

2

N2
0

, (6.21)

which is external to a band in the (|εsαβ|, |εdαβ|)-plane of width

∆αβ =
4

√
4χ2

0,αβ σ
2

N2
0

(6.22)

centered on the line |εsαβ| = |εdαβ|. Thus, ∆αβ provide a measure of the allowed parameter space.
Clearly, the excluded region is larger when the uncertainty on the number of events σ is smaller
and the normalization factor N0 is bigger.
Consider now the disappearance case; neglecting second order terms, the χ2 function is now:

χ2 =
4N2

0

σ2
(|εsαα| cosΦs

αα + |εdαα| cosΦd
αα)

2 =
4N2

0

σ2
[ℜ(εsαα) + ℜ(εdαα)]2 . (6.23)

Following the same procedure as for the appearance case, the excluded region in the [ℜ(εsαα),ℜ(εdαα)]-
plane is delimited by:

|ℜ(εsαα) + ℜ(εdαα)| >
√
χ2
0,αα σ

2

4N2
0

, (6.24)
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where, in this case, the band width is:

∆αα =

√
χ2
0,αα σ

2

2N2
0

(6.25)

with χ2
0,αα being the desired cut of the χ2. Notice that, for the same σ and N0, we expect

the disappearance channels alone to be more performing than the appearance ones. This is
essentially motivated by the absence of first order terms in ε in the appearance probabilities.
Notice also that eqs.(6.21) and (6.24) show a perfect symmetry under the interchange of source
and detector parameters which, however, could be (partially) disentangled if a multi-channel
analysis is performed. For example, the parameter |εsµe| appears in the νµ → νe oscillation but
also as a correction to the νµ → νµ probability, differently from the case of |εdµe| which is present
in the µ→ e transition only. Nevertheless, given the relatively small contributions of the second
order terms compared to the first order, we expect such corrections to have a negligible impact.

6.2.1 The CC Near Detector sample

For the Near Detector simulations, we make the hypothesis that the ND performances are
the same as the FD ones. The included channels are the νe and ντ appearance as well as
the νµ disappearance. The systematics considered in our study will be dominated by cross
sections and flux normalization uncertainties. While the former could be in principle improved
by future data and calculations, the latter will anyway remain as the dominant source of error
because of the hadroproduction processes and uncertainties in the focusing system at the LBNF
beam. Differently from similar studies involving the DUNE ND [319, 648]3, where the same
systematic uncertainties reported in the DUNE Far Detector GLoBES configuration file have
been used, we decided to consider worst systematics since the ND cannot benefit of a (partial)
systematic cancellation provided by a detector closer to the neutrino production region. In
particular, we took into account an overall systematic normalization uncertainty of 10% for the
νµ disappearance, νe disappearance and νe appearance channels signals and of 25% for the ντ
appearance signal. For the NC background we considered a 15% uncertainty. In our numerical
simulations we use exact transition probabilities and we set all NSI true values to zero; we
marginalize over all absolute values of the parameters appearing in the probabilities up to the
second order (with no priors) and over all relevant phases, which are allowed to vary in the
[0, 2π) range 4. Since, as showed in the previous section, the strongest constraints on εs,dαβ can
be obtained from the corresponding oscillation probability Pαβ, we simulated one transition
channel at a time. To make a comparison with the bounds obtainable at the FD (see Tab.(6.3))
we consider 5 + 5 years of data taking.

In the disappearance sector, the interesting pairs of NSI parameters for the ND are
[
ℜ(εsµµ),ℜ(εdµµ)

]
and

[
ℜ(εsee),ℜ(εdee)

]
, which are mainly constrained by the νµ → νµ and νe → νe transitions, re-

spectively. The regions that could be excluded by the DUNE ND are displayed in Fig.(6.5),
where we also superimposed the limits set by the FD analysis only5 [642] (no limits can be put
on εs,dee ). As it is clear from the left panel, the numerical results completely reflect the analytic
anticorrelations discussed in eq.(6.24): even though for every value of ℜ(εdµµ) there is an interval
of ℜ(εsµµ) for which the χ2 is small, it is nonetheless possible to exclude a sizable portion of the
parameter space allowed by FD analysis. Similar considerations can be done on the parameters

3In these papers different physics models than NSI are analyzed, less sensitive to systematics.
4The standard oscillation parameters are fixed to the central values reported in [578] because they have no

effects in our fit.
5Horizontal and vertical lines showed in our plots do not represent the results of a correlation analysis at the

far detector, but only the sensitivity limits obtained after a full marginalization on the parameter space.
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Figure 6.5: 90% CL excluded regions (in red) in the
[
ℜ(εsµµ),ℜ(εdµµ)

]
-plane (left panel) and

[
ℜ(εsee),ℜ(εdee)

]
-

plane (right panel) by the DUNE ND. The FD excluded zones are shown with horizontal gray bands.

ℜ(εs,dee ) shown in the right panel, for which the ND is able to rule out a relevant fraction of them,
a goal otherwise not possible with the DUNE FD alone.

Given the band width in eq. (6.25), the above considerations can be summarized as follows:

∆µµ = 0.12 ∆ee = 0.11 . (6.26)

Notice that, for 90% CL, χ2
0 = 4.6 (2 degrees of freedom) and N0 is roughly 107 events per

year for the νµ → νµ channel and 105 events per year in the νe → νe channel. The obtained
values of the band are of the same order of the systematics discussed in the previous section,
namely 10% for the signal and 15% for the background, and are almost the same for the two
channels even though the number of νµ events is two order of magnitude larger than the number
of νe events. This reflects the fact that, for the disappearance channels, we cannot be sensitive
to NSI parameters which cause changes to standard oscillation probabilities smaller than the
adopted systematic uncertainties. However, even with our realistic assumptions, the result on
∆µµ permits to exclude parts of the parameter space allowed by the general analysis performed
in [448] (|εsµµ| < 0.068 and |εsµµ| < 0.078). On the other hand, the result on ∆ee is worse than the
one set by reactor experiments like Daya Bay [449] (|εee| < 2×10−3) that have been obtained, we
have to outline, under the restrictive assumption εs = εd∗. In the case of the appearance channels,
eq.(6.14) highlights that the interesting pairs of parameters are

(
|εsµe|, |εdµe|

)
and

(
|εsµτ |, |εdµτ |

)
.

We show the 90% CL excluded regions in Fig.(6.6) where we also displayed the bounds that
would be set by the FD. Also in this case, the correlations outlined in eq.(6.21) is recovered
and large portions of the parameter spaces can be ruled out, in particular for the νe appearance
channel. On the other hand, the small signal to background ratio in the ντ appearance channel
results in a larger band width; thus, the region excluded by the ND but allowed by the FD is
delimited by |εdµτ | > 0.024. The appearance results are summarized by the following widths:

∆µe = 0.0065 ∆µτ = 0.026 . (6.27)

A better background rejection in the ντ channel could reduce the band width by up to one order
of magnitude. An important role in defining the allowed ranges for the appearance parameters
|εs/dµe | and |εs/dµτ | is played by the CP violating phases Φs

αβ and Φd
αβ. Recalling eq.(6.20), it is

clear that the degeneracy that let the χ2 vanish when the absolute values of detector and source
parameters are the same, occurs only when ∆Φαβ = Φs

αβ − Φd
αβ is very close to π. For all other
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Figure 6.6: Same as Fig.(6.5) but in the
(
|εsµe|, |εdµe|

)
(left panel) and

(
|εsµτ |, |εdµτ |

)
planes (right panel).

values of the phase difference, the ND could be able to set very stringent 90% CL limits (with
a 5+5 years of data taking), namely:

|εs/dµe | < 0.0046 |εs/dµτ | < 0.019 , (6.28)

which are very competitive to the ones set so far by other neutrino oscillation experiments
(for instance, |εs/dµe,µτ | < O(10−2) obtained in [448] and [452]). This is clearly shown in Fig.(6.7)

where we present the contours at 90% CL in the
(
|εs/dµe |, cos∆Φµe

)
and

(
|εs/dµτ |, cos∆Φµτ

)
-planes,

obtained after marginalizing the χ2 function over all undisplayed parameters.
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Figure 6.7: Contours at 90% CL in the
(
|εs/dµe |, cos∆Φµe

)
(left panel) and

(
|εs/dµτ |, cos∆Φµτ

)
(right panel)

planes obtained by our DUNE ND simulations.

As discussed previously, the choice of the systematic uncertainties is a crucial point in the
determination of the limits that the Near Detector could be able to set. In order to understand
how much the band widths ∆αβ would change in the case of a different choice of systematics, we
performed the same simulations for a data taking time of 5+5 years considering three different
cases:
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• Case A: the standard (optimistic) case, namely the one implemented in the DUNE Far
Detector GLoBES configuration file. In this case the systematics are 5% for the νµ disap-
pearance channel, 2% for the νe appearance and disappearance channels and 20% for the
ντ appearance channel. The uncertainty on the NC background has been considered to be
10%.

• Case B : the more realistic choice used in the previous section, where we fixed 10% for the
νe appearance, νe disappearance and νµ disappearance, 25% for the ντ appearance and
15% for the NC background.

• Case C : a more pessimistic case in which the systematics are 15% for νe appearance,
νe disappearance and νµ disappearance, 30% for the ντ appearance and 20% for the NC
background.
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Figure 6.8: Variation of the allowed band widths ∆αβ for a data taking time of 5+5 years and four different

choice of systematics: optimistic (A), standard (B) and pessimistic (C).

The results of our simulations are reported in Fig.6.8. We clearly see that ∆ee and ∆µµ are
the parameters which are affected the most by the systematics, as previously discussed. Indeed,
being the survival probability at L=0 in the standard model equal to 1, the number of observed
events will be, even in presence of the small effect of the NSI, of the same order of magnitude
as N0. Thus, when statistical errors are negligible, the definition for the band width (eq.(6.25))
can be simplified to:

∆αα ∼

√
χ2
0,αα

2
σsys , (6.29)

where we used σ ∼ N0σsys .
For the appearance parameters, we register a less evident increasing of the band widths passing
from the case (A) to (C), since in this case statistic uncertainties are always dominating over
systematics. Indeed, for the two appearance channels, N0 is ∼ 107 per year in the νµ → νe
channel and ∼ 106 per year in the νµ → ντ channel, but the observed number of events is small
due to the very short baseline. For a given small number of observed events Nobs, we have
σ2 = N2

obsσ
2
sys +Nobs ∼ Nobs. Thus, the width can be simplified as follows:

∆αβ ∼ 4

√
4χ2

0,αβNobs

N2
0

. (6.30)
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This quantity is roughly independent on the systematics and for Nobs = O(10) is of the order
of 10−3. This number is in agreement with our numerical results for ∆µe while for ∆µτ the
agreement is confined to the case where the NC background (which in addition suffers by the
increase of the systematics) is turned off.

We want to outline that we recomputed the various ∆αβ also for several positioning of the
DUNE ND at different off-axis angles with respect to the beam direction [652] and found a
general worsening of the ND performances due to the decreased number of collected events.
In fact, spectra distortions of signal and backgrounds cannot improve source and detector NSI
analysis since probabilities in this regime do not depend on neutrino energies.

6.2.2 Achievable precision on non-vanishing source and detector NSI

The relatively simple strategy we used to find analytic bounds on NSI parameters can also be
applied to compute the precision on the measurement of non-vanishing parameters, that is in
the case where the true values of the source and detector parameters are non zero. In this case
eq.(6.18) becomes:

χ2 =
N2

0

σ2
[δαβ +Kαβ − Pαβ(ε

s
fit, ε

d
fit)]

2 , (6.31)

where Kαβ is defined as the true Pαβ for the appearance channels and Pαα−1 for the disappear-
ance channels.

Let us start from the disappearance. Given the structure of the χ2 function:

χ2 =
4N2

0

σ2

[
Kαα/2−ℜ(εsαα)−ℜ(εdαα)

]2
, (6.32)

the allowed regions in the
[
ℜ(εsαα),ℜ(εdαα)

]
-plane are identified by:

∣∣ℜ(εdαα) + ℜ(εsαα)−Kαα/2
∣∣ <√χ2

0,αασ
2

4N2
0

. (6.33)

This means that the allowed regions around the values of ℜ(εdαα) and ℜ(εsαα) chosen by Nature
have essentially similar shapes as those presented in Fig.(6.5) but with a band centered on the
line ℜ(εdαα) = −ℜ(εsαα) +Kαα/2.

In the case of the appearance channel, the χ2 function reads:

χ2 =
N2

0

σ2

[
Kαβ − |εsαβ|2 − |εdαβ|2 − 2|εsαβ||εdαβ| cos (Φs

αβ − Φd
αβ)
]2
. (6.34)

The minima of the χ2 are always in (cos∆Φmin) =
(

Kαβ−|εsαβ |
2−|εdαβ |

2

2|εsαβ ||ε
d
αβ |

)
; however, when | (cos∆Φmin) | >

1, ∆Φmin is forced to be either 0 or π. Fixing the cut of the χ2 (χ0,αβ) at a given CL, the allowed
regions are delimited by:

Max

0, Kαβ −
√
χ2
0,αβσ

2

N2
0

 < (
|εsαβ|+ |εdαβ|

)2
< Kαβ

(6.35)

Kαβ <
(
|εsαβ| − |εdαβ|

)2
< Kαβ +

√
χ2
0,αβσ

2

N2
0

.

As an example, we report in Fig.(6.9) the results of our numerical simulations of the pre-
cision achievable in the measurement of the NSI parameters whose true values are fixed to[
ℜ(εdµµ),ℜ(εsµµ)

]
= (0.01, 0.01) (left panel) and

(
|εdµτ |, |εsµτ |

)
= (0.02, 0.03) (right panel).
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Figure 6.9: 90% CL allowed regions in the measurement of the NSI parameters; true values are fixed to[
ℜ(εdµµ),ℜ(εsµµ)

]
= (0.01, 0.01) (left panel) and

(
|εdµτ |, |εsµτ |

)
= (0.02, 0.03) (right panel).

As we can see, the allowed regions strictly follow the analytic results reported in eqs.(6.33)
and (6.35). In these two examples, data permit to exclude the point (0,0) corresponding to the

absence of NSI, but this is not the general case as, for different input values, ifKαβ <

√
χ2
0,αβσ

2

N2
0

or

Kαα <

√
χ2
0,αασ

2

N2
0

, the standard oscillation framework cannot be excluded at the desired confidence

level.

6.3 Hints of new sources of CP violation: the role of the

integrated asymmetries

In the previous sections, we discussed some examples in which it is possible to bound new physics
models performing a fit on the oscillation data at DUNE. However, we propose here a way to
search for hints of the presence of new physics effects, which does not require to perform a fit
on the data. In particular, we consider here the effect of the new phases which appear in a
given BSM model. We chose for this purpose two cases, the 3+1 sterile neutrino model and the
propagation NSI model; however, the analysis may be repeated for any model with new phases.
Defining P (να → νβ) as the transition probability from a flavor α to a flavor β, one can construct
the CP-odd asymmetries6 as:

Aαβ ≡ P (να → νβ)− P (ν̄α → ν̄β)

P (να → νβ) + P (ν̄α → ν̄β)
. (6.36)

It is well known that matter effects modify the behaviour of the asymmetries as a function
of the Standard Model CP phase δ (see, e.g., [653]): in fact, the passage of neutrinos through
matter introduces fake CP-violating effects which allows Aαβ ̸= 0 even when sin δ = 0. In
principle, to extract genuine CP violating effects, one could defines the subtracted asymmetries
as Asub

αβ (δ) = Aαβ(δ) − Aαβ(δ = 0). However, we prefer to deal with more directly measurable

6Notice that we already discussed asymmetries in Sec. 5.2. However, since in that case we were interested in
the dependence on the atmospheric mixing angle, we used a different expansion to compute them.
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quantities and we will use eq.(6.36) which, for non negligible matter effects, are non vanishing
when δ = 0,±π.

To derive the analytic expressions for the asymmetries we use an expansion similar to the one
described in Sec. 5.3. In particular, we expand up to the second in the small α = ∆m2

21/∆m
2
31

ratio [443] and in r, s and a, which represent the deviation from the tri-bimaximal mixing
values of the neutrino mixing angles θ13, θ12, θ23. Moreover, after defining ∆21 = ∆m2

21L/4Eν ,
∆31 = ∆m2

31L/4Eν and VCC = ACCL/2∆31 = 2ACCEν/∆m
2
31, we further expand in the small

VCC up to the first order.
To start with, let us consider the vacuum case; for the νµ → νe channel, the leading term of

the asymmetry is the following:

ASM0
µe = −12

f1
r α∆31 sin δ sin

2∆31 , (6.37)

where

f1 = 9r2 sin2∆31 + 4α∆31 (α∆31 + 3r cos δ cos∆31 sin∆31) . (6.38)

Being the numerator and the denominator of eq.(6.37) doubly suppressed by small quantities,
we expect ASM0

µe ∼ O(1).
For the νµ → ντ channel, on the other hand, we find that the leading contribution to the
asymmetry is given by a simpler expression:

ASM0
µτ =

4

3
rα∆31 sin δ , (6.39)

which is clearly smaller than Aµe. Notice also that, differently from Aµe, this asymmetry becomes
negative if δ > 180◦, as emerging from fits to neutrino oscillation data [111, 112].
A third possible asymmetry, namely Aµµ, is obviously vanishing in vacuum because of CPT
conservation but can assume a relevant role when matter effects are taken into account (as we
will discuss later on).

As it is well known, the inclusion of matter effects complicates the analytic expressions of
the transition probabilities and, more importantly, that of the asymmetries. In order to deal
with readable formulae, we can work in the regime of weak matter potential VCC ≪ 1 which,
as outline before, is a good approximation in the case of DUNE. Thus, we can organize our
perturbative expansion as follows:

Aαβ = ASM0
αβ + VCC A

SM1
αβ +O(V 2

CC) , (6.40)

where ASM1
αβ represents the first order correction to the vacuum case VCC = 0. Thus, the

asymmetries considered in this study acquire the following corrections:

ASM1
µe = − 6

f1
r (∆31 cos∆31 − sin∆31) [2α∆31 cos δ cos∆31 + 3r sin∆31+

− 24

f1
rα2 sin2 δ∆2

31 sin
3∆31

]
, (6.41)

ASM1
µτ = −2r2 (1−∆31 cot∆31) +

8

27
α2∆3

31 cot∆31 , (6.42)

ASM1
µµ =

4

3
rα∆31 cos δ (∆31 − tan∆31)−

8

27
α2∆3

31 tan∆31 . (6.43)

It is evident that Aµe increases because a term proportional to r2/f1 appears, which is of O(1).
Since at the atmospheric peak sin∆31 ≫ cos∆31, the r

2/f1 correction is positive and adds an
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O(VCC) contribution to the total Aµe, that at the DUNE peak energy becomes roughly 1/2.
On the other hand, ASM1

µτ contains only terms proportional to VCCr
2 and VCCα

2 which are not
balanced by any small denominator. Thus, both contributions set a correction to the vacuum
asymmetry. A similar situation arises for Aµµ, where only terms proportional to VCCrα and
VCCα

2 appear.

6.3.1 Asymmetries in the NSI case

As discussed in Sec. 3.2.2, propagation NSI modify the neutrino oscillation Hamiltonian intro-
ducing new parameters in the matter potential term, which becomes

ACC

 1 + εee εeµ εeτ
ε∗eµ εµµ εµτ
ε∗eτ ε∗µτ εττ

 .

where the off-diagonal parameters can be written as εαβ = |ϵαβ|eiδαβ . We want to remark, as
already discussed, that we can always subtract a matrix proportional to the identity without
changing the transition probabilities. If we choose to subtract εµµI, only two independent diag-
onal parameters (ε′ee = εee − εµµ and ε′ττ = εττ − εµµ) will appear in the NSI matrix7. Coming
back to the CP-odd asymmetries, since NSI effects are strongly intertwined with standard matter
effects driven by VCC , the asymmetries can be cast in a form which generalizes eq.(6.40):

Aαβ = ASM0
αβ + VCC(A

SM1
αβ + ANSI

αβ ) +O(V 2
CC) , (6.44)

where A
SM0,1

αβ refers to the pure Standard Model results and all the effects of the NSI are included

in the ANSI
αβ term.

Bounds on the magnitude of the NSI couplings have been widely discussed [654]; even though
some of them could in principle be of O(1) and give rise, for example, to degeneracies leading to
the so-called LMA-Dark solution [655], we decided nonetheless to consider all εαβ’s on the same
footing and of the same order of magnitude as the other small standard parameters a, s, r, α and
VCC . In this way, we are able to catch the leading dependence on NP carried on by the CP
asymmetries.

For the νµ → νe channel, the leading order NSI contributions can be arranged as follows:

ANSI
µe = εeµa

εeµ
µe + εeτa

εeτ
µe , (6.45)

where the a′s functions are given by:

aεeµµe =
3

f1
[6r cos(δ − δeµ) sin∆31 (∆31 cos∆31 + sin∆31) +

4α∆31 cos δeµ (∆31 + cos∆31 sin∆31)] (6.46)

− 72

f 2
1

rα sin δ∆2
31 sin

4∆31 [3r sin(δ − δeµ) + 2α sin δeµ)] ,

aεeτµe =
3

f1
[6r cos(δ − δeτ ) sin∆31 (−∆31 cos∆31 + sin∆31) +

2α∆31 cos δeτ (−2∆31 + sin 2∆31)] (6.47)

+
72

f 2
1

rα sin δ∆2
31 sin

4∆31 [3r sin(δ − δeτ )− 2α sin δeτ ] .

7Notice that non-oscillation experiments bounds on εµµ are very stringent; thus ε′ee ∼ εee and ε′ττ ∼ εττ .
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For the sake of simplicity, the symbols εαβ with α ̸= β indicate the moduli of such parameters.
The only NP parameters appearing at the considered perturbative level are εeµ and εeτ which,
in turn, carry the dependence on the CP phases δeµ, δeτ . All in all, the NSI contributions set an
O(VCC) correction to ASM0

µe . We also notice that the largest of the considered terms, namely the
ones linear in r in the numerator, have similar expressions in both a

εeµ
µe and in aεeτµe , apart from

the sign in front of cos∆31. This means that, around the atmospheric peak, the phases δeµ and
δeτ are equally important even though the magnitude of their impact strongly depends on the
value of the standard CP phase δ.

For the asymmetry in the µτ -channel, we found the following structure:

ANSI
µτ = 8εµτ cos δµτ∆31 cot∆31 +

− 4

3
α∆2

31

(
εeµ cos δeµ − εeτ cos δeτ − 4εµτ cos δµτ csc

2∆31

)
+ (6.48)

− 2r [εeµ cos(δ − δeµ) + εeτ cos(δ − δeτ )] (1−∆31 cot∆31)

+ 4aε′ττ (1−∆31 cot∆31) .

In this case, four different NSI parameters enter the leading order corrections, namely εµτ , εeτ , εeµ
(together with their phases) and ε′ττ . Contrary to the µe case, the largest correction to the
vacuum expression is given by the first order term εµτ in the first line of eq.(6.48), which is
not suppressed by any of the standard small parameters a, r, s and α. Considering that ASM0

µτ ∼
O(rα), this makes the µτ -channel very promising for searching for NP, at least at the probability
level where possible complications due to small τ statistics do not enter. Finally, for the µµ
channel, matter effects generate a substantial difference in the propagation of neutrinos versus
antineutrinos, which results in the following NSI contributions:

ANSI
µµ = −8εµτ∆31 cos δµτ tan∆31 − 4rεeµ∆31 cos (δ − δeµ) tan∆31 +

+ 4aε′ττ (∆31 − tan∆31) tan∆31 −
4

3
α∆31 × (6.49)

[εeµ cos δeµ (∆31 + tan∆31)− εeτ cos δeτ (∆31 − tan∆31)−
4∆31εµτ cos δµτ sec

2∆31

]
.

As expected from unitarity relations, we get an opposite linear dependence on εµτ but with
a coefficient proportional to tan∆31 which, close to the atmospheric peak, gives an important
correction to ASM1

µµ .

6.3.2 Asymmetries in the 3+1 case

The next NP scenario under discussion is the so-called 3+1 model (see Sec. 3.1), in which a
sterile neutrino state supplements the three standard active neutrinos. Even though the new
state cannot interact with the ordinary matter, it can have a role in neutrino oscillations thanks
to the mixing with the active partners. The long-standing reactor, gallium and short-baseline
anomalies [422] suggested that, if present, the fourth mass eigenstate m4 should have a mass
such that ∆m2

41 = m2
4 −m2

1 ∼ O(1) eV2, that is orders of magnitude larger than the solar and
the atmospheric mass splittings, thus capable to drive very fast oscillations visible at accordingly
small L/E. In addition to the new mass splitting ∆m2

41, the PMNS matrix becomes a 4 × 4
matrix which can be parametrized in terms of 6 angles and 3 phases. Here, we adopt the following
multiplication order of the rotation matrices R(θij) [406, 418, 419]:

U = R(θ34)R(θ24)R(θ14)R(θ23, δ3)R(θ13, δ2)R(θ12, δ1). (6.50)

Apart from δ2, which becomes the standard CP phase for m4 → 0, we have two potential
new sources of CP violation, encoded in two phases δ1 and δ3. In the description of neutrino
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propagation in matter, we cannot disregard the role of the NC interactions because the sterile
state does not feel at all the presence of matter; this results in the following evolution equations:

i
d

dt


νe
νµ
ντ
νs

 = (6.51)

=

 1

2Eν

U


0 0 0 0
0 ∆m2

21 0 0
0 0 ∆m2

31 0
0 0 0 ∆m2

41

U † +


ACC − ANC 0 0 0

0 −ANC 0 0
0 0 −ANC 0
0 0 0 0





νe
νµ
ντ
νs

 ,

where νs is the new sterile state, ACC is the usual matter charged current potential and ANC is
the matter NC potential, ANC ≡ 1/

√
2GFnn, with nn being the neutron density in the Earth

crust.
The parameter space of the 3+1 model is therefore enlarged compared to the SM case by three

new mixing angles θi4, two more CP phases δ1,3 and the mass-squared difference ∆m2
41. Thus,

in addition to the expansion parameters used in the previous sections (r, s, a), we also expand
in the small s14, s24 and s34 (where si4 = sin θi4) that we can still assume of O(0.1). To further
simplify the analytic expressions of the asymmetries, we also introduce VNC = ANCL/2∆31. It
is useful to present the results in a form similar to eq.(6.44):

Aαβ = ASM
αβ + A3+1

αβ +O(λn) , (6.52)

where ASM
αβ are the SM asymmetries and the symbol λ represents a common order of magnitude

of all small quantities used in our perturbation theory, including VCC (but not VNC , whose
dependence in Aαβ is exact). The exponent amount to n = 3 for Aµτ , Aµµ and n = 2 for
Aµe. Notice that, due to the parametrization adopted in this manuscript, the SM phase δ of
eqs.(6.37)-(6.43) must be replaced by the combination δ2 − δ1 − δ3. Averaging out all the fast
oscillations driven by ∆m2

41, the various A3+1
αβ have the following expressions:

A3+1
µe ∼ s14s24

f1
{−6 [2α∆31 sin δ1 + 3r cos∆31 sin(δ2 − δ3) sin∆31]}+

s14s24
f 2
1

{216r2α∆31 cos(δ2 − δ3) sin(δ1 − δ2 + δ3) sin4∆31} ,

A3+1
µτ = 2s24s34 cot∆31(sin δ3 + 2VNC∆31 cos δ3) , (6.53)

A3+1
µµ = −4s24s34VNC∆31 cos δ3 tan∆31 .

To avoid large expressions, for Aµe we only quote the corrections due to the new mixing angles.
First of all, we notice that the corrections to the µe asymmetry are only linearly suppressed

compared to the leading order results; thus, we expect such an asymmetry to be quite sensitive
to new sources of CP violation. Then, both corrections to the µτ and the µµ asymmetries are
linear in the combination s24s34. Since the angle θ34 has weak constraints (values of 20− 30◦ are
still allowed), these corrections can be relatively large. Notice also that, since VNC is roughly
of the same order of magnitude as VCC , A

3+1
µτ is expected to provide a large correction to the

standard model asymmetries, making the ντ appearance channel, at least in principle, very
sensitive to NP effects. As for the PMNS phases, all leading order corrections depend only on
the new phase δ3. This means that a long baseline experiment is mostly sensitive only to the
combination δ2 − δ1 − δ3 and to the single phase δ3.

Beside the results of eq.(6.53), it is worth considering a new asymmetry corresponding to the
νµ → νs transition. Even though sterile neutrinos cannot be directly detected, the probability
P (νµ → νs) is a measure of the NC events in the detector. Indeed, being the NC interactions
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Asymmetry SM NSI 3+1
Aµe 1 λ λ
Aµµ λ3 λ2 λ2

Aµτ λ2 λ2 λ2

Aµs - - 1

Table 6.4: Order of magnitude estimates of the various contributions to the asymmetries discussed in this

paper. λ is a common order parameter such that: r, s, a,∆21, VCC , εαβ , θi4 ∼ O(λ).

flavor independent, the number of events is proportional to the sum of the transition probabilities
from the starting flavor (νµ) to the three active final flavors (νe,τ,µ) because of the unitarity
relation P (νµ → νs) = 1−P (νµ → νe,µ,τ ). The new asymmetry has vanishing matter corrections
and, at the leading non-vanishing order, reads:

A3+1
µs = −2s24s34 sin δ3 sin∆31 cos∆31

2s224 + (s234 − s224) sin
2∆31

. (6.54)

This is clearly an O(1) result since both numerator and denominator are of O(λ2). In Tab.(6.4)
we summarize the outcome of our analytic considerations on the magnitude of the NP corrections
to the asymmetries discussed in this paper.

6.3.3 DUNE and the integrated asymmetries

As a case study to investigate the effects of the non-standard sources of CP violation, we choose
the DUNE experiment. Our simulations have been performed considering all the CC channels
and the NC channel [637], as in the previous discussions. For the running time we choose 3.5+3.5
years, while as neutrino flux we used both the standard one, peaked at 2.5 GeV, and the already
mentioned high-energy one [652, 656].

The relevant question now is related to the experimental capability to measure the asym-
metries we are considering: in fact, if the CP violating quantities will not be measured with a
sufficient precision, then we cannot distinguish the deviation from the SM results due to NP.
Instead of considering the asymmetries at the probability level, we deal with the experimentally
relevant integrated asymmetries built from the number of expected events Nβ and N̄β:

Aαβ =
Nβ − N̄β

Nβ + N̄β

, (6.55)

where the event rates for the να → νβ and the CP conjugate ν̄α → ν̄β transitions are computed
from:

Nβ =

∫
Eν

dEν Pαβ(Eν)σβ(Eν)
dϕα

dEν

(Eν) εβ(Eν) (6.56)

N̄β =

∫
Eν

dEν Pᾱβ̄(Eν)σβ̄(Eν)
dϕᾱ

dEν

(Eν) εβ(Eν) , (6.57)

in which σβ(β̄) is the cross section8 for producing the lepton β(β̄), εβ(β̄) the detector efficiency
to reveal that lepton and ϕα(ᾱ) the initial neutrino flux at the source. Since in the SM the only
dependence on the CP phase is carried on by δ, the correlations between the pair of asymmetries,
for instance (Aµτ , Aµe) and (Aµτ , Aµµ), is maximal and a close curve appears in the related
physical planes. If, in addition, we also take into account the experimental errors on angles

8We used NC and CC inclusive cross sections from GENIE 2.8.4 included in the DUNE GLoBES files [562, 574],
which are of the order of σ/E = 10−39-10−38 cm2/GeV .
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Figure 6.10: Numerical evaluation of the SM asymmetries of eq.(6.16) at DUNE, with standard flux. The SM

parameters have been allowed to vary in their 1σ range, while all possible values for the CP phase have been

taken into account. The blue dots represent asymmetries in the normal hierarchy hypothesis, while the orange

ones represent asymmetries in the inverted hierarchy hypothesis.

and mass differences, the curves are scattered as reported in Fig.6.10, for the DUNE standard
flux and in Fig.6.11 for the optimized flux. The blue dots are obtained using parameters in the
normal hierarchy, while the orange ones are obtained using the inverse hierarchy hypothesis.

The first striking features of the integrated asymmetries is related to the fact that their
sign is always positive; in fact, being integrated quantities, they are influences not only by the
relative differences among ν and ν̄ probabilities, but also by the differences among ν and ν̄
fluxes and cross sections. The other important observation is that, as discussed above, Aµe is
the asymmetry that changes the most with a change of the CP phase. On the other hand, the
other two asymmetries Aµτ and Aµµ change at a much slower rate.

Eventually, it is worth mentioning that, for each pair of asymmetries, the closed curves corre-
sponding to NH and IH never overlap. This means that, at least in principle, one could be able to
solve the neutrino hierarchy problem simply looking at the CP asymmetries. However, in DUNE
as well as in other future experiments, the foreseen experimental errors on such asymmetries will
probably be too large to allow for such a discrimination. Now we are ready to apply our strategy
to check whether other sources of CP violation carried on by NP can be sufficiently distinguished
from the SM phase. In order to do that, we first need to evaluate the experimental errors on the
SM asymmetries and then recompute them as predicted by the NSI and the 3+1 sterile models.
From Fig.6.10 we see that the uncertainties on the standard angles and mass splittings are not
playing an important role. A simple but accurate estimate from error propagation gives:

(δAαβ)
2 =

4N̄2
β(δNβ)

2 + 4N2
β(δN̄β)

2

(Nβ + N̄β)4
, (6.58)

where δN is the uncertainty related to the number of expected events which receives contribu-
tions from the systematic error and the statistical error. For the νµ disappearance channel, the
first source of uncertainty is always dominating, since the number of events is very large and the
statistical error is reduced. On the other hand, in the other two channels both terms are impor-
tant. In particular, in the ντ appearance, systematic errors are quite large (due to the poorly
known cross section and to the systematics related to the complicated event reconstruction) and
the number of events is small. Thus we expect δAµτ to be particularly large.

In Fig.6.12 we show the values of the asymmetries where the effects of NSI are taken into
account, computed by using the standard neutrino flux. The blue stars represent the asymme-
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Figure 6.11: Same as Fig.6.10 but with the optimized flux. Notice the different vertical scales on the left and

right panels.

NSI parameters 2σ bounds
ε′ee (-0.2 , 0.45)
ε′ττ (-0.02 , 0.175)
|εeµ| <0.1
|εeτ | <0.3
|εµτ | <0.03

Table 6.5: 2σ bounds on the moduli of the NSI parameters, from [475].

tries in the standard case (fixing all the standard parameters to their best fits9 but varying the
values of δ), while the orange dots are the results obtained in presence of NSI, computed from
the number of events corresponding to random flat extraction of the couplings in the ranges
shown in Tab.6.5. The sides of the grey rectangles represent the maximum 1σ error bars on
the standard asymmetries at different chosen values of δ as computed from eq.(6.58). For the
sake of illustration, we do not show here the error bars associated to the NSI points because the
number of events is not much different from the standard case, thus the error bars in the NSI
framework are of the same order of magnitude as the displayed ones.

It is clear that Aµτ is very sensitive to New Physics. Indeed, the SM asymmetry has almost a
fixed value Aµτ ∼ 0.245, as showed in Fig.6.10, while the NSI contributions can turn Aµτ into the
range [0.21,0.27]. However, the error bars are much larger than the produced variation, making
this asymmetry at the DUNE conditions not useful for discerning new CP phases. Even though
the Aµe asymmetry gets very different values in the standard case (in the range [0.28,0.55]), the
inclusion of the NSI is able to even extend the foreseen asymmetry beyond such a range, enough
to reach values outside the error bars of the standard asymmetries. The problem in this case is
that, as discussed before, we should also take into account the error bars on the orange dots so
that, when we include them, also Aµe cannot give hints of NP at DUNE. Finally, for the Aµµ

the very same analysis done for Aµτ applies.
With a higher energy flux, the results partially differ from what illustrated above (see

Fig.6.13). Even though the larger number of events reduces the error bars, the Aµτ and Aµµ with
NSI do not change enough in such a way to be clearly distinguished at an acceptable confidence

9We present here only results in Normal Hierarchy, for the Inverted Hierarchy case the conclusions are very
similar.
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Figure 6.12: Integrated asymmetries in the (Aµτ , Aµe) (left plot) and (Aµτ , Aµµ) planes (right plot). Blue stars

represent the asymmetries in the SM case while the orange dots are the values obtained in presence of NSI. The

grey rectangle shows the 1σ error range on the standard asymmetries. For sake of simplicity, we do not report

here the error bars on the orange dots. Standard neutrino flux has been employed to compute the number of

events.

level from the SM case. On the other hand, Aµe can assume values very different from the SM
ones, in particular, a sets of NSI parameters can push it toward negative values. Indeed, as
it is clear from eqs.(6.45-6.47), NSI corrections to the asymmetries can be comparable to the
SM case when εeµ and εeτ are of O(0.1). With higher energy fluxes, the appearance transition
probabilities are mainly evaluated off peak, making the cosine of ∆31 in eqs.(6.46,6.47) no longer
negligible. Thus NSI corrections become more and more important, causing an opposite sign of
the asymmetry with respect to the SM case when cos(δ − δeµ,τ ) terms become negative.

In Fig.6.14, we report our numerical results for the 3+1 case, obtained for fixed ∆m2
41 = 1

eV2 and all mixing angles and phases extracted randomly flat in the ranges showed in Tab 6.5.
Standard neutrino fluxes have been employed. As previously mentioned, we have four indepen-
dent asymmetries. Three of them (Aµe, Aµµ and Aµτ ) are accessible through the corresponding
oscillation channels. The other one, namely Aµs, can be measured looking at the NC events.
Indeed, since the NC interactions are flavor independent, the number of events in this channel
depends on the sum:

NNC ∝ P (νµ → νe) + P (νµ → νµ) + P (νµ → ντ ) , (6.59)

which, from the unitarity relation, corresponds to 1− P (νµ → νs). Thus, the integrated asym-
metry

ANC =
NNC − N̄NC

NNC + N̄NC

(6.60)

is closely related to the µs asymmetry.
We present our results in the (Aµτ , Aµe) and (Aµµ, ANC) planes, see Fig.6.14, for the standard
flux. The situation is quite clear: even though the analytic corrections to Aµe ∼ O(λ) and to
Aµµ,µτ ∼ O(λ2), the relatively large uncertainties do no allow the 3+1 points to spread outside
the error bars.

As before, the use of the higher energy flux reduces the error bands and increases the number
of points outside the SM uncertainties, see Fig.6.15. Furthermore, as for the NSI case, the
asymmetry which vary the most when NP enters into the game is Aµe since, as shown in (6.53),
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Figure 6.13: Same as Fig.6.12 but using the optimized flux.
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Figure 6.15: Same as Fig.6.14 but for the optimized flux.
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Figure 6.16: T2K (blue) and NOνA (red) appearance results in the δCP -θ23 plane for NO (left panel) and IO

(right panel). A combined analysis is also shown (black lines). Figure from [155].

the correction to SM asymmetry is at first order in our perturbative expansion. It is clear from
the left panel of Fig.6.15 that there are some points at more than two sigmas away from the
standard values but, differently from the previous case, Aµe never becomes negative.
On the other hand, in the (Aµµ, ANC) plane, no orange point lies outside the grey rectangle.

In conclusion, for both New Physics scenarios, the Aµe asymmetry can reach values well
beyond the Standard Model expectation, including the foreseen statistics and systematic uncer-
tainties, when an high energy flux is employed. A special mention should be devoted to Aµτ :
while analytic considerations indicates that New Physics sets large corrections compared to the
Standard Model results, the uncertainties involved in the evaluation of the number of expected
events obscure this important feature. An experimental effort should be carried out to reduce
the uncertainties in τ detection. Moreover, further studies should try to find a way to distin-
guish the different new physics models at the asymmetry level; indeed, our approach can clearly
suggest us the presence of BSM effects, but cannot tell us which is th source of such effects.

6.4 The T2K-NOνA tension BSM solutions: differenti-

ating viable models at DUNE

Our last discussion will have as main topic how to distinguish the different models which can
(partially) solve the T2K-NOνA tension. This 2σ tension [153–155], as already mentioned, is
about the first measurement of the PMNS phase. Indeed, the appearance data from T2K seems
to favour, in NO, δCP values around 3/2π; on the other hand, NOνA, favours all the other
values. We show this in left panel of Fig. 6.16. In IO, on the other hand the tension is much
milder (see right panel of Fig. 6.16) and both experiments prefer δCP > π. Different attempts
to reduce the tension have been done in the literature [551, 657–662]. We discuss here three
BSM scenarios which may reduce the tension: vector and scalar propagation NSI and 3+1 sterile
neutrino models.
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εee εττ εeµ εeτ εµτ
LMA [-0.31,0.40] [-0.11,0.15] [-0.11,0.02] [-0.12,0.10] [-0.004,0.011]
LMA-Dark [-2.40,-1.70] [-0.01,0.01] [0.00,0.11] [-0.13,0.13] [-0.011,0.008]

Table 6.6: The constraints at 90% for parameters taken one at a time for the Earth from [477]. The upper line

is for the standard solution and the lower line is for ∆m2
21 < 0 and the opposite sign on the atmospheric mass

ordering.

6.4.1 Vector propagation NSI

Since the introduction of the matter effects in neutrino oscillations, the possibility that neutrinos
can undergo NSIs with matter has been widely studied. As already mentioned in Sec. 3.2.2, we
can describe them using an effective theory approach, including in the Lagrangian the following
terms

Leff
NSI = −2

√
2GF

∑
f,α,β

εfαβ(ν̄αγρνβ)(f̄γ
ρf) , (6.61)

where GF is the Fermi constant, εfαβ is the parameter which describes the strength of the NSI,
f is a first generation SM fermion (e, u, or d) and α and β denote the neutrino flavors e, µ
or τ . The ε parameter can be related to the parameters in a simplified model or even a UV
complete scenarios, since these details do not affect oscillations, we focus only on the ε effective
parameter. The presence of such interactions modifies the neutrino oscillation Hamiltonian to

H =
1

2E

UM2U † + a

 1 + εee εeµ εeτ
ε∗eµ εµµ εµτ
ε∗eτ ε∗µτ εττ

 , (6.62)

where U is the PMNS matrix [11, 663], M2 = diag(0,∆m2
21,∆m

2
31), a = 2

√
2GFNeE, and Ne

is the electron number density. Due to the hermiticity of the Hamiltonian matrix, the diagonal
NSI couplings εαα must be real, while the non-diagonal ones are in general complex and can be
written as εαβ = |εαβ|eiϕαβ . Since we can subtract a matrix proportional to the identity without
changing the oscillation probabilities, only two of the diagonal NSI parameters are independent.
Without loss of generality we will focus on εee and εττ for concreteness.

Various analyses of oscillation data10 have been considered under different assumptions. A
recent global analysis of oscillation data in the context of NSIs has estimated the constraints on
the NSI parameters when translated to the Earth’s crust [477] shown in table 6.6. Both LMA
and LMA-Dark results are shown, with the difference mainly affecting εee. The LMA-Dark
solution [22, 468–470, 655, 672–675] is the solution with εee ≃ −2 and the opposite sign11 on
∆m2

31, ∆m
2
21, and δ. For a recent discussion of LMA-Dark in the context of the latest reactor

constraints see [22].
Naively it would appear that charged lepton flavor violating constraints would be much

stronger than those from oscillations, but numerous UV complete models with large εαβ ≳ 0.1
exist in the literature [236–239, 241, 444–447]. All of these models can be recast into the language
of NSI which is exactly what makes NSI such an attractive BSM scenario to investigate.

Considering the same expansion in small parameters presented in the previous sections (see
Sec. 6.3) and expanding also up to the second order in the NSI couplings, we obtain for the

10Scattering data are also sensitive to NSI [22, 470, 472, 473, 491, 664], although these data sets have a non-
trivial dependence on the mediator mass, while oscillation data are essentially [240, 242, 665–671] independent
on it.

11We take the definition of the three mass eigenstates as |Ue1| > |Ue2| > |Ue3|. Thus θ12 < 45◦ by definition
and the sign of ∆m2

21 has been measured experimentally with solar neutrinos. Some define the mass eigenstates
by m1 < m2, |Ue1| > |Ue3|, and |Ue2| > |Ue3|. In this case ∆m2

21 > 0 by definition and the octant of θ12 is to be
determined experimentally. See [675, 676].
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electron appearance as corrections to the standard model probability,

P (νµ → νe)
NSI =

4

3
V α∆31[∆31(εeτ cosϕeτ − εeµ cosϕeµ)

− sin∆31εeτ (cos∆31 cosϕeτ − sin∆31 sinϕeτ ) (6.63)

− sin∆31εeµ(cos∆31 cosϕeµ − sin∆31 sinϕeµ)]

− 2V r sin∆31[∆31 cos∆31(εeµ cos(δ − ϕeµ)− εeτ cos(δ − ϕeτ ))

+ ∆31 sin∆31(εeτ sin(δ − ϕeτ )− εeµ sin(δ − ϕeµ))

+ sin∆31(εeµ cos(δ − ϕeµ) + εeτ cos(δ − ϕeτ ))] .

We observe that, at the perturbative order taken into account, the probability depends on εeµ
and εeτ only. In particular, if ϕeτ = ϕeµ, the only relevant combinations are εeµ+εeτ and εeµ−εeτ .
The same happens if ϕeµ = π + ϕeτ . For the muon disappearance channel, the NSI contribution
is

P (νµ → νµ)
NSI = V

{
− 8∆31εµτ cosϕµτ cos∆31 sin∆31 +

4

3
α∆2

31[εeτ cosϕeτ cos
2∆31

− εeµ cosϕeµ cos
2∆31 + 4εµτ cosϕµτ (1− 2 sin2∆31)]

+ 4t∆31εττ cos∆31 sin∆31 (6.64)

+ 4r∆31εeµ cos(δ − ϕeµ) cos∆31 sin∆31 − 4aεττ sin
2∆31

+
4

3
α∆31[εeτ cosϕeτ cos∆31 sin∆31 − εeµ cosϕeµ cos∆31 sin∆31]

}
.

Compared to the previous case, all NSI parameters but εee contribute. However, the term in εµτ
is not suppressed by any of the small parameters r, s and t. Thus, this probability is expected
to be more sensitive to εµτ and its phase. The modification of the probabilities, in particular to
the appearance one, may go in the same direction of the T2K-NOνA tension. This can happen,
for instance, since at NOνA and T2K, the matter effects are very different. In the former case,
we have a longer baseline, 810 km, with a matter density of 2.84 g/cc; in the latter case, the
baseline is reduced almost by a factor of 3 (295 km) and the matter density is 2.6 g/cc. It
has been shown in [657] that in presence of a non-vanishing εeβ with β = µ, τ , if the matter
potential are different, two experiments can measure two separate values of the PMNS phase.
In particular, it holds that

|εeβ| ∼
s12c12c23π∆m

2
21

2s23wβ

∣∣∣∣sin δT2K − sin δNOνA

aT2K − aNOνA

∣∣∣∣ (6.65)

where, wβ = s23 (c23) for β = µ (τ). Given the results of the two experiments, we expect
that |εeβ| ∼ 0.2 may reduce the tension. Performing a fit on the appearance data of the two
LBL experiment, authors of [657] found the results in Tab. 6.7 for different choices of the
non-vanishing off-diagonal vector NSI parameters.

It is clear that in NO, when εeµ (εeτ ) is turned on, the fit is significantly better than the
one performed with the SM, namely ∆χ2 = χ2

SM − χ2
NSI = 4.44 (3.65). The best fit values

for the magnitude of the NSI couplings is the one expected analitically. The other best fits
can improve the fit, but not significantly. It is however interesting to notice that all possible
scenarios improves the SM fit.

6.4.2 Scalar NSI

In addition to a vector mediator, one can consider different Lorentz structure for the underlying
theory behind a new neutrino interaction (see Sec. 3.2.3). Scalar NSI has been investigated
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MO NSI |ϵαβ| ϕαβ/π δ/π ∆χ2

NO
ϵeµ 0.19 1.50 1.46 4.44
ϵeτ 0.28 1.60 1.46 3.65
ϵµτ 0.35 0.60 1.83 0.90

IO
ϵeµ 0.04 1.50 1.52 0.23
ϵeτ 0.15 1.46 1.59 0.69
ϵµτ 0.17 0.14 1.51 1.03

Table 6.7: Best fit values to NOvA and T2K data and ∆χ2 = χ2
SM − χ2

NSI for a fixed MO considering one

complex vector NSI parameter at a time.

in the context of some neutrino oscillation experiments as well as early universe constraints
[243, 499, 670, 677–679]. All previous studies, to our knowledge, focused on the diagonal scalar
NSI parameters; we focus on the off-diagonal parameters. Early universe constraints and fifth-
force probes may be stronger than terrestrial probes in many cases, although not necessarily
all, depending primarily on the mediator mass [670]. That said, we do caution the reader to be
aware of important non-oscillation constraints on scalar NSI.

The effective Lagrangian for scalar NSI is

Leff
scalar NSI = yfYαβ(ν̄ανβ)(f̄f) , (6.66)

which is no longer a matter potential, but it can be seen as a Yukawa interaction term for Dirac
neutrinos that induces a mass term that depends on the density of fermions sourcing the term.
The Hamiltonian governing neutrino oscillations is modified from the the diagonal M2 term to
(M + δM)(M + δM)†. We then parameterize the correction term δM as

δM =
√

|∆m2
31|

ηee ηeµ ηeτ
η∗eµ ηµµ ηµτ
η∗eτ η∗µτ ηττ

 , (6.67)

where we have chosen to scale the size of δM relative to
√
|∆m2

31| to make the parameters of
the model, ηαβ, dimensionless. We have also chosen to make δM Hermitian although it need not
be (see e.g. [680]) depending on if the scalar mediator is real or complex; we encourage further
research into the non-Hermitian case. Unlike in the vector case with the εαβ parameters, ηαβ,
are proportional to the matter density. As in the vector case, the diagonal parameters are real
while the off-diagonal elements are complex, ηαβ = |ηαβ|eiϕαβ . To be explicit, we can relate these
ηαβ parameters to the parameters of the underlying theory as

ηαβ =
1

m2
ϕ

√
|∆m2

31|
∑
f

nfyfYαβ . (6.68)

We will also later rescale all ηαβ → ηαβ(3) relative to a density at 3 g/cm3 for the self-consistent
comparison among different experiments at different densities. While the effect of this rescaling
is minimal in long-baseline experiments as their densities are similar, it is essential in order
to perform a correct comparison, and would have a larger effect when also considering atmo-
spheric neutrinos and/or solar neutrinos. As discussed in Sec. 3.2.3, in this case, the oscillation
probabilities depend also on the lightest of the neutrino masses.

Using the same expansion procedure described in the previous section and expanding up
to the second order also in the parameter ηij it is possible to obtain approximate expressions
also for the scalar NSI case see Ref. [499]. In order to avoid cumbersome expressions, we did
not show here the effect of the solar mass splitting and of the lightest neutrino mass. In this
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context, neglecting the solar mass splitting which would complicate significantly the formulae,
the correction to the the appearance probability in presence of scalar NSI is

P (νµ → νe)
NSI = [η2eµ + η2eτ + 2rηeµ cos(δ + ϕ12) + 2rηeτ cos(δ + ϕ13)] sin

2∆13+

+ 2ηeµηeτ cos(ϕ12 − ϕ13) sin
2∆13+

− 2V [η2eµ + η2eτ + 2rηeµ cos(δ + ϕ12) + 2rηeτ cos(δ + ϕ13)]× (6.69)

× [∆13 cos∆13 sin∆13 − sin2∆13]+

− 2V ηeµηeτ cos(ϕ12 − ϕ13) sin
2∆13[∆13 cos∆13 sin∆13 − sin2∆13] .

It can be noticed that the probability depends only on ηeµ and ηeτ . Both parameters appears in
second order terms, proportional to η2 or to rη.

The νµ disappearance probability, on the other hand, can be written as

P (νµ → νµ)
NSI = −∆13(ηµµ + ηττ + 2ηµτ cosϕµτ ) sin 2∆13+

− 1

2
∆13(η

2
eµ + η2eτ + 4η2µτ sinϕ

2
µτ ) sin 2∆13+

− 4∆2
13η

2
µτ cosϕ

2
µτ sin 2∆13+

+
1

2
(η2µµ + η2ττ )[1− (1−∆2

13) cos 2∆13 −∆13 sin 2∆13]+ (6.70)

− 2∆13[rηeµ cos(δ − ϕeµ) + rηeτ cos(δ + ϕeτ )] sin 2∆13+

+ 2t(ηττ − ηµµ)[−1 + cos 2∆13 +∆13 sin 2∆13]+

− 3∆13ηeµηeτ cos(ϕeµ − ϕeτ ) sin 2∆13+

− 2∆13ηµµηµτ cosϕµτ (2∆13 cos 2∆13 + sin 2∆13)+

+ ηµµηττ [−1 + (1− 2∆2
13) cos 2∆13 +∆13 sin 2∆13]+

− 2∆13ηµτηττ cosϕµτ (2∆13 cos 2∆13 + sin 2∆13)

In this case, all the scalar NSI parameters but ηee appear. ηµµ, ηττ and ηµτ modify the prob-
ability at the first order in perturbation theory; we expect them to strongly affect the ∆m2

13

measurement, since they are strongly correlated to the quantity sin 2∆13. Apart from the atmo-
spheric mass splitting, the scalar NSI parameters in this probability appear coupled also to r
and t. Notice that, in our analytical approach, the probabilities are symmetric under the ηeτ -ηeµ
exchange.
Also in this case, depending the scalar NSI parameters on the matter density, two different ex-
periments like T2K and NOνA may perform two different δCP measurements in presence of this
new kind of interactions. We redo the analysis described in [657] in the context of vector NSI,
also for scalar NSI. We show our results in Fig. 6.17 and in Tab. 6.8, where we also consider
different values of the lightest neutrino mass.

We make some comments on these results. We note that the IO is always preferred over
the NO, but at even lower significance than for vector NSI. In addition, we also recall that
SuperK’s atmospheric data prefers the NO [111, 657, 681] and will be affected by scalar NSI in
quite a different fashion to long-baseline data [243, 499]. Thus we find that scalar NSI is not a
satisfactory improvement to the slight NOvA and T2K tension, but we can still regard the best
fit points as valuable benchmarks moving forward.

Unlike in vector NSI, for scalar NSI the absolute neutrino mass scale plays a role. In general
the effect of mlightest, even to values quite a bit larger than allowed by cosmology [682] where
the upper limit is ∼few×10−2 eV, on the results is quite small. That said, in some cases we see
that the best fit value changes by a fair amount as mlightest changes; this is due to the existence
of multiple quasi-degenerate local minima that slightly change as mlightest changes.
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Figure 6.17: The preferred and disfavored regions of scalar NSI given by NOvA and T2K data with information

from Daya Bay and KamLAND data as well. ∆m2
31, θ23, and δ are minimized over and θ13, θ12, and ∆m2

21 are

fixed to the best fit values from Daya Bay and KamLAND. The top, middle, and bottom rows correspond to

ηeµ(3), ηeτ (3), and ηµτ (3) respectively, and the left and right columns correspond to the NO and IO respectively.

The mass of the lightest neutrino is taken to be zero here. The (3) refers to the fact that the scalar NSI parameters

are plotted as rescaled to a density of 3 g/cm3. The blue stars are the best fit points, the light gray regions are

slightly disfavored and the dark gray regions are disfavored at 68% CL. The successive orange colors represent

integer units of ∆χ2.
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mlightest = 0 eV
MO NSI |ηαβ(3)| ϕαβ/π δ/π ∆χ2

NO
ηeµ(3) 0.009 1.40 1.17 0.04
ηeτ (3) 0.016 1.42 1.10 0.02
ηµτ (3) 0.006 1.22 1.11 0.08

IO
ηeµ(3) 0.016 1.82 1.86 2.33
ηeτ (3) 0.013 0.66 1.89 2.20
ηµτ (3) 0.057 1.60 1.85 2.33

mlightest = 0.05 eV
MO NSI |ηαβ(3)| ϕαβ/π δ/π ∆χ2

NO
ηeµ(3) 0.002 1.66 1.18 0.10
ηeτ (3) 0.003 0.62 1.13 0.08
ηµτ (3) 0.009 0.56 1.17 0.06

IO
ηeµ(3) 0.010 1.72 1.88 2.21
ηeτ (3) 0.010 0.58 1.90 2.18
ηµτ (3) 0.033 1.58 1.79 2.36

mlightest = 0.10 eV
MO NSI |ηαβ(3)| ϕαβ/π δ/π ∆χ2

NO
ηeµ(3) 0.001 1.74 1.17 0.12
ηeτ (3) 0.002 0.64 1.14 0.11
ηµτ (3) 0.006 0.56 1.19 0.06

IO
ηeµ(3) 0.006 1.72 1.86 2.20
ηeτ (3) 0.006 0.60 1.88 2.19
ηµτ (3) 0.024 1.56 1.83 2.36

Table 6.8: Best fit values to NOvA and T2K data and ∆χ2 = χ2
SM − χ2

NSI for a fixed MO considering one

complex scalar NSI parameter at a time, rescaled to what it would be for a density of 3 g/cm3 for various values

of mlightest. (For the SM, χ2
NO − χ2

IO = 2.3 .)
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6.4.3 Sterile neutrinos

Sterile neutrinos are a simple, phenomenologically rich, and theoretically and experimentally
motivated extension to the standard three-flavor neutrino scenario. Since neutrinos have mass,
there are additional particles and sterile neutrinos are present in many of the explanations.
In addition, there are numerous hints of various significances (see Sec. 3.1) and robustness
that indicates that new light (m4 ≲ 10 eV) neutrinos may exist [228, 229, 231, 232, 683–685]
although strong constraints also exist [414, 552, 686], see refs. [117, 409, 415, 420–423] for recent
reviews. Sterile neutrinos also play a role in long-baseline accelerator neutrino experiments,
although typically at somewhat lighter masses than the above hints ∼ 1 eV [418, 419, 424–
427, 637, 659, 687–703]. We focus on the scenario with a single light sterile neutrino which
modifies the neutrino oscillation Hamiltonian to

H =
1

2E

U4


0

∆m2
21

∆m2
31

∆m2
41

U †
4 +


V − V ′

−V ′

−V ′

0


 , (6.71)

where
U4 ≡ R34(θ34)R24(θ24)R14(θ14)U23(θ23, δ23)U13(θ13, δ13)U12(θ12, δ12) , (6.72)

the relevant 2× 2 submatrix of Uij is

Uij(θij, δij) =

(
cij sije

−iδij

−sijeiδij cij

)
, (6.73)

and Rij(θij) = Uij(θij, 0). At the probability level, performing the same expansion discussed
above and expanding up to the second order also in the small si4 = sin θi4 angles, we obtain as
correction to the standard oscillation probabilities

P 3+1
νµ→νe = 0 (6.74)

and

P 3+1
νµ→νµ =− 2s224 cos

2∆31 − 2V ′∆31s24s34 cos δ23 sin 2∆31 . (6.75)

where V ′ is the NC matter potential, which appears in the probabilities due to the presence
of a fourth sterile state. Notice that given our PMNS parameterization, in the standard model
probabilities we should substitute the usual 3×3 phase δCP with the combination δ12+δ13−δ23. It
is clear that, at our expansion order, only θ24 modifies the disappearance probabilities, multiplied
however to the small (at the atmospheric peak) cos2∆31. For this reason, the NOvA and T2K
data are not substantially improved by the addition of a light sterile neutrino; one can nonetheless
perform the analysis. In Ref. [659] they considered a benchmark point of θ14 = θ24 = 8◦ and
θ34 = 0 with ∆m2

41 = 1 eV2. We note that long-baseline experiments are not particularly
sensitive to the value of ∆m2

41 so long as it is well above ∆m2
31. Meanwhile, these values of

the two non-zero sterile mixing angles, θ14 and θ24 are near the existing limits from solar data
[704] and long-baseline disappearance data [552] respectively. We then consider two benchmark
points for each mass ordering and complex phases from a fit to to NOvA and T2K data which
is somewhat constraining for δ13, the usual CP phase, it is not constraining for δ14, a new CP
phase that is physical due to the fourth neutrino. The benchmark points are then shown in table
6.9.
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MO ∆m2
41 [eV2] θ14 θ24 δ13/π δ12/π

NO 1 8◦ 8◦ 1.9 0.7
IO 1 8◦ 8◦ 0 0.5

Table 6.9: Benchmark sterile neutrino parameters from NOvA and T2K data from Ref. [659].Sterile parameters

not shown are zero and standard oscillation parameters not shown are taken to the standard values from [111].
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Figure 6.18: The difference in neutrino appearance probabilities for two benchmark cases (see table 6.7 as a

function of baseline and neutrino energy. On the left the difference is between the probabilities with vector NSI

and εeµ and εeτ in normal ordering and the right is between probabilities with scalar NSI and ηeµ and ηeτ in

inverted ordering. The regions probed by the different long-baseline experiments are indicated. The density is

taken to be that for DUNE, 2.848 g/cm3, throughout.

6.4.4 DUNE sensitivity to T2K-NOνA analysis benchmark models

We have shown that different CP-violating models can be used to assess the T2K-NOνA tension.
This basically means that these two long baseline experiments should not be able to distinguish
at a considerable confidence level such models. Moreover, due to the relatively small ∆χ2 values
with respect to the SM, we can also say that the considered models cannot be discerned by
the standard oscillation at a good confidence level. We can now ask ourselves if, on the other
hand, the more performing DUNE experiment may have better performances in probing the
benchmark values. We expect that this can happen, as we can see in Fig. 6.18, where we plot
at the appearance probability level, which are the differences between two benchmark values
in the vector and scalar NSI models. In particular, we plot Pµe(εeµ) − Pµe(εeτ ) in NO and
Pµe(ηeµ) − Pµe(ηeτ ) in IO. It is clear that at the atmospheric peak, the differences between the
probabilities are very small; however, the DUNE broad band beam is able to cover a wide range
of L/E so that the differences become more important.

Vector NSI

We discuss here the performances of the DUNE Far Detector in constraining the NSI parameters
in the benchmark scenarios discussed above. For the vector NSI case, we observe that the most
interesting results are obtained when the mass ordering is normal, since the ∆χ2-s with respect
to the standard model, when the fits are performed considering εeµ and εeτ , are respectively 4.44
and 3.65 (see table 6.7 taken from [657]); however, for sake of completeness, we show the results
considering also the IO scenarios. Fig. 6.19 shows the DUNE allowed regions at 68, 90, and 99%
CL in the (εαβ −ϕαβ). The top (bottom) panels show the results using the NO (IO) hypothesis.
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Figure 6.19: 68% (solid lines), 95% (dashed lines) and 99% (dotted lines) contours in DUNE in the vector NSI

(|εij | − ϕij)-planes when data are generated using vector NSI best fits considering one parameter at a time. The

top (bottom) panels with red (blue) contours have been obtained usign NO (IO) best fits.

In order to obtain the contours, we consider as true values for the two mass splittings and the
mixing angles the ones from [111] and the values for εαβ, ϕαβ and δ from the T2K-NOνA fit. For
the fit we marginalize over the oscillation parameters with pull terms. All the NSI parameters
that do not appear in each plot are fixed to 0 both in the theory and in the fit.

It is clear that DUNE is expected to be able to measure all the above mentioned vector NSI
parameter with a good precision. Indeed, when εeµ is considered in NO, in the 2-dimensional
plane (2 degrees of freedom), the 68% CL allowed region includes the intervals [0.16,0.21] for εeµ
and [1.3,1.8]π for ϕeµ. This means that in the first benchmark scenario, DUNE would be able
to determine both NSI parameters with a precision of roughly 10%. In the IO case, since the
best fit value for εeµ is smaller (0.04), the allowed region is bigger, but still excludes at 99% CL
the standard model.

In the middle panels, namely when the benchmark scenario presents non-zero values for εeτ
and ϕeτ , it is possible to observe that the DUNE performances are similar to the previous case.
In particular, the allowed regions includes the intervals [0.22,0.34] for εeτ and [1.4,1.8]π for ϕeτ

which correspond to a precision of roughly 20% for the magnitude of the parameter and 10% for
its phase for the NO case. When we consider the IO scenario, the precision on the parameters
remains basically the same, even though the best fit value for the NSI coupling magnitude is
reduced by almost a factor 2.

The results are very different when εµτ is switched on. In this case, the best fit value for
ϕµτ from T2K and NOνA is very close to π/2 in the NO case. Since the NSI correction to the
νµ disappearance probability depends at the leading order to the combination εµτ cosϕµτ , see
Eq. (6.64), DUNE is expected to be very sensitive to small variation of the phase around 3/2π,
but is not adequate to constrain the magnitude |εµτ | with the same precision reached for the
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Figure 6.20: 68% (solid lines), 95% (dashed lines) and 99% (dotted lines) contours in DUNE in the vector NSI

(|εij | − ϕij)-planes when data are generated using NSI best fits marginalizing over all the NSI parameters. The

three top (bottom) plots with red (blue) contours have been obtained using NO (IO) best fits.

other parameters. When we consider the IO hypothesis, the situation is the opposite, since the
phase best fit is close to zero: the magnitude is tightly constrained while the phase can vary in
a relatively large interval.

When a full marginalization over all the NSI parameters is performed in Fig. 6.20, the
contours are obviously enlarged, however DUNE is still be able to exclude large portions of
the parameters spaces in the studied benchmark scenarios. For the marginalization we use the
following priors: εµτ < 0.02 (when undisplayed) [705] and εee < 0.3 [475]. The most interesting
features that can be observed are the following

• In the NO case, when we consider εµτ , a degenerate solution around ϕµτ ∼ 3/2π appears.

• In the IO case, now the SM is allowed at 99% (95%) CL in the εeµ (εeτ ) scenarios.

Scalar NSI

For the sensitivities performed using the scalar NSI benchmark scenarios, we use the same
approach described in the previous subsection. Differently from the previous case, the results
with more statistical significance in the T2K-NOνA fit are the IO ones. In Fig. 6.21 we show
our results in the (ηαβ − ϕαβ) planes in the case in which the lightest neutrino mass is zero.

When the mass ordering is inverted, DUNE is expected to constrain scalar NSI at the fol-
lowing levels at 68% CL: |ηeµ| ∈ [0.012, 0.035] and |ηeτ | ∈ [0.008, 0.012]. On the other hand,
DUNE cannot set remarkable bounds on the phases, being able to exclude at 68% CL only one
third of the possible values of ϕeµ (from 0.44π to 1.1π) and one sixth of the possible values of
ϕeτ (from 1.6π to 1.9π). For the non-zero ηµτ scenario, in which the scalar NSI coupling best

149



0.00 0.02 0.04 0.06 0.08 0.10
0

π

2

π

3π

2

2π

|ηeμ|

ϕ
eμ

*

0.00 0.02 0.04 0.06 0.08 0.10
0

π

2

π

3π

2

2π

|ηeτ|

ϕ
eτ

*

0.00 0.02 0.04 0.06 0.08 0.10
0

π

2

π

3π

2

2π

|ημτ|

ϕ
μ
τ

*

0.00 0.02 0.04 0.06 0.08 0.10
0

π

2

π

3π

2

2π

|ηeμ|

ϕ
eμ

*

0.00 0.02 0.04 0.06 0.08 0.10
0

π

2

π

3π

2

2π

|ηeτ|

ϕ
eτ

*

0.00 0.02 0.04 0.06 0.08 0.10
0

π

2

π

3π

2

2π

|ημτ|

ϕ
μ
τ

*

Figure 6.21: 68% (solid lines), 95% (dashed lines) and 99% (dotted lines) contours in DUNE in the scalar NSI

(|ηij | − ϕij)-planes when data are generated using scalar NSI best fits (with mlightest = 0) considering one NSI

parameter at a time.The three top (bottom) plots with red (blue) contours have been obtained using NO (IO)

best fits.

fit is bigger, we have a different situation. Indeed, DUNE is expected in this case to bound
with a good precision the phase, but can only set a lower limit (|ηµτ | < 0.02 on the magnitude
(the upper limit correspond to a big unrealistic value of the NSI coupling). set In the NO case,
the T2K-NOνA results are characterized by very small best values and small ∆χ2-s. When
we perform sensitivity scans with DUNE, we can observe that this experiment is not able to
distinguish the new physics scenarios from the Standard Model not even at 68% level. Moreover,
the magnitudes of the three non diagonal scalar NSI parameters cannot be bounded from above
and the phases are unconstrained by DUNE.

We checked that when a full marginalization is performed, DUNE is not able to exclude
remarkable portions of the parameters space at a good confidence level. Indeed, the scalar NSI
scenarios produce very similar phenomenology at DUNE (see Sec. 6.4.5); thus, when we allow
all the parameters to vary in the fit, the effects of the η-s can be reduced by the presence of
other non-zero parameters.

We have mentioned that one of the most interesting features of the scalar NSI model is
that the oscillation probabilities in this case depend on the neutrino mass scale. A non-zero
mlightest can slightly change the T2K-NOνA best fits. In particular, increasing the neutrino
mass scale, the phase best fits are almost the same, while the magnitudes of the ηij parameters
decrease. The most significant reduction of the best fits can be observed in the IO case, in
which, as already pointed out, the phenomenology would allow us to distinguish the scalar NSI
parameters from the SM oscillations. In Fig. 6.22 we show the 68% contours using the best fits
for mlightest = 0, 0.05, 0.1 eV. It is clear that the contours shapes are not drastically altered by
the decrease of the scalar NSI parameters magnitudes. However, when the lightest neutrino is
not massless, DUNE is expected to be able to set upper limits on ηµτ : |ηµτ | < 0.08 (0.06) at 68%
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Figure 6.22: 68% contours in DUNE in the (|ηij | − ϕij)-planes when data are generated using scalar NSI best

fits in the IO case considering one NSI parameter at a time. The red curve is obtained with mlightest = 0, the

blue one with mlightest = 0.05 eV and the green one with mlightest = 0.1 eV.

CL when mlightest = 0.05 (0.1) eV.

Sterile neutrinos

In Fig. 6.23 we show the performances of the DUNE Far Detector in constraining the 3+1
parameters if the best fits are the ones reported in table 6.9 from NOvA and T2K data. In the
analysis, we marginalize over the undisplayed parameters, giving the upper bound θi4 < 25◦ on
the non-standard mixing angles. In both IO and NO, in the (θ24 − θ14) planes, it is evident an
anti-correlation between the two parameters. Moreover, DUNE is expected to have a similar
sensitivity to both the mixing angles. Indeed, if the true values are 8◦, the 68% allowed ranges
are [5-12]◦ for θ14 and [4-10]◦ degrees for θ24. When we scrutinize the DUNE capabilities in
measuring the 3+1 phases, we observe in Fig. 6.23 that, if δ12 ∼ 0.5π, then there exists two ∆χ2

minima, one around the best fit and one around δ12 ∼ 1.5π for both the IO and NO case. We
checked that, on the other hand, given the best fits in table 6.9, the DUNE experiment should
not be sensitive to δ13 and δ23.

6.4.5 Differentiating the models

We now discuss the ability for DUNE to differentiate among different benchmark scenarios. We
take one benchmark new physics point and attempt to reconstruct with a different new physics
parameter in either the same model or a different model. The minimum ∆χ2’s are shown in
tables 6.10 and 6.11. For the χ2 computations we marginalize over all the standard oscillation
parameters and we consider only one NSI parameter at a time, varying its magnitude up to 0.5
and its phase over the entire 2π range. In the last column, we show also the χ2 that correspond
to the case in which the data are fitted with the 3+1 sterile neutrino models, considering ∆m2

41

in the range [10−5 − 10] eV2, and the mixing angles in the range [0− 30]◦12.
In the case in which data are generated using the best fits related to the scalar NSI model, it

is clear that, for NO, the minimum χ2 values are very small even in the standard model scenario
(when all the new physics parameters are fixed to zero). This is because the fit at the T2K and
NOνA data, if performed adding the scalar NSI in NO, gives very small best fit values for the η
couplings. For this reason, we expect that DUNE would not be able in this case to distinguish

12We do not consider here any limit on the new physics parameters obtained by other oscillation experiments,
since our goal is to show at which confidence level DUNE would be able to distinguish various model without
external inputs on the new physics when the fit is performed.
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at any confidence level these scenario with the standard three neutrino framework. If we fit data
with models in which other η parameters are used in the fit, we obtain even smaller minima for
the χ2, as expected. The same happens in the case in which we fit the scalar NSI data with
sterile neutrino models. On the other hand, when we try to fit them with vector NSI models,
apart from the ηeµ case, the best fit point is always found when εij = 0. The best fit for the
scalar NSI parameters in the IO case give even more interesting results. In this case, the three
neutrino framework is completely excluded (χ2 > 30 in all three cases). However, we can found
minima of the χ2 much smaller the standard model ones when we fit data with other scalar NSI
models. In particular, if data are generated using the best fits for ηeτ , DUNE would have very
limited discrimination capabilities when we switch on only ηeµ or ηµτ at more than 1.5σ. On
the other hand, when data are generated with ηeµ or ηµτ best fits, the χ2 related to the fits with
the other η models are in the range 4.6 − 6.3. Thus, DUNE would also have some difficulty
distinguishing different scalar NSI models in the IO if the true values for the η-s are the ones
compatible with the NOνA-T2K tension. If we try to fit scalar NSI data with single parameter
vector NSI models, DUNE would differentiate them at a good confidence level. Only in the
ηµτ case, the vector NSI models could be rejected at less than 5σ. Finally, the IO scalar NSI
models generated with ηeτ and ηµτ best fits cannot be distinguished at more than 3.2σ from the
sterile neutrino models. On the other hand, we reach almost 5σ in the case of the ηeµ model.
Even though our analytical approach (eq. (6.69) and 6.70) the probabilities are symmetric under
the ηeτ -ηeµ exchange. However, from table 6.11, it is clear that this symmetry cannot be exact.
Indeed, we checked that, when we consider include in the expansion also the solar mass splitting,
the symmetry is broken. From table 6.11 we can also interestingly see that, even though the
disappearance probability strongly depends on ηµτ , since the best fit for ϕµτ is similar to π/2,
the leading term in the probability is suppressed. Thus, the fits to the data generated with ηµτ
are better than the ones where data are generated using the other scalar NSI parameters.

Let us now focus on the case in which data are generated using the best fit points for vector
NSI. In this case, both in the NO and IO case, the data could not be fitted appropriately with the
three neutrino standard probabilities (χ2 > 60). Moreover, all the models obtained generating
data with ε best fits from the T2K and NOνA data can be distinguished at at least 7σ from
the scalar NSI models. When we try to fit the vector NSI data with other vector NSI models or
3+1 models, the only interesting case (namely the only case in which DUNE would struggle in
differentiating the models) is when data are generated using εeµ best fits in the IO case. In this
framework, the minima of the χ2 are 10, 13 and 3 when we fit the data with the εeτ , εµτ and
3+1 models respectively. In light of the analytic formulae shown in eq. (6.69) and (6.70), we can
try to understand the results in table 6.10. It is clear that, due to the strong dependence of the
disappearance probability to εµτ , if we generate data with this parameter’s true value different
from zero, we expect very high χ2. Indeed, it is very difficult to find some values for the other
parameters which fit well the disappearance data. Moreover, even if the appearance probability
has the same dependence on εeµ and εeτ , the disappearance probability contains one more term
in εeµ. For this reason, it is easy to fit data generated with εeτ ̸= 0 with a theory that contains
εeµ, but the opposite is more complicated. This is clear from table 6.10, since χ2 in the εeµ rows
are bigger with respect to the εeτ ones.

All these results have been obtained considering only one parameter at-a-time for each model,
namely switching on only one off-diagonal scalar or vector parameter for each fit model. We
checked that, if we vary all the off diagonal parameters together, varying their phases in the
entire allowed range, the results are not changing drastically. This means that, for instance, if
we fit data generated with one of the η’s best fits using the vector NSI model in which we scan
over the whole (εeµ, εeτ , εµτ ) parameter space, the minimum of the χ2 is very close to the smaller
minima of the χ2-s obtained using only one parameter at-a-time. This suggest that there are no
strong correlations between parameters that could mimic data generated with a different model.

153



∆χ2 SM ηeµ ηeτ ηµτ εeµ εeτ εµτ 3+1
εeµ NO 200 140 140 170 / 180 160 80
εeτ NO 60 48 50 45 50 / 50 40
εµτ NO 200 180 170 180 160 180 / 80
εeµ IO 170 80 75 90 / 10 13 3
εeτ IO 70 50 50 45 45 / 60 20
εµτ IO 500 400 400 400 300 350 / 160

Table 6.10: ∆χ2 obtained fitting to each case all the models taken into account using as true values the best

fits of the vector NSI case.

∆χ2 SM ηeµ ηeτ ηµτ εeµ εeτ εµτ 3+1
ηeµ NO 0.14 / 0.005 0.088 0.071 0.033 0.055 0.02
ηeτ NO 0.08 0.003 / 0.041 SM SM SM 0.01
ηµτ NO 0.60 0.48 0.48 / SM SM SM 0.02
ηeµ IO 100 / 4.7 6.3 80 70 90 21
ηeτ IO 60 1.0 / 1.5 44 38 50 11
ηµτ IO 30 4.6 4.8 / 23 20 29 12

Table 6.11: Same as table 6.10 but with true values set to the best fits of scalar NSI.

Finally, when the data are obtained in the 3+1 framework (see table 6.12), with the best
fits shown in table 6.9, we observe that the SM solution is excluded with ∆χ2 = 20, namely
at 4.5σ. On the other hand, when the fit is performed with the NSI models, it is clear that in
both NO and IO, the ∆χ2 is reduced up to 5.2 in the vector case. The vector model which can
be distinguished more easily from the 3+1 is the one where we turn on εµτ in NO (∆χ2 = 10).
This is because εµτ in DUNE, as already mentioned, is the one that modifies the most the
disappearance probability. In the scalar case, on the other hand, the ∆χ2 are not drastically
reduced with respect to the Standard Model case if the mass ordering is inverted. Indeed, if
we perform the fit allowing ηeµ to vary we reach ∆χ2 = 13, while in the opposite case, when
we change the value of ηeτ , the best fit is achieved when the scalar NSI parameter vanishes,
namely in the Standard Model case. This suggests us that in inverted ordering, if the sterile
neutrino mixing angles are as small as 8◦ and θ34 is fixed to zero, the phenomenology of 3+1
and scalar NSI models are moving in the opposite direction. On the contrary, in the scalar NSI
NO case, the the ∆χ2 are as low as the vector NSI ones. We checked also in this case that a full
marginalization over the NSI parameter spaces do not alter significantly the ∆χ2-s.

Looking at the probabilities in eqs. 6.74 and 6.75, we can understand why in table 6.12 the
Standard Model is excluded only at 4.5σ even if the true values for θ14 and θ24 are relatively
big (8◦). Indeed, up to the second order only the disappearance probability is modified by the
small quantity s224. Moreover, it is clear that, since δ12 ∼ 1.9π or 0 in two best fits, the DUNE
sensitivity to the CP violating phase translates directly to the sensitivity to δ12, whose best fits
are maximal. Another interesting feature of the disappearance probability is that it is always
reduced if θ24 ̸= 0. This explains why, for instance, a scalar NSI model in NO fits better the
3+1 data than the same model in IO. We can indeed observe that, the third line in eq. (6.70)
reduces the disappearance probability in NO, while it enhances the probability in IO.

∆χ2 SM ηeµ ηeτ ηµτ εeµ εeτ εµτ
3+1 NO 20 8.2 7.9 6.7 5.2 6.6 10
3+1 IO 20 13 SM 18 7.4 6.2 9.5

Table 6.12: Same as table 6.10 but with true values set to the best fits of 3+1 sterile neutrino model.

154



Conclusions and discussions

The discovery of neutrino oscillation is one of the most important particle physics result of the
last decades and we are now entering in the precision measurements era in the neutrino sector.
Indeed, a relatively large number of oscillation experiments have been able to determine the
neutrino oscillation parameters with a good precision and the next generation generation of
experiments is expected to improve all the measurements and to answer all the open questions
in the oscillation sector. In the context of accelerator experiments, in which a muon neutrino
beam is generated artificially, two experiments are expected to start their data taking at the end
of 2020s: DUNE, in the USA and T2HK in Japan. These two experiments have very different
features, even though their scopes are very similar. In particular, T2HK will employ a narrow-
band off-axis beam with a short baseline (∼ 300 km), while DUNE will use a broad-band on-axis
beam with a longer baseline (∼ 1300 km). Moreover, the Japanese experiments may also be
extended with a second detector in Korea, at a longer baseline. Both experiments are expected
to be very performing in measuring the oscillation parameters; moreover, due to their precision,
they may also be able to put stringent bounds on new physics models. Indeed, there exist a large
number of BSM (Beyond Standard Model) models in which the neutrino oscillation probabilities
are modified; thus, in principle, precise experiments should be able to catch the tiny new physics
effects. In this thesis, we discussed the performances of DUNE and T2HK in various contexts.
Our main results are the following.

• The most unknown standard oscillation parameter is the PMNS phase δCP and one of the
main goal of the future long baseline experiments will be to measure it. We checked that,
if we set as primary physics goal the reaching of a 3σ sensitivity for at least 75% of the
possible δCP values (75% CP coverage), both DUNE and T2HK may not reach it after
10 years of data taking. In particular, we studied how the CP coverage is affected by the
true value of θ23, which is currently the mixing angle with the largest uncertainty. Our
main results are that large values of the atmospheric mixing angle worsen the sensitivity to
δCP (as it is well known in the literature [96, 165, 609–611]). Moreover, due to its smaller
systematic uncertainties, DUNE capabilities overcome the T2HK ones for every reasonable
value of θ23 except for an interval around maximal mixing (θ23 = 45◦), where the relatively
large matter effects in DUNE enhance the δCP − θ23 degeneracy. Even though the single
experiments may fail in reaching the 75% CP coverage goal in 10 years of data taking, we
showed in Sec. 5.2 that the combination of DUNE and T2HK data may be enough to reach
the goal for all possible choices of the atmospheric angle θ23 in its current 3σ allowed range.
In addition, we demonstrated that the complementarity of the two experiments may allow
to reach more than 75% coverage also with half of their nominal exposure or with larger
systematic uncertainties. It is worth to mention, that if a second T2HK detector will be
built in Korea at the second oscillation maximum, the combination of all data from future
long-baseline experiments may improve the 3σ CP coverage up to 85%.

• In Sec. 5.3 we showed that not only the standard PMNS parameters measurements but also
the bounds on BSM models may benefit of the combination of the two LBL experiments
data. In particular, we considered a model in which the PMNS matrix is no longer unitary,
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having in mind that the loss of the unitarity of the mixing matrix is one of the main
phenomenological consequences of most of the SM extensions in which new heavy neutral
leptons are added refs. In such a model, six new parameters αij, where i, j = 1, 2, 3 and
i ≥ j, can be used to encode all the new physics effects. The possibility to measure
some of these parameters using neutrino oscillation data has been extensively studied in
literature [249–254]. In our analysis, we showed that DUNE and T2HK alone have different
performances: while T2HK is able to set tight bounds on α21, α22 and α11 due to its larger
statistics and lower disappearance systematics, DUNE have access also to the other three
Non-Unitarity parameters due to the presence of larger matter effects. However, none of
the two experiments may be able to bound in a satisfactory way all the parameters at the
same time. We demonstrated that the combination of the data from the two experiments
should allow to set bounds on all six Non-Unitarity parameters competitive to the bounds
obtained by current global neutrino oscillation analysis [551]. We also discussed how
our results can be improved considering data from Near Detectors, from the DUNE ντ
appearance sample or from the possible T2HK second Korean detector.

• The DUNE experiment is expected to be able to collect events from different charged
current oscillation channels: νe and ντ appearances and νµ disappearance. However, there
are some BSM models in which, after neutrino propagation, the total number of neutrinos
is not conserved. In this case, the Neutral Current (NC) events sample, which usually
is insensitive to the oscillation parameters, may be sensitive to new physics. In Sec.
6.1 we took into account one of these models: the neutrino invisible decay model. We
consider the third neutrino mass eigenstate to be unstable and to decay into invisible
particles, in particular a massless scalar and a lighter sterile neutrino. We performed a
full analysis of the DUNE data sample, including all the charged current and the neutral
current channels. Our main result is that the inclusion of the NC sample improves the
DUNE bound on the third neutrino state lifetime by about 15%. In particular, we found
β3 = τ3/m3 > 5.1×10−11 s/eV , where τ3 is the lifetime and m3 is the third neutrino mass.
This upper bound is expected to be the best among the ones obtained from the analysis
of current and past long-baseline experiments [524, 630–635].

• The DUNE Near Detector will have many purposes. Apart from being a beam monitor,
it should be able to collect a large number of events. If new physics introduce probability
terms which are different from zero also at zero baseline, the Near Detector may be able
to bound them. In Sec. 6.2 we showed how this can be possible considering as BSM
model the source and detector Non Standard Interaction (NSI). In this model, during
their production or detection, neutrinos can undergo new interactions whose strength are
proportional to the parameters ε

s/d
αβ , where α, β = e, µ, τ . Since these new physics effects

do not need propagation in order to occur, the DUNE Near Detector provides a very clear
environment where to probe them. Performing a simple Gaussian χ2 analysis using only
the total ND number of observed events in all the charged current channels we showed
that it is possible to exclude large portions of the NSI parameters space. Our results are
complementary to the ones which have been obtained in literature using the DUNE Far
Detector [642]. We also discussed the effect of the systematic uncertainties on our results,
being crucial when a Near Detector analysis is performed. It is interesting to notice how
all the numerical results showed in this context are corroborated by our strong analytical
prediction.

• The unprecedent capabilities of the DUNE experiment to determine the CP-violating phase
δCP suggest that the CP-odd probability asymmetries may be also useful to search for
hints of the presence of new physics if the non standard effects involve new sources of
CP violation. In Sec. 6.3 we studied the effects of new physics on the DUNE integrated
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asymmetries, defined as Aαβ =
Nβ−N̄β

Nβ+N̄β
where N is the number of events in neutrino mode

and N̄ is the number of events in antineutrino mode in each oscillation channel να → νβ.
This really simple and relatively easy to evaluate observable is closely related to the CP-
odd probability asymmetries and for this reason may unveil the presence of CP-violating
new physics effects. We computed the possible values of such integrated asymmetries in
DUNE given the standard neutrino oscillation probabilities and we compared them with
the asymmetries one would obtain in presence of a light sterile neutrino (3+1 model) or
in presence of propagation Non-Standard Interactions. We showed that the effects of new
physics are in principle too tiny to be observed using only the integrated asymmetries.
However, if DUNE will employ an high energy neutrino flux, which has been proposed to
optimize ντ appearance searches, the measurement of the integrated asymmetries related
to the νe appearance channel may be enough to at least reveal the presence of new physics.

• The T2K and NOνA experiments were able to perform the first measurements of the PMNS
phase. However, their results show a 2σ tension [155]. In the last two years, it has been
studied how in presence of CP-violating propagation NSI or in presence of sterile neutrinos,
the tension can be reduced. In Sec. 6.4 we showed for the first time that this happens
also in presence of scalar NSI. In such a model, we consider the Non-Standard neutrino
interactions with matter to be mediated by a scalar particle. This introduces a completely
new phenomenology in which the neutrino mass matrix is modified. In our analysis, after
providing a list of all the BSM models which in principle may alleviate the T2K-NOνA
tension, we studied the capability of the future DUNE experiment to differentiate among
them. Even though several DUNE analyses have been already performed for the NSI and
sterile neutrino cases (see [706] for a recent review), our study is particularly interesting
since we investigated the DUNE phenomenological implications of specific models selected
to reduce the current small but significant long-baseline tension on the δCP measurement.
We found out that DUNE is expected to be very performing in the identification of the
various models; moreover, if the source of the T2K-NOνA discrepancy is vector NSI in
Normal Ordering or scalar NSI in Inverted Ordering, DUNE should be able to distinguish
them from the other models presented in our work at a very high confidence level.

With our results, briefly described here, we want to stress that phenomenological studies in the
neutrino oscillation context have an important and primary role in suggesting how to get the
most from an experiment. This is particularly useful if we consider BSM models: indeed, other
than observing tensions between data and theories, an experiment should be able to develop a
strategy to determine which is the most probable source of new physics. For this reason, the
parallel development of phenomenology and experimental physics will be crucial in the next
years.
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