Compito N. 1

Il candidato svolga il tema riportato nel seguito e risponda ad almeno due dei quesiti proposti.

Tema

I tre principi della termodinamica possono essere espressi mediante le relazioni

- I) $\Delta U = \delta Q \Delta L$
- II) $\Delta S \ge \frac{\delta Q}{T}$
- III) S(T = 0) = 0.

Discutere questi principi illustrandone, laddove lo si ritenga utile, oltre l'interpretazione termodinamica macroscopica anche il significato in termini microscopici secondo le leggi della meccanica statistica e della meccanica quantistica.

Quesiti

- 1) Il reticolo cristallino monoatomico fcc ha atomi identici in 000; 0 1/2 1/2; 1/2 0 1/2; 1/2 1/2 0 Determinare le condizioni per cui una riflessione di Bragg caratterizzata dagli indici di Miller h k l ha il fattore di struttura massimo, e quelle per cui il fattore di struttura è nullo.
- 2) Un'onda elettromagnetica piana polarizzata linearmente, di frequenza ν , si propaga nell'aria ($\varepsilon_r \approx 1$; $\mu_r \approx 1$) e si riflette su una superficie piana perfettamente conduttrice, disposta perpendicolarmente alla sua direzione di propagazione.
 - a) Scrivere le espressioni del campo elettrico e del campo magnetico, e determinare per entrambi i campi a quale distanza dalla superficie si formano il primo ventre e il primo nodo.
 - b) Scrivere l'espressione del vettore di Poynting in funzione della distanza d dalla superficie.
- 3) Dimostrare che la forza totale che l'acqua esercita su una diga e' proporzionale al quadrato della quota raggiunta dall'acqua.
- 4) Una particella di massa m e spin nullo e' vincolata a muoversi su di una circonferenza di raggio r, posizionata nel piano xy e centrata nell'origine . L'Hamiltoniana che descrive la particella e' pertanto:

$$H = -\frac{\hbar^2}{2 m r^2} \frac{d^2}{d\vartheta^2}$$

dove θ rappresenta l'angolo polare che definisce la posizione della particella sulla circonferenza. Ad un determinato istante di tempo, la particella si trova nello stato descritto dalla funzione d'onda $\psi(\vartheta) = N \sec^2 \vartheta$.

dove N e' una costante di normalizzazione. Calcolare i possibili risultati di una misura dell'energia della particella e le rispettive probabilita'.

Si supponga quindi di sottoporre la particella all'azione di una forza di richiamo elastica centrata nell'origine e diretta lungo l'asse y, descritta dunque dal potenziale

$$V = \frac{1}{2}m\omega^2 r^2 \mathrm{sen}^2 \vartheta \,.$$

Determinare il nuovo livello di energia fondamentale del sistema al primo ordine dello sviluppo perturbativo in V.

Compito N. 2

Il candidato svolga il tema riportato nel seguito e risponda ad almeno due dei quesiti proposti.

Tema

Nel 1905 Albert Einstein pubblico' tre articoli che hanno profondamente influenzato la comprensione dell'universo. Molte problematiche attuali di ricerca di base o tecnologica trovano le loro radici negli studi di Einstein sul moto Browniano, l'effetto fotoelettrico e la teoria della relativita'. Il candidato descriva una di queste problematiche, evidenziandone alcune implicazioni teoriche o sperimentali.

Quesiti

- 1) Il candidato spieghi, perche' in seguito a una trazione adiabatica (isoentropica) un filo di metallo si raffredda, mentre uno di caucciu' si scalda.
- 2) Determinare la frequenza massima dei fononi generati dall'interazione di un fascio di fotoni di lunghezza d'onda nel vuoto pari a $\lambda = 442$ nm in un mezzo isotropo di indice di rifrazione n = 1.2. La velocità del suono nel mezzo è pari a $V = 4 \times 10^5$ cm/s
- 3) Un'onda elettromagnetica piana sinusoidale di frequenza ν , polarizzata linearmente, si propaga lungo le x positive (con E e B rispettivamente paralleli agli assi y e z) in un mezzo avente la stessa permeabilità magnetica del vuoto e permittività relativa ε_r . Scrivere le espressioni della velocità di propagazione dell'onda e dei campi elettrico e magnetico in funzione del tempo.
- 4) Due particelle di spin 1/2 e momento magnetico rispettivamente $\mu_1 = g_1 S_1$ e $\mu_2 = g_2 S_2$, dove S_1 ed S_2 rappresentano gli spin delle particelle, sono immerse in un campo magnetico costante B diretto lungo l'asse z. Le particelle intaragiscono inoltre tra loro mediante un'interazione di tipo spin-spin, così che l'Hamiltoniana che descrive il sistema ha la forma

$$H = J\, ec{S}_1 \cdot ec{S}_2 - \left(g_1\, ec{S}_1 + g_2\, ec{S}_2
ight) \cdot ec{B} \,.$$

Determinare i possibili risultati di una misura dell'energia delle due particelle. Determinare inoltre gli autostati dell'Hamiltoniana nei due limiti di campo magnetico estremamente intenso $(B >> Jh/g_{1,2})$ ed estremamente debole $(B << Jh/g_{1,2})$.

Compito N. 3

Il candidato svolga il tema riportato nel seguito e risponda ad almeno due dei quesiti proposti.

Tema

Il candidato descriva un sistema fisico nel cui studio teorico o sperimentale svolga un ruolo rilevante un metodo di approssimazione (p. es. teoria delle perturbazioni, sviluppo in serie, trattamento statistico degli errori, linearizzazione, etc.)

Quesiti

1) Un gas perfetto e' costituito da *N* particelle di spin zero mantenute in equilibrio termodinamico alla temperatura *T*. Ciascuna particella del gas puo' trovarsi in due distinti livelli energetici non degeneri, corrispondenti rispettivamente alle energie

$$\varepsilon_0 = 0$$
 ed $\varepsilon_1 = \varepsilon$.

Calcolare la funzione di partizione canonica, l'energia media e l'entropia del gas nei due casi di particelle distinguibili e indistinguibili. Si studi inoltre, in entrambi i casi, il limite di alte temperature per l'energia media e l'entropia del gas.

- 2) Dimostrare che la forza totale che l'acqua esercita su una diga e' proporzionale al quadrato della quota raggiunta dall'acqua.
- 3) Determinare la frequenza massima dei fononi generati dall'interazione di un fascio di fotoni di lunghezza d'onda nel vuoto pari a $\lambda=442$ nm in un mezzo isotropo di indice di rifrazione n = 1.2. La velocità del suono nel mezzo è pari a V=4 x 10^5 cm/s
- 4) Un'onda elettromagnetica piana polarizzata linearmente, di frequenza ν , si propaga nell'aria ($\varepsilon_r \approx 1$; $\mu_r \approx 1$) e si riflette su una superficie piana perfettamente conduttrice, disposta perpendicolarmente alla sua direzione di propagazione.
 - c) Scrivere le espressioni del campo elettrico e del campo magnetico, e determinare per entrambi i campi a quale distanza dalla superficie si formano il primo ventre e il primo nodo.
 - d) Scrivere l'espressione del vettore di Poynting in funzione della distanza d dalla superficie.