Lecture 6: Searches for 0v2β decays

PhD cycle XXXIV

$0\nu 2\beta$ decays

TABLE V. Isotopic	abundance	and	Q-value	for	the	known
$2\nu\beta\beta$ emitters [175].						

Isotope	isotopic abundance (%)	$Q_{\beta\beta}$ [MeV]
48 Ca	0.187	4.263
$^{76}\mathrm{Ge}$	7.8	2.039
82 Se	9.2	2.998
$^{96}\mathrm{Zr}$	2.8	3.348
$^{100}\mathrm{Mo}$	9.6	3.035
$^{116}\mathrm{Cd}$	7.6	2.813
$^{130}\mathrm{Te}$	34.08	2.527
136 Xe	8.9	2.459
$^{150}\mathrm{Nd}$	5.6	3.371

$$Q_{\beta\beta} = M(Z+2) - M(Z) - 2m_e$$

- Two beta decays at the same time
- Only a few isotopes able to undergo 2β
 - those with peculiar energy level arrangements such that the emission is more convenient than the unstable isotope

Figure 2: Ground state mass parabola for isobaric nuclei, showing the necessary configuration for double beta decay. Only the one (a) on the even-even (E-E) shell, whose β-decay is blocked (b) but which could decay via two subsequent steps (c) is allowed to do double beta decay. The shift of the parabola of the odd-odd (O-O) nuclei is due to the nuclear pairing energy [2].

 $2\nu\beta\beta: (A, Z) \rightarrow (A, Z+2) + 2e^{-} + 2\nu_{e}$ 2nd order process, observed, T_{1/2} ~ 10¹⁹-10²⁴ yrs ⁷⁶Ge: T_{1/2} ~ 10²¹ yrs

$0\nu 2\beta$ decays

- Two beta decays at the same time
- Only a few isotopes able to undergo 2β
 - those with peculiar energy level arrangements such that the emission is more convenient than the unstable isotope

$\begin{array}{l} 0\nu\beta\beta:(A,Z)\rightarrow(A,Z{+}2)+2e^{\text{-}}\\ \\ \text{new physics, $\mathsf{T_{1/2}}>10^{25}$ yrs} \end{array}$

 $\begin{aligned} 2\nu\beta\beta:(A,Z)\to(A,Z+2)+2e^{-}+2\nu_{e}\\ \text{2nd order process, observed, } \mathsf{T}_{_{1/2}}\sim10^{_{19}-10^{_{24}}}\,\text{yrs}\\ ^{76}\text{Ge: }\mathsf{T}_{_{1/2}}\sim10^{_{21}}\,\text{yrs} \end{aligned}$

$$\left(T_{1/2}^{0\nu}\right)^{-1} = G^{0\nu}(Q_{\beta\beta}, Z) |M^{0\nu}|^2 \left(\frac{\langle m_{ee} \rangle}{m_e}\right)^2 \qquad \langle m_{ee} \rangle = \left|\sum_i U_{ei}^2 m_i\right|$$
nuclear matrix element phase space factor effective Majorana neutrino mass

Why look for it...

What to look for...

 $2\nu\beta\beta: (A, Z) \to (A, Z+2) + 2e^{-} + 2\nu_{e}$ $0\nu\beta\beta: (A, Z) \to (A, Z+2) + 2e^{-}$

Measure overall energy of "2e" considered as "one body" in a 2-body decay
→ with no neutrinos it's a line at E = Qββ

Neutrinoless double beta decay

Comparing different isotopes

No theoretical preference

- Phase Space and NME inversely correlated. Tend to compensate.
- Theoretical uncertainties very large

Experimental/practical criteria

- Enrichment cost
- Energy resolution
 - Narrow peak for discovery
- Background index
 - Ultraclean components
 - Avoid surfaces
 - Especially in a vacuum
- Scalability
 - Liquids, gases, large crystals
 - $0\nu\beta\beta$ decay

7

How to look for it...

Challenges of double- β decay experiments

Synoptic comparison (not most up to date)

Isotope	Experiment	Exposure (kg yr)	$T_{1/2}^{0\nu\beta\beta}$ average sensitivity (10 ²⁵ yr)	$T_{1/2}^{0 uetaeta}$ (10 ²⁵ yr) 90%CL	$< m_{ u} >$ (meV) Range from NME*	Reference
⁷⁶ Ge	GERDA	46.7	5.8	>8.0	<120-270	L. Pandola for GERDA Collab, TAUP 2017
	Majorana Demonstrator	10	>2.1	>1.9	<240-520	C.E. Aalseth, arXiv:1710.11608v1
¹³⁰ Te	CUORE	86.3	0.7	>1.5	<140-400	C. Alduino, et al., arXiv:1710.07988v1
¹³⁶ Xe	EXO-200	177.6	3.7	>1.8	<147-398	Albert et al. arXiv: 1707.08707 (2017)
	KamLAND- ZEN	504**	4.9	>11 (run 2)	<60-161	Gando et al., PRL 117 (2016) 082503

Note that the range of "viable" NME is chosen by the experiments and uncertainties related to g_A are not included. ** All Xe. Fiducial Xe is more like ~150 kg yr

To achieve higher sensitivity, the next generation of experiments will be at the ton-scale. 32

https://indico.ph.qmul.ac.uk/indico/getFile.py/access?contribId=36&resId=1&materialId=slides&confId=170

https://zenodo.org/record/1287604#.XH2VfNF7kcg

Isotope: Germanium Example: Gerda

Searching in ⁷⁶Ge

 $\mathbf{S} \sim \boldsymbol{\epsilon} \cdot \mathbf{f} \cdot \sqrt{\frac{\mathbf{M} \cdot \mathbf{t}_{run}}{\mathbf{BI} \cdot \boldsymbol{\Delta} \mathbf{E}}}$

non-zero background

BI = counts/(keV·kg·yr)

S: sensitivity ε: efficiency f: abundance of 0νββ isotope M: detector mass t_{run}: measurement time BI: background index ΔE : energy resolution at Q_{BB}

Germanium detector

Advantages of Germanium:

High ε: Source = Detector
 Small instrinsic BI: High purity Ge

- Excellent ΔE : FWHM ~ (0.1-0.2)%
- Well-established technology

Disadvantages of Germanium:

- at $Q_{\beta\beta} = 2039$ keV more challenging to reach low enough background
- Small f of ⁷⁶Ge:
 7.8% → Enrichment needed! → ~ 86%
 in GERDA
- Limited sources of crystal & detector manufacturers
 Small G^{0v} (Q_{pp},Z)

 $0\nu\beta\beta$ decay

R. Brugnera

Roma Tre, 13 September 2017

8

Gerda @ LNGS: Background reduction

- GERDA situated in LNGS underground laboratories
- 3800 m.w.e.

Possible backgrounds from:

External:

- γ from Th and U chain
- neutrons
- µ from cosmic rays (prompt and delayed)

Internal:

R. Brugnera

- cosmogenic ⁶⁰Co ($T_{1/2}$ =5.3 yr)
- cosmogenic ⁶⁸Ge ($T_{1/2}$ =271 d)
- Radioactive surface contaminations

Roma Tre, 13 September 2017

11

- high-purity germanium (HPGe) detectors enriched in ⁷⁶Ge to (86–88)%: source + detector
- detectors mounted in low-mass holders (to minimize radioactive bkg)
- embedded in liquid argon (LAr): cryogenic coolant and absorber against external radiation
- ultrapure water tank: buffer around cryostat as additional absorber + Cherenkov muon veto

BACKGROUND REDUCTION CONCEPT

BACKGROUND REDUCTION CONCEPT

ENERGY RESOLUTION

- Weekly calibrations with ²²⁸Th sources
- Energy resolution stable over more than two years
- Energy resolution at $Q_{\beta\beta}$ Coax $\rightarrow 3.6(1) \text{ keV}$
 - $BEGe \rightarrow 3.0(1) \text{ keV}$

Most recent result, run II-b

- Bayesian analysis
- Median sensitivity 0.8·10²⁶ yr (90% CI)
- Best fit → background only
 P(signal+background)
 P(background)
 = 0.054
- T_{1/2} > 0.8·10²⁶ уг (90% CI)
- Probability of stronger limit 59%

Isotope: Te, Xe Examples: LS (SNO+, KLZ, EXO)

SNO+ (130 Te in LS)

KamLAND-ZEN (136Xe in LS)

Why LS?

 γ backgrounds – a challenge in $0\nu\beta\beta$ search

Shielding a detector from MeV gammas is difficult!

Example:

 γ -ray interaction length in Ge is 4.6 cm, comparable to the size of a germanium detector.

Current world best limit from

750kg for Zen 800 (to start in months)

https://arxiv.org/pdf/1605.02889.pdf

KamLAND-Zen

- Xe+LS allows to have source and detector at once, minimizing other materials
- enriched LS (decane, PC): 90. 77% ¹³⁶Xe
 - ¹³⁶Xe → ¹³⁶Ba + 2e⁻
 - Q = 2458 keV, higher than most γ rays from common radioactive nuclides
- <u>scintillation only</u>
- getting to several tons of Xe feasible keeping bkg low ("easy" to purify)
- exploits existing detection infrastructure and radio-purity of KamLAND
 - 1200 m³, U: 3.5 10⁻¹⁸g/g, Th: 5.2 10⁻¹⁷g/g
 - reactor neutrino detector (KamLAND) acts as photon screen for KLZ

NOT most up to date

Figure 5. Effective Majorana neutrino mass $\langle m_{\beta\beta} \rangle$ as a function of the lightest neutrino mass, m_{lightest} . The dark shaded regions are from the best-fit neutrino oscillation parameters for the NH and IH mass hierarchies. Light shaded regions are the 3σ ranges of the oscillation parameter uncertainties. Horizontal bands indicate 90% C.L. upper limits on the $\langle m_{\beta\beta} \rangle$ from KmaLAND-Zen and other experiments.

Remember: assumes one calculation on **NME**, but large variations (up to factor 3!) from different nuclear models (see Giunti-Kim p.504)

Searching for $0\nu\beta\beta$ in ^{136}Xe

Phased approach:

1. EXO-200: 200kg liquid-Xe TPC

2. nEXO: future 5-ton liquid Xe (SNO lab cryopit)

Liquid-Xe Time Projection Chamber

- Liquid Xe at 168K
- Detection of scintillation light and secondary charges
- 2D read out of secondary charges at segmented anode
- Full 3D event reconstruction:
 - 1. Energy reconstruction
 - 2. Position reconstruction
 - 3. Event Multiplicity

Reconstructed energy, ²²⁸Th calibration:

Scintillation vs. ionization, ²²⁸Th calibration:

- E resolution better for ionization (3.5%) than scintillation (7%)
- combined gets down to ~1.2% at Q value
- correlated measurements
 - rotation angle provides best resolution (from calibration with ²²⁸Th)

Combine Phase I + Phase II profiles

Future of Ge

LEGEND-200 (first phase):

- up to 200 kg of detectors
 - BI ~0.6 cts/(FWHM·t·yr)
 - use existing GERDA infrastructure at LNGS

design exposure: 1 t·yr

Sensitivity 1027 yr

LEGEND-1000 (second phase):

- 1000 kg of detectors (deployed in stages)
- BI <0.1 cts/(FWHM·t·yr)
- Location tbd
- Design exposure 12 t·yr
- 1.2.10²⁸ yr

LEGEND, program

17 meV discovery sensitivity for "worst case" NME of 3.5

Future of Xe

Methodology:

- 3860 kg fiducial Xe ٠
- 90% enrichment •
- $1\% \sigma E/E$ resolution ٠
- Realistic background ٠ projections based on measurements
- EXO200-like analysis ٠

10

Phase II upgrade: BEGe detectors

Matteo Agostini (GSSI/LNGS)

Gerda 7

PSD and LAr veto during Phase II commissioning

²²⁶Ra calibration run (single BEGe string in GERDA):

Active background reduction tools

Point-like (single-site) energy deposition inside one HP-Ge diode

Multi-site energy deposition inside HP-Ge diode (Compton scattering), or surface events

Anti-coincidence with the muon veto (MV)
 Anti-coincidence between detectors (cuts multi-site) (AC)
 Active veto using LAr scintillation (LAr Veto)
 Pulse shape discrimination (PSD)

Gerda

BEGe: global fit p-value=0.3

- same isotopes as in Phase I
- Th/Ra contributions consistent with screening results
- main components before LAr veto/PSD:

 α from ²¹⁰Po,²²⁶Ra
 - $\circ \beta$ from ⁴²K
 - $\circ \gamma$ from ²¹⁴Bi,²⁰⁸Tl
- flat background in the ROI

Gerda

Active background suppression

-> discriminate backgrounds from point like (single site) bb interactions by detector-

anticoincidence (AC), pulse shape discrimination (PSD), liquid argon (LAr) veto S. Schönert | TUM NuPhys2017 12

"PSD" now enhanced (new BEGe) and "LAr" now possible (LAr bath)

https://arxiv.org/pdf/1205.5608.pdf

FIG. 6: Relation between the $T_{1/2}^{0\nu\beta\beta}$ in ⁷⁶Ge and ¹³⁶Xe for different matrix element calculations (GCM [20], NSM [21], IBM-2 [22], RQRPA-1 [23] and QRPA-2 [5]). For each matrix element $\langle m \rangle_{\beta\beta}$ is also shown (eV). The claim [4] is represented by the grey band, along with the best limit for ⁷⁶Ge [19]. The result reported here is shown along with that from [7].

Gerda

Phase II final array configuration

- ► Deployed in Dec 2015
- ▶ 30 enriched BEGe (20 kg)
- ▶ 7 enriched Coax (15.8 kg)
- ▶ 3 natural Coax (7.6 kg)
- \Rightarrow 35.8 kg of enr detectors

String 1	String 2	String 3	String 4	String 5	String 6	String 7

