Lecture 5: experiments at reactors

PhD Cycle XXXIV

Neutrini da reattore

Nuclear Reactors as Antineutrino Source

- Reactors like Chooz A+B → 8.5 GW_{th}
- Few percent of the released energy
 escapes with anti-neutrinos
 - $\Rightarrow escapes with and$ $\Rightarrow 2*10^{21}\overline{v/s} \leftrightarrow O(1 \text{ kW/m^2}) @fence$

- measured e⁻ spectrum of U²³⁵, Pu²³⁹, Pu²⁴¹
- \rightarrow calculate v_e^- spectrum \rightarrow certain precision
- two "identical" detectors...

example: fission of U²³⁵ $_{92}^{235}U + n \rightarrow X_1 + X_2 + 2n$

- 6 neutrons β-decay to
 6 protons to reach
 stable matter
- 1.5 v_e emitted with E > 1.8 MeV

Hux

 \rightarrow reactor is during steady operation in a flow equilibrium

flux (see later that they play a big role in "anomalies")

The Neutrino Spectrum

source	flux	
reactor neutrinos (3 GW, at 10m distance)	5 x 10^13	/cm^2/s
solar neutrinos (on Earth)	6 x 10^10	/cm^2/s
supernova (50 kpc Abstand, for O(10) seconds)	~ 10^9	/cm^2/s
geo-neutrinos (on the Earth's continental surface)	6 x 10^6	/cm^2/s

Measuring $\sin^2 2\theta_{13}$ at reactors

- · Clean signal, no cross talk with δ and matter effects
- Relatively cheap compared to accelerator based experiments
- Provides the direction to the future of neutrino physics
- Rapidly deployment possible

at reactors:

 $P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 (1.27 \Delta m_{13}^2 L/E) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 (1.27 \Delta m_{12}^2 L/E)$

at LBL accelerators:

$$\begin{split} P_{\mu e} &\approx \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 (1.27 \Delta m_{23}^2 L/E) \ + \\ &\cos^2 \theta_{23} \sin^2 2\theta_{12} \sin^2 (1.27 \Delta m_{12}^2 L/E) \ - \\ &A(\rho) \bullet \cos^2 \theta_{13} \sin \theta_{13} \bullet \sin(\delta) \end{split}$$

Reactor Neutrino Oscillations

<u>θ₁₃: Three on-going experiments</u>

Experiment	Power (GW)	Baseline(m) Near/Far	Detector(t) Near/Far	Overburden (MWE)	Designed Sensitivity
				Near/Far	(90%CL)
Daya Bay	17.4	470/576/1650	40//40/80	250/265/860	~ 0.008
Double Chooz	8.5	400/1050	8.2/8.2	120/300	~ 0.03
Reno	16.5	409/1444	16/16	120/450	~ 0.02

Daya Bay

Double Chooz

Reno

Measuring θ_{13} with Reactor Experiments

Absolute Reactor Flux Largest uncertainty in previous measurements

Relative Measurement Removes absolute uncertainties!

First proposed by L. A. Mikaelyan and V.V. Sinev, Phys. Atomic Nucl. 63 1002 (2000)

Karsten Heeger, Univ. of Wisconsin

EWNP Symposium, March 8, 2012

Reactor-Detector Distance Survey

Negligible reactor flux uncertainty (<0.02%) from precise survey.

$$\frac{N_{\rm f}}{N_{\rm n}} = \left(\frac{N_{\rm p,f}}{N_{\rm p,n}}\right) \left(\frac{L_{\rm n}}{L_{\rm f}}\right)^2 \left(\frac{\epsilon_{\rm f}}{\epsilon_{\rm n}}\right) \left[\frac{P_{\rm sur}(E,L_{\rm f})}{P_{\rm sur}(E,L_{\rm n})}\right]$$

distances

Karsten Heeger, Univ. of Wisconsin

EWNP Symposium, March 8, 2012

Detectors

	PMT	Coverage	pe yield	pe yield/Coverage
Daya Bay	192 8"	~6%	163 pe/MeV	1.77
RENO	354 10"	~15%	230 pe/MeV	1
Double Chooz	390 10"	~16%	200 pe/MeV	0.81

2013-6-27

6

⇒ ...and maximum overburden to reduce backgrounds from cosmic-ray muons

Detection of Reactor Antineutrinos

Soo-Bong Kim (KNRC, Seoul National University) uba Global Science Week (TGSW2014), Tsukuba, Sep. 28-30, 2014

Cross section

$$\sigma_{\rm CC}^{\bar{\nu}_e p} = \frac{2\pi^2}{\tau_n \, m_e^5 \, f} \, E_e \, p_e \simeq 9.56 \times 10^{-44} \left(\frac{E_e \, p_e}{\rm MeV^2}\right) \left(\frac{\tau_n}{886 \, \rm s}\right)^{-1} \rm cm^2 \,, \qquad (12.17)$$

where f is the phase space integral in eqns (5.141) and (5.142). This form has the advantage of expressing the cross-section in terms of the well-measured quantities m_c and τ_n (see eqns (A.150) and (A.158)), eliminating the need to know the values of $|V_{ud}|$, g_V , and g_A .

The threshold of about 1.8 MeV implies that only about 25% of the antineutrinos produced in a reactor can be detected, since the others are below threshold. The

x-sec grows linearly with E

Event Signature and Backgrounds

Signature:

$$\overline{V}_e + p \rightarrow e^+ + n$$

- \Rightarrow Prompt: e⁺, 1-10 MeV,
- ▷ Delayed: n, 2.2 MeV@H, 8 MeV @ Gd
- ⇒ Capture time: 28 µs in 0.1% Gd-LS

Backgrounds

Uncorrelated: random coincidence of

γγ, γn or nn

- γ from U/Th/K/Rn/Co... in LS, SS, PMT, Rock, ...
- n from α-n, μ-capture, μ-spallation in LS, water & rock
- ⇒ Correlated:

20

- ✓ Fast neutrons: n scattering n capture
- ⁸He/⁹Li: β decay -n capture
- Am-C source: γ rays n capture
- ✓ α-n: ${}^{13}C(α,n){}^{16}O$

Gd used because of delay @ 8 MeV (radiogenic BG dominates \leq 3MeV) and high thermal neutron capture x-sec: 260 b (see also slide 43)

Antineutrino (IBD) Selection

Selection of Prompt + Delayed

- Reject Flashers
- Prompt Positron: 0.7 MeV < E_p < 12 MeV
- Delayed Neutron: 6.0 MeV $< \dot{E}_d < 12$ MeV
- Capture time: 1 μ s < Δ t < 200 μ s

- Muon Veto:

Pool Muon: Reject 0.6ms AD Muon (>20 MeV): Reject 1ms AD Shower Muon (>2.5GeV): Reject 1s

- Multiplicity:

No other signal > 0.7 MeV in -200 μs to 200 μs of IBD.

rompt energy

Energy model

Energy model

- Includes the non-linearity from LS and readout electronics
- Built based on various γ peaks and continuous ^{12}B β spectrum
- Validated with
 - Michel electron; β + γ continuous spectra from ^{212/214}Bi and ²⁰⁸Tl
 - Bench tests of Compton scattering electrons in LS

7

Two single signals can accidentally mimic an antineutrino (IBD) signal

Rate and spectrum can be accurately predicted from singles data.

Multiple analyses/methods estimate consistent rates.

Accidentals/radioactivity

Cosmogenic

Mean lifetime: 257 ms (⁹Li) and 172 ms (⁸He) -- no full region veto

⁹Li/⁸He uncertainty in near ADs reduced from 50% to 30%

Summary of uncertainties and benefit of ND+FD

systematics	single detector (SD) (%)	multi-detector (MD) (%)
δ (detection)	~ [2.0^{DYB},0.5^{DC}] (no fiducial volume)	→ ~0.2 (identical detectors)
δ(flux)	~3.0 [~5.0^{new}] (prediction) [~1.7 via Bugey4]	→ ≤0.5 (ND reactor monitor)
δ (background)	≤0.5 (radio-purity+overburden+vetoes)	<pre></pre>

- systematics uncertainties \sim 1‰ each —

0.9

0.81

2

3

23

7

6

Double Chooz IV

Far (818 days) + Near (258 days)

4

Visible Energy (MeV)

5

Reactor Spectrum Anomaly

- Bad news: spectrum predictions also don't match the data.
 - Eye is first drawn to the 'bump' in the 4-6 MeV range.
 - Zooming out: kinda just looks bad generally across the entire spectrum...
- HOW is spectrum incorrectly predicted???

https://indico.ph.qmul.ac.uk/indico/getFile.py/access?contribId=15&resId=0&materialId=slides&confld=289

The future: mass ordering

Method from Petcov and Piai, Physics Letters B 553, 94-106 (2002)

Survival probability

0.6

0.5

0.4

0

$$P_{ee} = \left| \sum_{i=1}^{3} U_{ei} \exp\left(-i\frac{m_i^2}{2E_i}\right) U_{ei}^* \right|^2$$

= $1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 (\Delta_{21})$ in for $-\cos^2 \theta_{12} \sin^2 2\theta_{13} \sin^2 (\Delta_{31})$ in $-\sin^2 \theta_{12} \sin^2 2\theta_{13} \sin^2 (\Delta_{32})$

Or to make the effect of the mass hierarchy explicit, exploiting the approximation
$$\Delta m_{32}^2 \approx \Delta m_{31}^2$$
:
 $P_{ee} = 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 (\Delta_{21})$
 $- \sin^2 2\theta_{13} \sin^2 (|\Delta_{31}|)$
 $- \sin^2 \theta_{12} \sin^2 2\theta_{13} \sin^2 (\Delta_{21}) \cos (2|\Delta_{31}|)$
 $+ \frac{\sin^2 \theta_{12}}{2} \sin^2 2\theta_{13} \sin (2\Delta_{21}) \sin (2|\Delta_{31}|)$, The big suppression is the "solar" oscillation $\Rightarrow \Delta m_{21}^2 \sin^2 \theta_{12}$.
The ripple is the "atmospheric" oscillation $\Rightarrow \Delta m_{31}^2$ from frequency MH encoded in the phase from the phase formula for the phase formula formu

arXiv 1210.8141

----- Non oscillation

 $- \theta_{12}$ oscillation

Normal hierarchy
 Inverted hierarchy

 $\Delta_{ij} \equiv \frac{\Delta m_{ij}^2 L}{4E_{\nu}}, \quad (\Delta m_{ij}^2 \equiv m_i^2 - m_j^2)$

Experiments at reactors

- JUNO in China
- Same concept as present detectors, but with a much better E_{res} to distinguish phase shifts
- Will also build ND
 - w/o a ND it could be a limit if reactor flux not nailed down to better than ~2%

 Can also do with accelerators and atmospheric, complementary

arXiv:1607.02671v1 [hep-ex] 9 Jul 2016

Anomalies

The past (and lingering...)

[PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007]

 $ar{
u}_{\mu}
ightarrow ar{
u}_{e}$ 20 MeV $\leq E \leq$ 60 MeV

• Well-known source of $\bar{\nu}_{\mu}$ μ^+ at rest $\rightarrow e^+ + \nu_e + \bar{\nu}_{\mu}$ $L \simeq 30 \text{ m}$ $\bar{\nu}_e + p \rightarrow n + e^+$

Well-known detection process of $\bar{\nu}_e$

- \blacktriangleright \approx 3.8 σ excess
- But signal not seen by KARMEN at L ~ 18 m with the same method [PRD 65 (2002) 112001]

MiniBooNE

 $L \simeq 541 \,\mathrm{m}$ 200 MeV $\leq E \lesssim 3 \,\mathrm{GeV}$

- Purpose: check LSND signal.
- ► Different *L* and *E*.
- Similar L/E (oscillations).
- No money, no Near Detector.

- LSND signal: E > 475 MeV.
- Agreement with LSND signal?
- CP violation?
- Low-energy anomaly!

C. Giunti – SBL Neutrino Anomalies – Selected Puzzles in Particle Physics – LNF – 21 Dec 2016 – 14/67

MiniBooNE

 $L \simeq 541 \,\mathrm{m}$ 200 MeV $\leq E \lesssim 3 \,\mathrm{GeV}$

- Purpose: check LSND signal.
- ► Different *L* and *E*.
- ► Similar *L*/*E* (oscillations).
- No money, no Near Detector.

- LSND signal: E > 475 MeV.
- Agreement with LSND could it be
- CP violation?
- Low-energy anomaly!

C. Giunti – SBL Neutrino Anomalies – Selected Puzzles in Particle Physics – LNF – 21 Dec 2016 – 14/67

bkgs?

Caveats from HARP (@CERN PS)

- The claim of a 3.8 σ significance of the LSND anomaly cannot be upheld
- LSND didn't take into account pion production by neutrons
- Improved simulation of the LSND beam stop shows that conventional background increases by a factor of 1.6
- Positrons from ¹²N_{gs} beta decay were missed in LSND analysis
- We find significance of the "LSND anomaly" not large than 2.3 σ

	LSND published	This paper's analysis
'Beam excess'	117.9 ± 22.4	115.6 ± 27.9
Background I	19.5 ± 3.9	30.6 ± 8.8
Background II	10.5 ± 4.6	13.8 ± 8.2
'LSND anomaly'	87.9 ± 23.2	71.2 ± 30.4
Significance	3.8σ	2.3σ

See: https://hep.uchicago.edu/~elagin/HARP-CDP_vs_LSND/Elagin_UChicago_Lunch_on_LSND_excess.pdf

Gallium Anomaly

Why $\Delta M^2 > 1 eV?$ LSND

- 1993-1994 data: 16.4 (+9.7 8.9) ± 3.3
 (alternative analysis by J.E. Hill do not find any excess PRL 75, 2654)
- 1993-1995 data: 51.0 (+20.2 19.5)
- Full dataset: 87.9± 22.4± 6.
 ∆m² > 0.02 eV².
- BNL-E776, CCFR, NuTeV and NOMAD exclude ∆m² > 10 eV².
- Bugey and CHOOZ ruled out ∆m² < 0.2 eV².
- KARMEN2 $\Delta m^2 < 1 \text{ eV}^2$ or $\Delta m^2 \sim 7 \text{ eV}^2$.

Surprise 1: The Reactor Anomaly

An extra (sterile) neutrino with a small mixing angle and a mass O(eV) or heavier could have oscillated @ 10-100m averaged out: reduction by ½ * sin²(θ_s) ~ 0.06
 ←→ active v-unitarity tested @ few % → consistent → Am²_{nm²nu}

Check with a new experiment at shorter baseline

7

No anomaly in ν_{μ} disappearance

SBL & MINOS (NC)

IceCube

 $sin^2\theta_{\mu\mu}$

 $sin^2 2\theta_{\mu\mu}$

A thorn in the side of sterile neutrinos ...

Beyond Three-Neutrino Mixing: Sterile Neutrinos

Anomalies caused by mixing in 4th family with a Δm^2 of the "good" range?

Terminology: a eV-scale sterile neutrino means: a eV-scale massive neutrino which is mainly sterile

- Indications that would have to be a light sterile neutrino, if at all, to reconcile with app/disapp data
- See more here: <u>https://agenda.infn.it/getFile.py/access?</u>

contribId=3&resId=0&materialId=slides&confId=12099

Sterile Neutrino Search at Daya Bay

 Daya Bay's high-statistics dataset can be used to search if there is room for a fourth neutrino:

To first order, signal would appear as an **additional spectral distortion** with a frequency different from standard 3neutrino oscillations

Daya Bay's multiple baselines are a **big advantage** here: EH1 (~350m), EH2 (~500m), EH3 (~1600m)

The issue however is that Daya Bay's results alone are not directly comparable to those of LSND & MiniBooNE:

Surprise 2: A Bump in the Spectrum

Double Chooz, RENO and Daya Bay:

- → all see unexpected bump in near and far spectrum
- $\rightarrow \theta_{13}$ measurement robust
- → expectations are Huber (235U,239,241Pu) and Mueller (238U)
- → RENO has largest bump

→ Double-Chooz used Huber and Haag (238U) for expected flux

High energy v's $\leftarrow \rightarrow$ short lived isotopes ...little known Nuclear theory:

theory errors ...maybe explainable...

better -> experimental test

DC: 210 000 events / DB: 1.2 million events / Reno: 280 000 events

remarkable DYB≈DC (while different ²³⁸U treatment)

non-trivial agreement: different BG, response, etc (all corrected)

Anatael Cabrera (CNRS-IN2P3 & APC)

clear features scaling with reactor..

features scaling fractionally constant with reactor# (i.e. reactor power) •''deficit''? [2,4]MeV •''excess''? [4,5]MeV 0

Reno

Correlation of 5 MeV excess with ²³⁵U fraction

Excess seems correlated with reactor flux

Correlation of 5 MeV Excess with Reactor Power

Calculating Reactor Neutrino Spectra

involves poorly known β -emitters

short lived $\leftarrow \rightarrow$ high energy \rightarrow spectral uncertainties?

M. Lindner, MPIK

11

Reactor Spectrum Predictions

Several different inputs and (alternative) methods to model reactor neutrino spectrum

M.L Experiments have used different methods

The ILL β-Spectra

Expected ν-fluxes originally determined from measurements of electrons (β-spectra) at ILL → inversion: ν-spectra from β-decays

ILL fission β-spectra for 235U, 239Pu, 241Pu

- converted to antineutrino β-spectra by fitting to 30 end-point energies
- originally, used ENDF nuclear database

FIT

beware of uncertainties...

$$S_{\beta}(E) = \sum_{i=1,30}^{\infty} a_i S^i(E, E_o^i)$$

K. Schreckenbach et al. PLB118, 162 (1985)

$$Z_{eff} \sim a + b E_0 + c E_0^2$$

 $\overline{Z \rightarrow Z_{eff}} \text{ and } \delta \text{ are parametrizations!}$ $S^{i}(E, E_{0}^{i}) = E_{\beta} p_{\beta} (E_{0}^{i} - E_{\beta})^{2} F(E, Z) (1 + \delta_{corrections})$

13

The Bump and improved Z_{eff}

what happens to the bump with the optimized Z_{eff} ?

→ better!

The bump depends on how the 'expected' spectrum was derived
 Shape differences partly reflect assumption in the conversion of β-spectra
 But: Beware of collecting effects that go in the right direction...

Sterile Hints & Plans for Tests

Project	neutrino	source	E	L	status
			(MeV)	(m)	
SAGE [166]	Ve	⁵¹ Cr	0.75	$\lesssim 1$	in preparation
CeSOX [167, 168]	$\bar{\nu}_e$	144 Ce	1.8 - 3	5 - 12	in preparation
CrSOX [167]	v_e	⁵¹ Cr	0.75	5 - 12	proposal
Daya Bay [169, 170]	$\bar{\nu}_e$	144 Ce	1.8 - 3	1.5 - 8	proposal
JUNO [171]	$\bar{\nu}_e$	144 Ce	1.8 - 3	$\lesssim 32$	proposal
LENS [172]	v_e, \bar{v}_e	⁵¹ Cr, ⁶ He	$0.75, \lesssim 3.5$	$\lesssim 3$	abandoned
CeLAND [173]	$\bar{\nu}_e$	144 Ce	1.8 - 3	$\lesssim 6$	abandoned
LENA [174]	v_e	⁵¹ Cr, ³⁷ Ar	0.75, 0.81	$\lesssim 90$	abandoned

Source experiments

tensions with cosmology... → N_{eff} = 3.x < ~ 4 BBN...

Nevertheless: → lab tests important

Also important: → keV sterile v =WDM..

Project	P_{th}	Mtarget	L	Depth	status	
	(MW)	(tons)	(m)	(m.w.e.)		
Nucifer (FRA) [175]	70	0.8	7	13	operating	
Stereo (FRA) [176]	57	1.75	9 - 12	18	in preparation	running
DANSS (RUS) [177]	3000	0.9	10 - 12	50	in proparation	running
SoLid (BEL) [178]	45 - 80	3	6 - 8	10	in preparation	
PROSPECT (USA) [179]	85	3,10	7 – 12, 15 – 19	few	in preparation	
NEOS (KOR) [180]	16400	1	25	10 - 23	in preparation	result, withdrawn
Neutrino-4 (RUS) [181]	100	1.5	6 - 11	10	proposal	
Poseidon (RUS) [182]	100	3	5 - 8	15	proposal	
Hanaro (KOR) [183]	30	0.5	6	few	proposal	
CARR (CHN) [184]	60	~ 1	7,11	few	proposal	
Reactor experiments						Giunti 1512.04758

Back up

Neutron Capture by Gd

Gd used because of delay @ 8 MeV (radiogenic BG dominates \leq 3MeV)

Analysis with n-H (lower average energy) and not n-Gd shows that origin of "IBD" is heavily polluted by external radioactivity instead

Backgrounds & uncertainties

	Daya Bay		Reno		Double Chooz
	Near	Far	Near	Far	Far
Accidentals (B/S)	1.4%	4.0%	0.56%	0.93%	0.6%
Uncertainty(ΔB/B)	1.0%	1.4%	1.4%	4.4%	0.8%
Fast neutrons(B/S)	0.1%	0.06%	0.64%	1.3%	1.6%
Uncertainty(ΔB/B)	31%	40%	2.6%	6.2%	30%
⁸ He/ ⁹ Li (B/S)	0.4%	0.3%	1.6%	3.6%	2.8%
Uncertainty (ΔB/B)	52%	55%	48%	29%	50%
α -n(B/S)	0.01%	0.05%	-	-	-
Uncertainty(ΔB/B)	50%	50%	-	-	-
Am-C(B/S)	0.03%	0.3%	-	-	-
Uncertainty (ΔB/B)	100%	100%	-	-	-
Total backgrounds(B/S)	1.9%	4.7%	2.8%	5.8%	5.0%
Total Uncertainties (Δ(B/S))	0.2%	0.35%	0.8%	1.1%	1.5%

Reactor flux estimate

	Daya Bay		Reno		Double Chooz
	Corr.	Uncorr.	Corr.	Uncorr.	Corr./Uncorr.
Thermal power		0.5%		0.5%	0.5%
Fission fraction/Fuel composition		0.6%		0.7%	0.9%
Fission cross section /Bugey 4 measurement			1.9%		1.4%
Reference spectra	3%		0.5%		0.5%
IBD cross section			0.2%		0.2%
Energy per fission	0.2%		0.2%		0.2%
Baseline	0.02%		-		0.2%
Spent fuel		0.3%			
Total	3%	0.8%	2.0%	0.9%	1.8%

Anti-correlation via appearance at accelerators, then constrained by reactors

Latest KamLAND Results: θ₁₂

Reactors are all off in Japan since Mar. 2011:

A unique opportunity for precise measurement of backgrounds

xpected reactor \overline{v}_e + backgrounds + geo \overline{v}_e

2005

2007

Year

2006

2008

2009

2010

2011

Expected reactor \overline{v}_{e} + backgrounds

Expected reactor V

2004

2003

Data combination	Δm^2_{21}	$\tan^2 \theta_{12}$	$\sin^2 \theta_{13}$
KamLAND	$7.54_{-0.18}^{+0.19}$	$0.481\substack{+0.092\\-0.080}$	$0.010\substack{+0.033\\-0.034}$
KamLAND + solar	$7.53\substack{+0.19 \\ -0.18}$	$0.437\substack{+0.029\\-0.026}$	$0.023\substack{+0.015\\-0.015}$
KamLAND + solar + θ_{13}	$7.53_{-0.18}^{+0.18}$	$0.436\substack{+0.029\\-0.025}$	$0.023\substack{+0.002\\-0.002}$

(b) 2.6-8.5 MeV

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

2002

Rate (events/day)

 $\Delta m^2_{\mathsf{SBL}} \gtrsim 3 imes 10^{-2} \, \mathrm{eV}^2 \gg \Delta m^2_{\mathsf{ATM}} \simeq 2.5 imes 10^{-3} \, \mathrm{eV}^2 \gg \Delta m^2_{\mathsf{SOL}}$

Oscillation Results with 1958 Days

 See a clear rate and shape distortion that fits well to the 3-neutrino hypothesis: ×10³

Nothing abnormal found with two far ADs whose rates deviate from best-fit

https://zenodo.org/record/1294112#.XFxP39F7mi4

https://arxiv.org/abs/1509.08168

TABLE I: Possible radioactive isotopes induced by cosmic-ray muon spallation at SK [13, 22, 23]. The fourth column lists the end point kinetic energy (E_{kin}). The fifth column lists the primary generation process of the radioactive isotopes.

Radioactive isotope	τ (s)	Decay mode	$E_{\rm kin.}$ (MeV)	Primary process
¹¹ Be	19.9	β^{-}	11.51	$^{16}{ m O}(n,\alpha+2p)^{11}{ m Be}$
		$\beta^-\gamma$	$9.41 + 2.1(\gamma)$	
^{16}N	10.3	β^{-}	10.44	${}^{16}\mathrm{O}(n,p){}^{16}\mathrm{N}$
		$\beta^-\gamma$	$4.27 + 6.13(\gamma)$	
$^{15}\mathrm{C}$	3.53	β^{-}	9.77	${}^{16}\mathrm{O}(n,2p){}^{15}\mathrm{C}$
		$\beta^-\gamma$	$4.51 + 5.30(\gamma)$	
⁸ Li	1.21	β^{-}	$\sim \! 13.0$	${}^{16}\mathrm{O}(\pi^-, \alpha + {}^{2}\mathrm{H} + p + n)^{8}\mathrm{Li}$
$^{8}\mathrm{B}$	1.11	β^+	~ 13.9	$^{16}O(\pi^+, \alpha + 2p + 2n)^8B$
$^{16}\mathrm{C}$	1.08	$\beta^- + n$	~ 4	$^{18}\mathrm{O}(\pi^-, n+p)^{16}\mathrm{C}$
⁹ Li	0.26	β^{-}	13.6	${}^{16}\mathrm{O}(\pi^-, \alpha + 2p + n)^9\mathrm{Li}$
		$\beta^- + n$	~ 10	
^{9}C	0.18	$\beta^+ + p$	$3 \sim 15$	${}^{16}{ m O}(n,\alpha+4n){}^{9}{ m C}$
⁸ He	0.17	$\beta^-\gamma$	$9.67 + 0.98(\gamma)$	${}^{16}\mathrm{O}(\pi^{-},{}^{3}\mathrm{H}+4p+n){}^{8}\mathrm{He}$
		$\beta^- + n$		
^{12}Be	0.034	β^{-}	11.71	${}^{18}\mathrm{O}(\pi^-, \alpha + p + n){}^{12}\mathrm{Be}$
$^{12}\mathrm{B}$	0.029	β^{-}	13.37	${}^{16}\mathrm{O}(n, \alpha + p){}^{12}\mathrm{B}$
$^{13}\mathrm{B}$	0.025	β^{-}	13.44	${}^{16}\mathrm{O}(\pi^-, 2p+n){}^{13}\mathrm{B}$
$^{14}\mathrm{B}$	0.02	$\beta^-\gamma$	$14.55 + 6.09(\gamma)$	$^{16}{ m O}(n,3p)^{14}{ m B}$
^{12}N	0.016	β^+	16.38	${}^{16}\mathrm{O}(\pi^+, 2p+2n){}^{12}\mathrm{N}$
$^{13}\mathrm{O}$	0.013	$\beta^+ + p$	$8 \sim 14$	$^{16}O(\mu^{-},\mu^{-}+p+2n+\pi^{-})^{13}O$
$^{11}\mathrm{Li}$	0.012	β^{-}	20.62	$^{16}\mathrm{O}(\pi^+, 5p + \pi^0 + \pi^+)^{11}\mathrm{Li}$
		$\beta^- + n$	$\sim \! 16$	

