Lecture 4: LBL/accelerators

PhD Cycle XXXIV

Neutrino Oscillations

 $|
u(t=0)
angle = |
u_{\mu}
angle = U_{\mu1} |
u_1
angle + U_{\mu2} |
u_2
angle + U_{\mu3} |
u_3
angle$

$$\begin{split} |\nu(t>0)\rangle &= U_{\mu 1} \, e^{-iE_{1}t} \, |\nu_{1}\rangle + U_{\mu 2} \, e^{-iE_{2}t} \, |\nu_{2}\rangle + U_{\mu 3} \, e^{-iE_{3}t} \, |\nu_{3}\rangle \neq |\nu_{\mu}\rangle \\ E_{k}^{2} &= p^{2} + m_{k}^{2} \\ P_{\nu_{\mu} \to \nu_{e}}(t>0) &= |\langle \nu_{e} | \nu(t>0) \rangle|^{2} \sim \sum_{k>j} \operatorname{Re} \left[U_{ek} \, U_{\mu k}^{*} \, U_{ej}^{*} \, U_{\mu j} \right] \sin^{2} \left(\frac{\Delta m_{kj}^{2} L}{4E} \right) \\ \text{transition probabilities depend on } U \text{ and } \Delta m_{kj}^{2} &\equiv m_{k}^{2} - m_{j}^{2} \\ \frac{\nu_{e} \to \nu_{\mu}}{\bar{\nu}_{e} \to \bar{\nu}_{\mu}} \quad \frac{\nu_{e} \to \nu_{\tau}}{\bar{\nu}_{e} \to \bar{\nu}_{\tau}} \quad \nu_{\mu} \to \nu_{e} \quad \nu_{\mu} \to \nu_{\tau} \\ \bar{\nu}_{\mu} \to \bar{\nu}_{\mu} \to \bar{\nu}_{\tau} \end{split}$$

C. Giunti – SBL Neutrino Anomalies – Selected Puzzles in Particle Physics – LNF – 21 Dec 2016 – 4/67

Tiny neutrino masses lead to observable macroscopic oscillation distances!

	ſ	$10 \frac{m}{MeV} \left(\frac{km}{GeV}\right)$	short-baseline experiments	$\Delta m^2 \gtrsim 10^{-1}{ m eV}^2$	
L		$10^3 \frac{m}{MeV} \left(\frac{km}{GeV}\right)$	long-baseline experiments	$\Delta m^2 \gtrsim 10^{-3}{ m eV}^2$)	
E	~`)	$10^4 \frac{\text{km}}{\text{GeV}}$	atmospheric neutrino experiments	$\Delta m^2 \gtrsim 10^{-4}{ m eV}^2$	
	l	$10^{11} \frac{m}{MeV}$	solar neutrino experiments	$\Delta m^2 \gtrsim 10^{-11}{ m eV}^2$	

Neutrino oscillations are the optimal tool to reveal tiny neutrino masses!

SOURCE	Flavour	Distance	Energy	Min Dm ²
Sun	ν _e	~1.5 x 10 ⁸ km	0.2 –15 MeV	~10 ⁻¹¹ eV ²
CR	$\frac{\nu_{\mu}}{\overline{\nu}_{\mu}}\frac{\nu_{e}}{\overline{\nu}_{e}}$	10 km – 13000 km	0. 2 GeV – 100 GeV	~10 ⁻⁴ eV ²
Reactors	$\overline{\nu}_{e}$	20 m – 250 km	<e>≈3 MeV</e>	$\sim 10^{-1} - 10^{-6} \text{ eV}^{-1}$
Accelerators	$\frac{\nu_{\mu}}{\nu_{\mu}}\frac{\nu_{e}}{\nu_{e}}$	15 m – 730 km	20 MeV – 100 GeV	$\sim 10^{-3} - 10 \text{ eV}^2$

Figure 15. Accessible Ranges of Δm^2

Neutrino energies are specific to the source, and source-to-detector distances also vary with the source. The ratio of these two variables determines the range of values for Δm^2 that neutrino oscillation experiments can measure using each source. These ranges are labeled with the source and the neutrinos produced by that source. Two ranges are given for solar-neutrino experiments. One assumes that the MSW effect enhances oscillations, in which case, the range of Δm^2 is determined in part by the electron density of matter in the Sun. The other assumes no matter enhancement.

Three-Neutrino Mixing Paradigm

Standard Parameterization of Mixing Matrix $U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{13}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\lambda_{21}} & 0 \\ 0 & 0 & e^{i\lambda_{31}} \end{pmatrix}$ $=\begin{pmatrix}c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}}\\-s_{12}c_{23}-c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23}-s_{12}s_{23}s_{13}e^{i\delta_{13}} & s_{23}c_{13}\\s_{12}s_{23}-c_{12}c_{23}s_{13}e^{i\delta_{13}} & -c_{12}s_{23}-s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{13}\end{pmatrix}\begin{pmatrix}1 & 0 & 0\\0 & e^{i\lambda_{21}} & 0\\0 & 0 & e^{i\lambda_{31}}\end{pmatrix}$ $c_{ab} \equiv \cos \vartheta_{ab}$ $s_{ab} \equiv \sin \vartheta_{ab}$ $0 \le \vartheta_{ab} \le \frac{\pi}{2}$ $0 \le \delta_{13}, \lambda_{21}, \lambda_{31} < 2\pi$ $\begin{cases} 3 \text{ Mixing Angles: } \vartheta_{12}, \vartheta_{23}, \vartheta_{13} \\ 1 \text{ CPV Dirac Phase: } \delta_{13} \\ 2 \text{ independent } \Delta m_{kj}^2 \equiv m_k^2 - m_j^2 \text{: } \Delta m_{21}^2, \Delta m_{31}^2 \end{cases}$ OSCILLATION PARAMETERS 2 CPV Majorana Phases: λ_{21} , $\lambda_{31} \iff |\Delta L| = 2$ processes

Experimental Evidences of Neutrino Oscillations

Experimental knowledge (2018)

parameter	best fit $\pm 1\sigma$	3σ range	
$\Delta m_{21}^2 \ [10^{-5} \mathrm{eV}^2]$	$7.55\substack{+0.20 \\ -0.16}$	7.05-8.14	2.4%
$\begin{aligned} \Delta m_{31}^2 & [10^{-3} \text{eV}^2] \text{ (NO)} \\ \Delta m_{31}^2 & [10^{-3} \text{eV}^2] \text{ (IO)} \end{aligned}$	$2.50{\pm}0.03\\2.42{}^{+0.03}_{-0.04}$	2.41 – 2.60 2.31 - 2.51	1.3%
$\sin^2 \frac{\theta_{12}}{10^{-1}}$	$3.20\substack{+0.20 \\ -0.16}$	2.73 - 3.79	5.5%
$\frac{\sin^2 \theta_{23}}{10^{-1}} (\text{NO}) \\ \frac{\sin^2 \theta_{23}}{10^{-1}} (\text{IO})$	$\begin{array}{c} 5.47\substack{+0.20\\-0.30}\\ 5.51\substack{+0.18\\-0.30}\end{array}$	4.45 - 5.99 4.53 - 5.98	4.7%
$\frac{\sin^2 \theta_{13}}{10^{-2}} (\text{NO}) \\ \frac{\sin^2 \theta_{13}}{10^{-2}} (\text{IO})$	$2.160\substack{+0.083\\-0.069}\\2.220\substack{+0.074\\-0.076}$	$1.96 – 2.41 \\ 1.99 – 2.44$	3.5%
$\frac{\delta}{\pi}$ (NO) $\frac{\delta}{\pi}$ (IO)	${\begin{array}{c} 1.32\substack{+0.21\\-0.15}\\ 1.56\substack{+0.13\\-0.15}\end{array}}$	0.87 - 1.94 1.12 - 1.94	10%

de Salas et al, PLB782 (2018) 633

7

relative 10 uncertaint

Open Problems

- ► $\vartheta_{23} \leq 45^\circ$?
 - ► T2K (Japan), NO*v*A (USA), ...
- CP violation ? $\delta_{13} \approx 3\pi/2$?
 - ► T2K (Japan), NOνA (USA), DUNE (USA), HyperK (Japan), ...
- Mass Ordering ?
 - JUNO (China), RENO-50 (Korea), PINGU (Antarctica), ORCA (EU), INO (India), ...

Let's devote a couple of our lectures to exploring the reach, strategy and issues of the current experiments at artificial sources

Open Problems

- $\blacktriangleright \ \vartheta_{23} \stackrel{<}{_{>}} 45^{\circ} ?$
 - ► T2K (Japan), NO*v*A (USA), ...
- CP violation ? $\delta_{13} \approx 3\pi/2$?
 - ► T2K (Japan), NOνA (USA), DUNE (USA), HyperK (Japan), ...
- Mass Ordering ?
 - JUNO (China), RENO-50 (Korea), PINGU (Antarctica), ORCA (EU), INO (India), ...

Let's devote a couple of our lectures to exploring the reach, strategy and issues of the current experiments at artificial sources

Current expts of $\nu_{\rm e}$ appearance in ν_{μ} beam

- T2K (Tokai-To-Kamioka)
 - J-PARC: 50 GeV proton synchrotron @ Tokai (JP)
 - High intensity
 - beam directed towards Super-Kamiokande
 - •L=295 Km
- Nova: Fermilab neutrino beam (NuMI)
 - •L=810 km

• Both experiments are at an angle with respect to the beam direction (off-axis experiments)

CERN EP Seminar, 29th November 2016

E ~ 0.6 GeV

L ~ 295 km

Neutrino oscillations at LBL

$$P(\nu_{\mu} \to \nu_{\mu}) \simeq 1 - (\cos^4 \theta_{13} \sin^2 2\theta_{23}) \sin^2 \left(\Delta m_{31}^2 \frac{L}{4E}\right)$$

- Precise measurement of sin²2O₂₃
- Test of CPT by comparing measured $v_{\mu} \rightarrow v_{\mu}$ with $\overline{v}_{\mu} \rightarrow \overline{v}_{\mu}$

- The leading term defines the octant Θ_{23} >45° or Θ_{23} <45°
- All mass splittings and mixing angles have been measured to be non-zero: second order term can violate the CP symmetry if sinδ_{CP} ≠ 0

Design principle: the off-axis angle

- 30 GeV proton beam on 90 cm long graphite target
- v_{μ} and \overline{v}_{μ} produced by pion and kaon decay:
 - $\pi^+ \rightarrow \mu^+ + \nu_\mu$
 - $\pi^- \rightarrow \mu^- + \overline{\nu}_\mu$
- Invert magnet polarity to produce a \overline{v}_{μ} beam
- First off-axis neutrino beam experiment (2.5°)
 - narrow spectrum peaked at 0.6 GeV, on the expected oscillation maximum

T2K

Design principle: the off-axis angle

- 30 GeV proton beam on 90 cm long graphite target
- v_{μ} and \overline{v}_{μ} produced by pion and kaon decay:
 - $\pi^+ \rightarrow \mu^+ + v_\mu$
 - $\pi^- \rightarrow \mu^- + \overline{\nu}_{\mu}$
- Invert magnet polarity to produce a \overline{v}_{μ} beam
- First off-axis neutrino beam experiment (2.5°)
 - narrow spectrum peaked at 0.6 GeV, on the expected oscillation maximum

Design principle: the off-axis angle

- 30 GeV proton beam on 90 cm long graphite target
- v_{μ} and \overline{v}_{μ} produced by pion and kaon decay:
 - $\pi^+ \rightarrow \mu^+ + \nu_\mu$
 - $\pi^- \rightarrow \mu^- + \overline{\nu}_\mu$
- Invert magnet polarity to produce a \overline{v}_{μ} beam
- First off-axis neutrino beam experiment (2.5°)
 - narrow spectrum peaked at 0.6 GeV, on the expected oscillation maximum

Davide Sgalaberna for the T2K collaboration (University of Geneva)

CERN EP Seminar, 29th November 2016

Effect of CP violation at T2K

Correlation between CPV and matter effects present

• Asymmetric effect on $P(v_{\mu} \rightarrow v_{e})$ and $P(\overline{v}_{\mu} \rightarrow \overline{v}_{e})$:

- $\delta_{CP} = -\pi/2 \rightarrow \text{maximizes P}(\nu_{\mu} \rightarrow \nu_{e})$ and minimizes P($\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$)
- $\delta_{CP} = +\pi/2 \rightarrow \text{minimizes P}(v_{\mu} \rightarrow v_{e})$ and maximizes P $(\overline{v}_{\mu} \rightarrow \overline{v}_{e})$
- δ_{CP} and Mass Hierarchy have similar effects
- Effect of δ_{CP} on $\nu_{\mu} \rightarrow \nu_{e}$ and $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ is about ±20-30%
- Effect of Mass Hierarchy is about ±10%

T2K

T2K far detector: Super-Kamiokande

- Located in Mozumi mine
 - 2700 m.w.e overburden
- Water Cherenkov detector (50 kton)
- Fiducial mass 22.5 kton
- Inner detector
 - 11129 20-inch PMTs
- Outer veto detector
 - 1885 8-inch PMTs
 - determine fully-contained events
- New DAQ system: no dead time
- T2K beam event: ±500 μs window

To APD Extruded PVC cells filled with 11M liters of scintillator Far Detector instrumented with 14 kton λ -shifting fiber and APDs 896 layers 6 m Ś 1560 cm Near Detector Far detector: T 14-kton, fine-grained, low-Z, highly-active tracking calorimeter → 344,000 channels 32-pixel APD **Near detector:** Fiber pairs 0.3-kton version of 4 cm × 6 cm from 32 cells the same . \rightarrow 20,000 channels University

17

Jeff Hartnell, CERN Seminar 2016

NOvA detectors

31

Particle Identification at the far detector

Strategy for oscillation analyses

Asher Kaboth for the T2K Collaboration **Beam Operations**

2018-12-20

Used for this ND analysis: $v \mod 2-4$; $\overline{v} \mod 2-6$ Used for this SK analysis: v mode, Runs 1-8; v mode, Run 5-9 v-mode is also known as "forward horn current" (FHC) or "positive focusing" (PF) \overline{v} -mode is also known as "reverse horn current" (RHC) or "negative focusing" (NF)

NB same accumulated statistics for nu and nu-bar

T2K

Karl Warburton, for the NOvA Collaboration Iowa State University 20th December 2018

8.85×10²⁰ POT Neutrino Beam

~2/3 of statistics of T2K overall nu-bar to nu ~70%

v_{μ} / \overline{v}_{μ} selection at Far Detector

2) e-like PID

3) Single ring event

7) π^0 rejection cut

v_e / \overline{v}_e selection at Far Detector

Signal identification is done by CVN (Convolutional Visual Network).

- event classifier in the "image recognition" style.
- The network is trained on two dimensional views of the event's calibrated hits.
- trained separately on neutrinos and anti-neutrinos.

Updated \overline{v}_{μ} disappearance results

- In PMNS framework $P(v_{\mu} \rightarrow v_{x}) = P(\overline{v}_{\mu} \rightarrow \overline{v}_{x})$ for any value of δ_{CP}
- No "± terms" for neutrino / antineutrino

$$P(\nu_{\mu} \to \nu_{\mu}) \simeq 1 - (\cos^4 \theta_{13} \sin^2 2\theta_{23}) \sin^2 \left(\Delta m_{31}^2 \frac{L}{4E}\right)$$

Prediction	Predictions with: sin ² θ ₁₃ =0.0212, sin ² θ ₂₃ =0.528, Δm ² ₃₂ =2.51x10 ⁻³ , NH						
Sample	δ _{CP} =-π/2	δ _{CP} =0	δ _{CP} =π/2	δ _{CP} =π	Observed		
nu	272.4	272.0	272.4	272.8	243		
nu-bar	139.5	139.2	139.5	139.9	140		

T2K

NOvA

- T2K prefers NH with a Bayes factor of 8.0, assuming an equal prior between NH and IH
- T2K is consistent with $sin^2\theta_{23}=0.5$
- Best fit value of $\sin^2\theta_{23}=0.537$ (NH)
- Best fit value of $\Delta m_{32}^2 = 2.46 \times 10^{-3} \text{ eV}^2$ (NH)

NOvA

- Prefer non-maximal mixing at 1.8 σ .
- Favour upper octant at a similar level.

NOvA is consistent with other long baseline and atmospheric neutrino experiments.

potential to measure $\begin{cases} \operatorname{sign}(\theta_{23} - 45^{\circ}) & \operatorname{s}_{23}^2 = \frac{1 \pm \sqrt{1 - \sin^2 2\theta_{23}}}{2} \\ \operatorname{sign}(\Delta m_{31}^2) & \operatorname{mass\ hierarchy} \end{cases}$

• No chance to test CPV if it was $\theta_{13} = 0$ (it's small but not 0)

- δ_{CP} <u>never</u> singled out, ambiguities remain and need to be solved with external inputs (e.g. reactor)
- Possible to test also w/o anti- ν , by fitting all parameters together instead of only δ_{CP} and a or a Δ_{ij} , but obviously less sensitive

Strong (> 4σ) evidence of electron antineutrino appearance

• Events are separated into two samples, based on imaging techniques

• Otherwise good events that pass either containment/cosmic rej are called ''peripheral''

Predictions with: sin²θ₁₃=0.0212, sin²θ₂₃=0.528, Δm²₃₂=2.51×10⁻³, NH

Sample	δ _{CP} =-π/2	δ _{CP} =0	δ _{CP} =π/2	δ _{CP} =π	Observed
nu	74.4	62.2	50.6	62.7	75
nu-bar	17.1	19.4	21.7	19.3	15
nu+lπ	7.0	6.1	4.9	5.9	15

β	HYPOTHESIS	P-VALUE
β=0	NO appearance	p=0.233
β=1	PMNS appearance	p=0.0867

No sound statistical conclusions on nue-bar appearance yet

- SK event rates are in line with expectations based on oscillation model
 - Of note: 15 events observed in CC1 π v_e sample, with prediction of 6.9 maximum
 - p-value for up/down fluctuation in 1 of 5 samples is: ~5% (1% with single sample).

JOINT FIT RESULTS

NOvA Preliminary Prefer NH by 1.8 σ . 0.7 Exclude $\delta_{CP} = \pi/2$ for IH at >3 σ . 0 0.6 $\sin^2 \theta_{23}$ **Best Fit** 0.5 $\delta_{CP} = 0.17\pi$ $\Delta m_{32}^2 = 2.52^{+0.13}_{-0.18} \times 10^{-3} \text{ eV}^2$ (NH) 0.4 $\sin^2 \theta_{23} = 0.58 \pm 0.03$ (UO) + Best Fit 2σ 3σ 1σ NH-0.3 8.85×10²⁰ POT equiv v + 6.9×10²⁰ POT \overline{v} NOvA FD 0.7 5 NOVA NH Lower octant NH Upper octant Significance (
a) 0.6 --- IH Lower octant Preliminary $\sin^2 \theta_{23}$ IH Upper octant 3 0.5 0.4 2σ 3σ 1σ IH – 0.3 0_Ò 2π <u>3π</u> 2 $\frac{3\pi}{2}$ $\frac{\pi}{2}$ $\frac{\pi}{2}$ π 2π π δ_{CP} δ_{CP}

Systematic uncertainties have been reduced in this analysis, however analyses are still statistics limited.

• The upcoming test beam program will improve the calibration and detector response systematics.

• Neutron uncertainty important (and new) for $\overline{\nu}$.

• Neutrino cross-sections (MEC,RPA) also important.

Both NOvA and T2K have extensive upgrade ahead for both ND and FD T2K: https://zenodo.org/record/ 1286758#.XFwZyNF7mi4

Future LBL experiments

DUNE

LBNF Beam

Fernilab Accelerator Complex

Neutrino Flux at 1300 km (CDR Optimized Beam)

60-120 GeV proton beam

DUNE Far Detector

- 4 10-kt (fiducial) liquid argon TPC modules
- Single- and dual-phase detector designs (1st module will be single phase)
- Integrated photon detection
- Modules will not be identical

Hyper-Kamiokande

Hyper-K

J-PARC Accelerator Complex

✓Gigantic neutrino and nucleon decay detector

- ✓186 kton fiducial mass : ~10 × Super-K
- ✓ × 2 higher photon sensitivity than Super-K
- ✓ Superb detector capability, technology still evolving
- ✓2nd oscillation maximum by 2nd tank in Korea under study

✓MW-class world-leading v-beam by upgraded J-PARC

✓ Project now is a priority project by MEXT's Roadmap

✓ Aiming to start construction in FY2019, operation in FY2026

https://zenodo.org/record/1286768#.XFwb49F7mi4

5

Future experiments/DUNE

DEEP UNDERGROUND NEUTRINO EXPERIMENT

Timeline

E. Worcester: Neutrino 2018

Additional material

2-flavour, vacuum:

$$i\frac{d}{dt}\begin{pmatrix} v_e \\ v_\mu \end{pmatrix} = M_V \begin{pmatrix} v_e \\ v_\mu \end{pmatrix} = \left[\frac{m_1^2 + m_2^2}{4p}\right] \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} v_e \\ v_\mu \end{pmatrix} + \left(\frac{\Delta m^2}{4p}\right) \begin{pmatrix} -\cos 2\theta & \sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{pmatrix} \begin{pmatrix} v_e \\ v_\mu \end{pmatrix}$$

In ordinary matter (e.g. sun or earth) an additional interaction of v_e with e occurs, with potential:

$$\frac{1}{2} \begin{pmatrix} m_1^2 + m_2^2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + 2\sqrt{2}G_F N_e p \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{bmatrix} \frac{1}{2} \begin{pmatrix} m_1^2 + m_2^2 \end{pmatrix} + \sqrt{2}G_F N_e p \end{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \sqrt{2}G_F N_e p \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Therefore, time evolution of 2-flavour, in matter:
$$\begin{aligned} \mathbf{A}' &= 2\sqrt{2}\mathbf{G}_{\mathrm{F}}\mathbf{N}_{\mathrm{e}}\mathbf{p}/\Delta\mathbf{m}^{2} \\ i\frac{d}{dt} \begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \end{pmatrix} &= \begin{bmatrix} \frac{\mathbf{w}_{1}^{2} + m_{2}^{2}}{4p} + \frac{\sqrt{2}\mathbf{G}_{F}N_{e}p}{2} \end{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \end{pmatrix} + \begin{bmatrix} \frac{\Delta m^{2} \begin{pmatrix} -\cos 2\theta + A' & \sin 2\theta \\ \sin 2\theta & \cos 2\theta - A' \end{pmatrix} \end{bmatrix} \begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \end{pmatrix} \end{aligned}$$

- Effectively this translates into a "revised" mixing angle
- But with a resonance effect, when $A' = \cos 2\vartheta$ (ϑ =mixing angle in vacuum)
- i.e. an electron density

$$N_e(ris) = \Delta m^2 \frac{\cos 2\theta}{2\sqrt{2}G_F p}$$

• Correspondingly, new mass difference: $\Delta m_m^2 = \Delta m^2 \sqrt{[(\cos 2\theta - A')^2 + \sin^2 2\theta]}$

Evolution in the case of slow change of matter density along the neutrino path

	% errors on predicted event rates				
	1R µ-like 1R e-like				
	ν -mode	⊽-mode	ν -mode	ν-mode (+1π)	$\bar{\nu}$ -mode
SK detector	1.9 %	1.5%	3.0%	16.7%	4.2%
SK FSI+SI+PN	2.2%	2.0%	3.0%	11.4%	2.3%
ND constraint (flux & cross-section)	3.2%	2.7%	3.2%	4.1%	2.9%
σ(ν _e)/ σ(ν _μ)	<0.05 %	<0.05 %	2.6%	2.6%	1.5%
Neutral currents	0.3%	0.3%	1.1%	1.0%	2.6%
Total	4.4%	3.8%	6 .1%	20.9%	6.5%

Uncertainties between 4% and 7% (except e-like+1 π → small stat.) Contributions from flux and cross-section constrained by ND280 SK detector and FSI+SI uncertainties (not constrained by ND280) Only use ν_{μ} selection at ND280 → uncertainties due to possible ν_{e}/ν_{μ} cross-section (theoretical uncertainties)

Off-axis neutrino beam

arXiv:1005.0574v2 [hep-ex]

- In the charged pion decay the neutrino in the CM frame has E*=29.8MeV
- In the LAB frame:

 $\cos \theta = \frac{\cos \theta^* + \beta}{1 + \beta \cos \theta^*}$ $E = \gamma E^* (1 + \beta \cos \theta^*)$ $E \cos \theta = \gamma E^* (\cos \theta^* + \beta)$ $\sin \theta^*$ $\sin \theta$ $E \sin \theta = E^* \sin \theta^*$ $\gamma(1 + \beta \cos \theta^*)$ $\frac{30 \text{ MeV}}{E}$ $\theta_{\max}(E) = \arcsin \frac{E^*}{E} \approx$ $\sin \theta$ \leq For each given angle in the LAB there $E_{\max}(\theta)$ is a maximum neutrino energy

v_e Near Detector Data

- Select v_e CC interactions with 73% efficiency and 76% purity
- Use ND data to predict background in FD
 - NC, CC, beam v_e each propagate differently
 - constrain beam v_e using selected v_μ CC spectrum
 - constrain v_{μ} CC using Michel Electron distribution

NOvA

beam v_e up by 4%

NC up by 17%

 v_{μ} CC up by 10%