Statistical tools in Higgs search and discovery
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95% C.L. limit on signal strength

Slides prepared using mainly material from
E. Gross and W. Vekerke talks.
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INntroduction
.|

Enormous effort to search for new particles, for example the Higgs boson,
we can have signatures in many decay channels

* Results — many plots with signal, background expectations, each with
(systematic) uncertainties, and data

* Q: How do you conclude from this that you’ve seen the Higgs
(or not)?

— we want an answer of type: ‘We can exclude that the Higgs (or a new
particle) exists at 95% CL”, or “The significance of the observed excess 1s

5099
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Quantifying discovery and exclusion — Frequentist approach

- Consider the simplest case — a counting experiment
— Observable: N (the number of events)

— Model F(N | s+b): Probability to get N events given an assumed value
of signal expectation (s) and background expectation (b)

Let’'s assume to know exactly the expected background b=5.
F is given by Poisson(N | s+b)

F(Nly) = S = F(N|s +b) = =——e~ (0
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Quantifying discovery and exclusion — Frequentist approach
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Quantifying discovery and exclusion — Frequentist approach

e Now make a measurement N=N_,. (example N,,.=7)

e Can now define p-value(s), e.qg. for bkg hypothesis

— Fraction of future measurements with N=Nobs (or larger) if s=0

(probability that the background can fluctuate up to Nobs Or above)
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e p-values of background hypothesis is used to quantify
‘discovery’ = excess of events over background expectation

e Another example: N, ,.=15 for same model, what is p,?

=0
.gﬂ.ne > o0
%08 ﬂ p, = [ Poisson(N;b+0)aN || (=0.00022)
3 Ny,
o 0.07 s=5 b=5
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For large b the Poisson distribution becomes a gaussian distribution

B. Di Micco Universita degli Studi di Roma Tre



From po to number of o

0.35
0.3F
0.25F E
: 10
An observed excess IS No 0.2 o
if the integral of the right tail above ™" -
the region delimited by the no i -
interval is equal to the observed po o -
0,05} p-ypalue = 'EI::IEE? 20
a o 2
S B0 B2.75 65
X

|
B. Di Micco Ul i g i e e i e



Quantifying exclusion — Frequentist approach

We want to exclude a signal hypothesis s.
The question is: are my data compatible with the signal+background hypothesis?

or: what is the probability that s+b under fluctuates below the observed yield Nops?
CLs:b = Ps+b
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S0.09—

g F b=5

8 Doy = jPazsson(N b+ s)dN
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e Convention: express result as value of s for which
p(s+b)=5% > “s>6.8 is excluded at 95% C.L.”
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Small signals and background under-fluctuations

* <N, >=s*b leads to the physical requirement
that N

obs>b '_:= s=0
A very small expected s might lead to an I ﬂ
anomaly when N, fluctuates far below the " S=5
expected background, b. I -
. Atone point DELPHI alone had CL,,=0.03 I L s=10
for my=116 GeV I

 However, the cross section for 116 GeV
Higgs at LEP was too small and Delphi
actually had no sensitivity to observe it

« The frequntist would say: Suppose there is a
116 GeV Higgs....
In 3% of the experiments the true signal
would be rejected... (one would obtain a
result incompatible or more so with m=116)

ICGL a 116 GeV Higgs s excluded atthe 97% 1pq background hypothesis is not very likely, excluding

background automatically excludes any signal

The problem of this method is that it ignores sensitivity to signal. Even if you expect s=0.000001
you would exclude any signal if your background under-fluctuates.
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Small signals and background under-fluctuations

* <N, >=s+b leads to the physical requirement Hl s=0 "+ oo

that Noes>b I | ‘ Py = / Poisson(N,b)dN
* A very small expected s might lead to an l B Nobs

anomaly when N, fluctuates far below the I =5

expected background, b. F

. | s=10

« At one point DELPHI alone had CL,,=0.03 1 -

for my=116 GeV

 However, the cross section for 116 GeV

Higgs at LEP was too small and Delphi

actually had no sensitivity to observe it
« The féequntist would say: Suppose there is a Cl—b '-
116 GeV Higgs....
In 3% of the experiments the true signal 1 — paé
would be rejected... (one would obtain a

I\III|IIII|IIII|IIII|IIII|IIII|IIII|III

result incompatible or more so with m=116) o 5 10 15 20 25 30 3¢
ICel_a1 16 GeV Higgs Is excluded at the 977% if the background hypothesis is not very
the CLs method Of — Ds+b B CLs+b likely 1-pp = O compensating the numerator
g = —— =

was introduced 1 — oy C'Ly

Nobs L “+00
Dsip = / Poisson(N; b+ s)dN > ;O =1- / Poisson(N;b)dN =1 — py
0 Nobs
If s <<b CLs+/Clp ~1 (no exclusion)
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Coverage

L]
¢ |[f we exclude a signal s at 95% C.L, we want that if we repeat the experiment may times in the s
hypothesis, only 5% (false exclusion rate) of the times we get an event yield below the observed
number of events, if such property holds we say that the C.L. is well covered;

e Cls:p is well covered by definition (we take the tail of the poisson distribution that integrates to
95% to set the 95% exclusion);

e ClLs = ClLs+/Clb undercovers: if we set an exclusion at 95% C.L.; more than 95% of the
experiments will give a number of events above the observed one for the excluded signal
hypothesis s

The problem: under coverage
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CL exclusion)
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p-values and limits on non-trivial analysis

Events / 10 GeV

Events / 10 GeV

e Typical Higgs search result is not a simple number - Result is a distribution,
counting experiment, but looks like this: not a single number
LA B B B ML
i ATLASH—->WW?#*. :
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Neyman-Pearson lemma

K k
L(Ny,...,Ng|Hy) = H Poisson(Nj, e?b +els) = H(d;’b 4 efs)ke—egb—efs

1=1 1=1

::h

L(Ny,...,Ngl|Hyp) = HPO@sson (N;|€2)
1=1 1=1

The most powerful discriminant is the likelihood ratio

L(Ny, ..., Ng|HJ)
L(N17°°°7NK Hb)

AMN1,...,Ng|Hg, Hy) =

A selection that maximises A is such that, for a given signal efficiency &s, it allows to have the
lowest background efficiency ep
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Likelihood ratio for discovery

Discovery: what is the probability that the observed data are due to a
background fluctuation?

Hypothesis 1: There is only background (we want to falsify this)
Hypothesis 2: There is a signal with arbitrary normalisation

If we expect s events from MC simulation of a signal with cross section s, we test the s
hypothesis with an arbitrary multiplicative factor p (signal strength), l.e. we test an arbitrary signal

yield p-s.

This means that if data are better described by a signal, we prefer it to the background
hypothesis (in this sense we increase the separation power)

Assuming b and s are known without uncertainties (no systematic uncertainties)

L(N+... . Nu|b) fixed number
)\(Nl,,NK‘O): (1’ ’ m

L(Ny, - Nglb + fis)

b is obtained by maximising the denominator of A

B. Di Micco Universita degli Studi di Roma Tre




Likelihood ratio for discovery (the test statistics)
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HIiggs boson discovery
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“E ATLAS 2011 -2012 (a) Ho22" >4 Po is computed for each mass hypothesis,

I ' the mass hypothesis changes the signal
distributions (this plot would have no shape
in case of a single count experiment)
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Likelihood ratio for exclusion of signal strength p

1)Hu hypothesis to have a signal that is p times the SM expectation;
2)Hu-nat hypothesis to have any signal strength

0 — —9n L(N1,...,Ng|b+ us)
8 _L(le”aNKb__:&S)_
Theoretical
04 .
——— o |
0.35¢ —SF :; { gu = 0 and distributes according
Sl quebs |9 =2 || ax distribution with 1 degree of freedom
0.25} _SE z g -
2 o2 1)\ ___ T -/l We say that a signal with a cross section p
\ S\ o || times larger than the SM is excluded at 95%
0.15 9
1y dF = 10| C.L. P(gu > quoPs) < 5%, coverage is exact
011 XXX -
%Q dF: number of degree of freedom
0.057
Z<BRESS
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Example - 95% Exclusion limit vs my for H>WW

Example point: 3 x SM H>WW cross-section excluded at my=125 GeV

03102  ATLAS Preliminary ~ CLs Limits

© = (*) =
= - —— Observed HoWW —iviv - 3
= [ Expected I Ldt=1.7f6" -
= l+1o

d 10E I:IiZG \s=7TeV =
X -
e - ]
o> 5 ]

Expected exc/c,:tsion limit
for backgroundronly hypothesis

Ao e v by v v b v v by vy vy v by by gy |

1077920 140 160 180 200 220 240 260 280 300
m, [GeV]

Example point: 0.5 x SM H>WW cross-section excluded at my=165 GeV

Higgs with 1.0x SM cross-section excluded at 95% CL for my in range [150,~187]
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How does likelihood ratio behave for small signals”

Let’s assume to have 1 bin, and we want to test the y = 1 hypothesis:

o - L(Ni,b+3s) N - Poisson(N1,b+s)
Q1 _ — T ~ _— — 4} - ~
| L(N1,b+ jis) Poisson(N1,b+ fis)
In order to evaluate [i
dL d (b N b Ni—=1
o ( + /LS) e—b—,us _ S( + :LLS) e—b—,us (Nl _bh— /LS)
It data under fluctuate below b the derivative is negative, so L decreases with p and its
maximum |S a-t ILL — O —> ILL — O o lTheoretioaIl
"L(Ny,b+s) o —s|
g1 = —2In Cls = 0% s |
i L(th) _ S = e 100%
— =) 100%
This term works like 1-pp in the CLs method,

if s<<b L(N1,b+s)~L(N+,b) and g1 = 0, so we cannot _
exclude the signal at any confidence level. = —
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Summary

CLs+b: coverage ok, but dangerous for s<<b;

CLs: ok, but undercoverage

Likelihood ratio: coverage ok, protected for s<<b
can be used to test distributions
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Confidence belt

Up 1o

exclusi

Now, discussed O

ons, what about

nly about observation and

measurements?

Measurements are useful to look for deviations from SM, tune
MC, check SM prediction: i.e. sin(2[3), N.P. Kobayashi-Maskawa

| measure the Higgs mass mu, what an error on m
means"?

.|
Universita degli Studi di Roma Tre

B. Di Micco



Bayesian versus frequentist (the religious war)

1)the error on my means that there is 68% probability that the true
MH IS between My - OmH and My + OmH

What this probability is? my has only one value... Do we mean that if we generate 100
universes in the 68% of cases my will lay in that interval?

.|
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Bayesian versus frequentist (the religious war)
.|

Sayesian

1) the error on my means that there is 68% probability that the true
MH IS between my - omH and MH + OmH

What this probability IS7 T as-erhLane value... Do we meanthat-i=wegenerate 100
universes in the 68% of cases muwil-e-rrtnat iInterval?

2) it is our degree of believe..., it is like a bet: What is the probability that Juventus will win
the Italian league?

In this case It Is subjective, and it tries to estimate an objective number:

given the parameters | know about Juventus potentiality to win a match, if | take a sample of
those parameters and try to simulate a match, what is the fraction of times Juventus will win®?

There is always something subjective in this.

.|
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Frequentist approach (Neyman construction of conf. belt)

________________________________________________________________________________]
If the Higgs mass is mn, 68% of the experiments will measure an interval [mymeas - g,
mnmeas + g] that will contain the value mp.

There is no subjective statement, the probability has a strictly frequentist definition

Neyman construction of confidence belt:

f(x;0) distribution of x given 8 — Dio)—

2
P(LE1<CIZ<ZIJ'2;(9)=/ flx;0)dr>1—«
T

X x.(0), 0,(x
for 16 1-a = 0.68 < 2(0), 0,(%)
F R B P e
when we change 6 we get two curves for x4 and g
x2. We build the confidence belt using simulation. s xl(B), 61(36) N
o
o,

The definition above doesn’t define the belt fully,
further conditions need to be applied: x1 =0 is a
choice, or more often a symmetric condition is
added:

T, Ty : /fB f(x;0)dx = /932 f(x;0)dx

xl(:eo) xzéeo)

Possible experimental values x

.|
B. Di Micco Universita degli Studi di Roma Tre



Frequentist approach (Neyman construction of conf. belt)

________________________________________________________________________________]
If the Higgs mass is mn, 68% of the experiments will measure an interval [mymeas - g,
mnmeas + g] that will contain the value mp.

There is no subjective statement, the probability has a strictly frequentist definition

Neyman construction of . Xmeas !
confidence belt; - .

E D(o)—

f(x;0) distribution of x given 6

2
P(m1<:c<:c2;9):/ flz;0)de >1—«
T

parameter 0
=
—
L
D
—
Ao

for 10 1-a = 0.68

when we change 6 we get two
curves for x4 and xo. We build the
confidence belt using simulation.

xl(:eo) xzéeo)

Then we measure Xmeas : | : |
Possible experimental values x
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Frequentist approach (Neyman construction of conf. belt)

________________________________________________________________________________]
If the Higgs mass is mn, 68% of the experiments will measure an interval [mymeas - g,
mnmeas + g] that will contain the value mp.

There is no subjective statement, the probability has a strictly frequentist definition

Neyman construction of . Xmeas !
confidence belt: ' — —
— D(o)=—
f(x;0) distribution of x given 6 O (Xmeas) -
2 aw; A xz(e)a 6z(x)
P(m1<x<x2;9):/ f(z;0)de > 1 -« EJ o 0 A e e
) E | 200,00 = '
x.(0),0,(x) ——S====f---i==---
% ' PN SF (Xmeas)
o

for 10 1-a = 0.68

when we change 6 we get two
curves for x4 and xo. We build the
confidence belt using simulation.

xl(:eo) xzéeo)

we set as interval for 6 the range [61, 62]. : ' : '
Possible experimental values x
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Frequentist approach (Neyman construction of conf. belt)
L]

If the Higgs mass is mn, 68% of the experiments will measure an interval [mymeas - g, mpmeas + Q]
that will contain the value mn.

There is no subjective statement, the probabillity has a strictly frequentist definition

Xmeas :

if B is the true value, we wil “=D(a)—

have X1 < Xmeas < X2 IN 1-a of the A
cases (experiments) and
consequently 81 (Xmeas) < B0 <
B2 (Xmeas) IN the same fraction of
cases, where 681 and 62 are
random variables that is the
outcome of the experiment.

parameter 0

R

—

L

D
—

~—~~
R

A

’.

|

|

|

|

|

|

|

|

|

|

|

1

|

xl(:eo) x2§60)

Possible experimental values x
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likelihood of measured x given 6

T he Bagesian W

new distribution for 8, improved

after the measurement of x L ( X ‘ T ( 9)/

N p(@]x) =
p(@|x) J'L(X‘g)ﬂ'@‘@

» Can the model have a probability? T8 and x are random variables,

this is a theorem otherwise it is the

» We assign a degree of belief in models definition of p®,x)
parameterized by 0

 Instead of talking about confidence intervals we
talk about credible intervals, where p(0|x) is the
credibility of 6 given the data.

a-priori distribution for 6
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Nuisance parameters (Systematics)

* Nuisance - something causing inconvenience or annoyance (Oxford
Dictionary)

e Systematic Errors are equivalent to Nuisance parameters in the
statistics jargon

D. Sinervo classified uncertainties into three classes classes:
— Class I: Statistics like — uncertainties that are reduced with increasing

statistics. Example: Calibration constants for a detector whose precision
of (auxiliary) measurement is statistics limited

Class ll: Systematic uncertainties that arise from one’s limited knowledge
of some data features and cannot be constrained by auxiliary
measurements ... One has to do some assumptions. Example:
Background uncertainties due to fakes, isolation criteria in QCD events,
shape uncertainties.... These uncertainties do not normally scale down
with increasing statistics

Class lll: The “Bayesian” kind... The theoretically motivated ones...
Uncertainties in the model, Parton Distribution Functions, Hadronization
Models.....

B. Di Micco
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" Nuisance Farameters (595tematics)

There are two related issues:

— Classifying and estimating the systematic
uncertainties

— Implementing them in the analysis

The physicist must make the difference between
cross checks and identifying the sources of the
systematic uncertainty.

— Shifting cuts around and measure the effect on the
observable...
Very often the observed variation is dominated by the
statistical uncertainty in the measurement.

.|
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- 1 reatment of Sgstematic I rrors ,
the bagesiaﬂ \/\/ag

* Marginalization (Integrating) (The C&H
Hybrid) Cousins and Highland

— Integrate L over possible values of nuisance
parameters (weighted by their prior belief
functions -- Gaussian,gamma, others...)

— Consistent Bayesian interpretation of
uncertainty on nuisance parameters

* Note that in that sense MC “statistical”
uncertainties (like background statistical
uncertainty) are systematic uncertainties
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. ]ntegrating Out | he Nuisance [Carameters
(Marginalization)

L(x|0,)x(0,4)  L(x|0,4)x(0,1)
j L(x|0,)x(0,1)d6dA  Normalization

p(0,4]x)=

* Our degree of belief in 6 is the sum of our
degree of belief in 6 given A (nuisance
parameter), over “all” possible values of A

p(0]x)= p(6,2|x)dA

. ______________________________________________________________________________________________________________________|
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Frio S P(6 | data) ~ | L(data| 6, A)7(A)d6dA

* A prior probability is interpreted as a description of what we
believe about a parameter preceding the current experiment

— Informative Priors: When you have some information about A the
prior might be informative (Gaussian or Truncated Gaussians...)

* Most would say that subjective informative priors about the
parameters of interest should be avoided (“....what's wrong with
assuming that there is a Higgs in the mass range [115,140] with
equal probability for each mass point?”)

» Subjective informative priors about the Nuisance parameters are
more difficult to argue with

— These Priors can come from our assumed model (Pythia, Herwig
etc...)

— These priors can come from subsidiary measurements of the
response of the detector to the photon energy, for example.

— Some priors come from subjective assumptions (theoretical,
prejudice symmetries....) of our model

.|
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Priors — ( Ininformative [riors '

— Uninformative Priors: All priors on the parameter of interest
should be uninformative....

Therefore flat uninformative priors are most common in HEP.

* When taking a uniform prior for the Higgs mass [115, «]... is it really
uninformative? do uninformative priors exist?

* When constructing an uninformative prior you actually put some
information in it...

— But a prior flat in the coupling g will not be flat in c~g?
Depends on the metric!
(= try Jeffrey Priors)

— Moreover, flat priors are improper and lead to serious problems
of undercoverage (when one deals with >1 channel, i.e. beyond

counting, one should AVOID them
—See Joel Heinrich Phystat 2005
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' Choicez of Friors '

« A.W.F. Edwards: “Let me say at once that | can see no reason why it should
always be possible to eliminate nuisance parameters. Indeed, one of the
many objections to Bayesian inference is that is always permits this
elimination.”

Anonymous: “Who the - is AW.F. Edwards...” http://en.wikipedia.org/wiki/A. W. F. Edwards

« But can you really argue with subjective informative priors about the
Nuisance parameters
(results of analysis are aimed at the broad scientific community.. See talk by
Leszek Roszkowski constrained MSSM)

« Choosing the right priors is a science by itself

« Should we publish Bayesian (or hybrid ) results with various priors?
« Should we investigate the coverage of Bayesian (credible) intervals?

* Anyway, results should be given with the priors specified

.|
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- C@H Hgbrid Method

* This method is coping with the Nuisance parameters by
averaging on them weighted by a posterior.

* The Bayesian nature of the calculation is in the Nuisance

parameters only....

e Say Iin a subsidiary measurement y of b, then the posterior

Is p(bly); pnis the x expectation.

» C&H will calculate the p-value of the observation (x_,y,)

p(x,,v,1 0= | p(x, |y, 2)pb|y,)db

p(y, D) p(b)

b —
pbly,) ()

p(y,|0)=G(y,|b,0,)
p(b) uniform

C&H Cousins & Highland

Note:

The original C&H used the
Luminosity as the Nuisance
parameter....
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*  The Profile Likelihoocj Method

_ L(S,l;:) _ L(S,ZS) L(S,l;) 2
(=7 =00 = 2 _2InQ(s)=-21In i) 2 (s)

b  obtained by maximizing the denominator

. o Ay>=2.7->90% C.I.
obtained by maximizing the numerator

S>> @

* The advantages of the Profile Likelihood

— It has been with us for years..... (MINOS of MINUIT)
(Fred James)

— In the asymptotic limit it is approaching a 2
distribution

F. James, e.g. Computer Phys. Comm. 20 (1980) 29 -35
W. Rolke, A. Lopez, J.Conrad. Nucl. Inst.Meth A 551 (2005) 493-503
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T he Profile | ikelihood
for Signiﬁcance (_alculation

* A counting experiment with background uncertainty

L(n,b, . |u,s,b)=Poiss(n|us+b)Gb, . |b,0,)
 The Likelihood-ratio
A(u,b) = L1, D, |'U’S’lz) Where §,Z; are MLE
L(1,D,,, | 11,5,D) MLE: Maximum Likelihood Estimators

—2log A(x) is distributed as
a x° with N degrees of freedom , N being the number of
free parameters (parameters of interest)

(in this case N=2)
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Confidence intervals
.|

A fractional error on b

U

) Ng contours with A=10% ) No contours with A=2%
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Profile likelihood
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e distributes as a x2with 1 d.o.f
¢ this ensures simplicity, coverage, speed
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The Profile Likelihoocj
for Signiﬁcance (_alculation

—2log A(fi£No,)=N"
N =-2log A(u)

* |n particular if we generate background only
experiments, A(u=0) is distributed as y* with 1 d.o.f

* Discovery has to do with a low probability of the
background only experiment to fluctuate and give us a
signal like result....

* To estimate a discovery sensitivity we simulate a data
compatible with a signal (s+b) and evaluate for this
data A(u=0). For this data, the MLE of n is 1
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0% B 59stematics

5-? EI'E'_DDT | | | | | | | -5

B=10° | || i ? ?
B = 102 |
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\With 10% jiackgroumci Sgstcmatics

For b=100 with 10% systematics, significance for S/WVB=5 drops to ~3.6

§/VvE =5

6.33e-005 | - .. ST S e U S 4
= . -
S =
3 =
R =
s ~
) |
|

2.70e-003

4.55e-002

3.17e-001

1 nea nA nd4a nao> n
48 VM Qe L. P I e Vol
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A lesson on systematics

e in absence of systematics the significance can be approximated to be s/ Vb
e however, If there is a fractional systematic error on b given by A

S S S

I
>

\/(\/5)2+(A-b)2:\/b+A2'b2 A-D

¢ t0 reach 50 one needs s/b > 5A
e with 10% systematics this implies: s/b > 0.5
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Profile Likclihoocj

* The speed and ease allow us to produce
all sorts of views in seconds!

* No numerical problems, can go up to any
significance
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- Wl’!g Frofile Likelihood?

* For SUSY Iinterpretations you usually have
results in a grid (i.e. tgp,m,)

* Each point is a different experiment

* There are 10s-100000s of possible points per
channel

* |In a shape-based analysis each bin is treated
like a channel....

» The difference between O(minutes) per point
and O(0.1 seconds) per point is critical!
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- Exclusion with Fromcile Likelihooé -

» EXxclusion is related to the probability of the
“would be” signal to fluctuate down to the
background only region (i.e. the p-value of the
s+b “observation” )

» Here we suppose the data is the background
only and the exclusion sensitivity is given by

N =-22(u=1)

 Exclusion at the 95% C.L. means N=2
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Signal I Hiciencies ( Jncertainties

L(ues +b)
* How to cope with

with background and efficiency
systematics

» Efficiency systematics have no effect on
discovery sensitivity but can have large
effects on exclusion sensitivity
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Including error on signal efficiency

L(u) = Poiss(n| ues +b)G(b

meas

o) r
—2log A(u, €) : 10% cfroron e

VR

‘ b)G(gmeas I g)

0 01 02 03 04 05 06 07 08 09 1
€
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Including error on signal efficiency
.|

L(u)= Poiss(n| ues+b)G(b, . |b)G(e, .. |€)
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R
Combining Higgs channels (and experiments)

= » . = =
e Procedure: define joint likelihood
[ ]

a5p : oy 5 Mg e T : B oap TR
a9 DalaZD1I.\s=7TeV.rLdt=1.96-2.28")‘ El g Da!azon,xs.:?TeV.ILdl=1.ustb"
o - E| o .
5 8F- ATLAS Preliminary Deta | P
R . 3

L(ﬂ9 Hcomb) = LH—)WW(/Llﬂ HWW) ) LH—)Z (/Ll? HZZ ) . LH—);/y/ (lLl? 977/) e

L(4,0,1¢) = Lygras (1 Ougias ) - Lonss (15 Oppys ) - -
e Correlations between 6,8, etc and between
Oatias,Ocms Frequires careful consideration!

e The construction profile likelihood ratio test statistic
from joint likelihood and proceed as usual

L(dat 6?
q4,=—2In (aa|,uA f’)
L(data| u1,0)

Wouter Verkerke, NIKHEF
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Comb: p-value of background-only hypothesis (‘discovery’)

Expected p-value for background
hypothesis of a data sample
containing SM Higgs boson

) 1E =
> — =
< . _:10
10 \
Q = S C
= 102 L— —
§ 10 = §3
2 S | TS A 120
10° & 2
104 ;— "l ATLAS + CMS Preliminary, \'s = 7 TeVé4
SR T i - - L. = 1.0-2.3 fb /experiment - ©
-5 e 'l [ ] . —

10 § : ,-" Combined =
106 L R LA P Exp. for SM Higgs boson |
Note that ‘peak’ around 160 GeV |-{ —*— CMS §5G

reflects increased | | —=— ATLAS =
experimental sensitivity not SM |, 3

prediction of Higgs mass 200 300 400 500 600
Higgs boson mass (GeV/c?)
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Conclusions

Fros and (_ons Frome Likelikood

« CONS: + PROS:

— The only disadvantage | It is simple and easy to
see is its incapability to understand and apply
take the Look Elsewhere

Effect in a built-in way.... — ltis statistically reliable
and a frequentists favorite
— One has to take the Look

B. Di Micco

Elsewhere Effect in the
LEP way

(Using MC and factorize
the resulting significance-
need to be studied)

It can cope with
Systematics and has the
proper coverage

vs O(Minutes).

Its probably the only
method that can cope with
as many as SUSY
scenarios one wants!
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Confidence intervals

Pasic Detinitions

* Normally, we make one experiment and try to
estimate from this one experiment the
confidence interval at a specified CL%
Confidence Level....

* |In simple cases like Gaussians PDFs G(s,s; )
the Confidence Intrerval can be calculated
analytically and ensures a complete coverage
For example 68% coverage is precise for § + o,
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Frequentist approach (Neyman constr. of conf. belt)

L]
o it is not enough to define x1 and x2, need to add
P(r1 <x < x9;0) = / fx;0)dx>1—-a  further informations: i.e. central values Xc is such that
. P(x < x1) = P(x > x2) = a/2

. Xmeas!
i =D()=—
62 (Xmeas) |
Lo T 5 e
St = — - i- _
AR QRO :

— xl(:%) x2§eo)

Possible experimental values x
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