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FIG. 36. Local p0 as a function of mH . The observed values
are shown as a solid line with points where p0 is evaluated.
The dashed line shows the expected values given the presence
of a signal at each x-axis value. The expected values for
mH =125.36GeV are given as a solid line without points; the
inner (outer) band shaded darker (lighter) represents the one
(two) standard deviation uncertainty.

exclusion limits as a function of mH are also presented to
illustrate the improvements with respect to the version
of this analysis used in the 2012 discovery [4]. Finally,
cross-section measurements, both inclusive and in specific
fiducial regions, are presented. All results in this section
are quoted for a Higgs boson mass corresponding to the
central value of the ATLAS measurement in the ZZ ! 4`
and �� decay modes, mH =125.36± 0.41GeV [9].

A. Observation of the H !WW
⇤ decay mode

The test statistic qµ, defined in Sec. VIIB, is used
to quantify the significance of the excess observed in
Sec. VIII. The probability that the background can fluc-
tuate to produce an excess at least as large as the one ob-
served in data is called p0 and is computed using qµ with
µ=0. It depends on the mass hypothesis mH through
the distribution used to extract the signal (mt or OBDT).
The observed and expected p0 are shown as a function of
mH in Fig. 36. The observed curve presents a broad min-
imum centered around mH ⇡ 130GeV, in contrast with
the higher p0-values observed for lower and higher values
of mH . The shapes of the observed and expected curves
are in good agreement.

The probability p0 can equivalently be expressed in
terms of the number of standard deviations, referred
to as the local significance (Z0 defined in Sec. VIIB 2).
The value of p0 as a function of mH is found by scan-
ning mH in 5GeV intervals. The minimum p0 value
is found at mH =130GeV and corresponds to a local
significance of 6.1 standard deviations. The same ob-
served significance within the quoted precision is found
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FIG. 37. Best-fit signal strength µ̂ as a function of mH . The
observed values are shown as a solid line with points where
µ̂ is evaluated. The expected values for mH =125.36GeV
are shown as a solid line without points. The dashed and
shaded (solid) bands represent the one standard deviation
uncertainties for the observed (expected) values.

for mH =125.36GeV. This result establishes a discovery-
level signal in the H!WW ⇤

! `⌫`⌫ channel alone. The
expected significance for a SM Higgs boson at the same
mass is 5.8 standard deviations.
In order to assess the compatibility with the SM ex-

pectation for a Higgs boson of mass mH , the observed
best-fit µ̂ value as a function of mH is shown in Fig. 37.
The observed µ̂ is close to zero for mH > 160GeV and
crosses unity at mH ⇡ 125GeV. The increase of µ for
small values of mH is expected in the presence of a
signal with mass mH =125.36GeV, as is also shown in
Fig. 37. The dependence of µ̂ on the value of mH

(dµ̂/dmH = �0.078/GeV at mH = 125.36GeV) arises
mostly from the dependence of the WW ⇤ branching frac-
tion on mH .
The assumption that the total yield is predicted by the

SM is relaxed to evaluate the two-dimensional likelihood
contours of (mH , µ), shown in Fig. 38. The value (µ=1,
mH =125.36GeV) lies well within the 68% C.L. contour,
showing that the signal observed is compatible with those
in the high-resolution channels.

B. Evidence for VBF production

The nj � 2 VBF-enriched signal region was optimized
for its specific sensitivity to the VBF production process,
as described in particular in Sec. IV. Nevertheless, as can
be seen in Table XXV, the ggF contribution to this signal
region is large, approximately 30%, so it has to be pro-
filed by the global fit together with the extraction of the
significance of the signal strength of the VBF production
process.
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FIG. 42. CLS exclusion plot for 110mH  200GeV. The
observed values are shown as a solid line with points where
the limit is evaluated. The expected values for a signal at
125.36GeV are given as a solid line without points. The ex-
pected values for scenarios without signal are given by the
dotted line. The inner (outer) band shaded darker (lighter)
represents the one (two) standard deviation uncertainty on
the value for expected without signal. The limit of 132GeV
(114GeV) on µ for the observed (expected no signal) scenario
can be seen at low values of mH .

F. Higgs production cross sections

The measured signal strength can be used to evaluate
the product � · BH !WW⇤ for Higgs boson production
at mH =125.36GeV, as well as for the individual ggF
and VBF production modes. The central value is simply
the product of µ and the predicted cross section used to
define it. The uncertainties are similarly scaled, except
for the theoretical uncertainties related to the total pro-
duction yield, which do not apply to this measurement.
These are the QCD scale and PDF uncertainties on the
total cross sections, and the uncertainty on the branching
fraction for H!WW ⇤, as described in Sec. V. In prac-
tice, the corresponding nuisance parameters are fixed to
their nominal values in the fit, e↵ectively removing these
uncertainties from consideration. Inclusive cross-section
measurements are performed for ggF and VBF produc-
tion. The cross section is also measured for ggF produc-
tion in defined fiducial volumes; this approach minimizes
the impact of theoretical uncertainties.

1. Inclusive cross sections

Inclusive cross sections are evaluated at both 7 and
8TeV for the ggF production process and at 8TeV for the
VBF production process. The 7TeV VBF cross section
is not measured because of the large statistical uncer-
tainty. The signal strengths used for ggF and VBF are
determined through a simultaneous fit to all categories as

described in Sec. IXC. The small VH contribution, cor-
responding to 0.9%, is neglected, and its expected frac-
tional yield is added linearly to the total error. The 7TeV
signal strength µ7TeV

ggf and 8TeV signal strengths µ8TeV
ggf

and µ8TeV
vbf

are

µ7TeV
ggf = 0.57 +0.52

�0.51
+0.36
�0.34

+0.14
�0.004

µ8TeV
ggf = 1.09 ± 0.20 +0.19

�0.17
+0.14
�0.09

µ8TeV
vbf

= 1.45 +0.48
�0.44

+0.38
�0.24

+0.11
�0.06

(stat.) (syst.) (sig.)

(19)

where (sig.) indicates the systematic uncertainties on the
total signal yield for the measured process, which do not
a↵ect the cross-section measurement. The e↵ect of un-
certainties on the signal yield for other production modes
is included in the systematic uncertainties. In terms of
the measured signal strength, the inclusive cross section
is defined as

�
� · BH !WW⇤

�
obs

=
(Nsig)obs

A · C · B
WW!`⌫`⌫

·
1R
L dt

= µ̂ · (� · BH !WW⇤)exp.

(20)

In this equation, A is the kinematic and geometric ac-
ceptance, and C is the ratio of the number of measured
events to the number of events produced in the fiducial
phase space of the detector. The product A ⇥ C is the
total acceptance for reconstructed events. The cross sec-
tions are measured using the last line of the equation,
and the results are:

�7TeV
ggf · BH !WW⇤ = 2.0 ± 1.7 +1.2

�1.1 = 2.0 +2.1
�2.0 pb

�8TeV
ggf · BH !WW⇤ = 4.6 ± 0.9 +0.8

�0.7 = 4.6 +1.2
�1.1 pb

�8TeV
vbf

· BH !WW⇤ = 0.51+0.17
�0.15

+0.13
�0.08 = 0.51+0.22

�0.17 pb.

(stat.) (syst.)

(21)

The predicted cross-section values are 3.3± 0.4 pb,
4.2± 0.5 pb, and 0.35± 0.02 pb, respectively.
These are derived as described in Sec. V, and the ac-

ceptance is evaluated using the standard signal MC sam-
ples.

2. Fiducial cross sections

Fiducial cross-section measurements enable compar-
isons to theoretical predictions with minimal assumptions
about the kinematics of the signal and possible associ-
ated jets in the event. The cross sections described here
are for events produced within a fiducial volume closely
corresponding to a ggF signal region. The fiducial vol-
ume is defined using generator-level kinematic informa-
tion, as specified in Table XXVIII. In particular, the total
pt of the neutrino system (p ⌫⌫

t ) replaces the pmiss
t , and

each lepton’s pt is replaced by the generated lepton pt,
where the lepton four-momentum is corrected by adding
the four-momenta of all photons within a cone of size
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TABLE XXVII. Signal significance Z0 and signal strength µ. The expected (Exp) and observed (Obs) values are given; µexp

is unity by assumption. For each group separated by a horizontal line, the highlighted first line gives the combined result. The
plots correspond to the values in the table as indicated. For the µ plot, the thick line represents the statistical uncertainty
(Stat) in the signal region, the thin line represents the total uncertainty (Tot), which includes the uncertainty from systematic
sources (Syst). The uncertainty due to background sample statistics is included in the latter. The last two rows report the
results when considering ggF and VBF production modes separately. The values are given assuming mH =125.36GeV.

Signal significance

Sample Exp. Obs. Bar graph of
Z0 Z0 observed Z0

nj =0 3.70 4.08
eµ, `2 =µ 2.89 3.07
eµ, `2 = e 2.36 3.12
ee/µµ category 1.43 0.71

nj =1 2.60 2.49
eµ category 2.56 2.83
ee/µµ category 1.02 0.21

nj � 2, ggF, eµ 1.21 1.44

nj � 2, VBF-enr. 3.38 3.84
eµ category 3.01 3.02
ee/µµ category 1.58 2.96

All nj , all signal 5.76 6.06
ggF as signal 4.34 4.28
VBF as signal 2.67 3.24

0 1 2 3 4 5 6

Expected Observed uncertainty Observed central value

Tot. err. Tot. err. Stat. err. Syst. err. µobs µobs ± stat. (thick)
+ � + � + � + � ± total (thin)

0.35 0.30 0.37 0.32 0.22 0.22 0.30 0.23 1.15
0.41 0.36 0.43 0.38 0.30 0.29 0.32 0.24 1.08
0.49 0.44 0.54 0.48 0.38 0.37 0.39 0.30 1.40
0.74 0.70 0.68 0.66 0.45 0.44 0.51 0.50 0.47

0.51 0.41 0.50 0.41 0.33 0.32 0.38 0.26 0.96
0.51 0.42 0.56 0.45 0.35 0.35 0.43 0.29 1.16
1.12 0.98 1.02 0.97 0.80 0.76 0.63 0.61 0.19

0.96 0.83 0.91 0.84 0.70 0.68 0.70 0.49 1.20

0.42 0.36 0.45 0.38 0.36 0.33 0.27 0.19 1.20
0.48 0.40 0.47 0.39 0.40 0.35 0.24 0.16 0.98
0.84 0.67 0.97 0.78 0.83 0.71 0.51 0.33 1.98

0.23 0.20 0.23 0.21 0.16 0.15 0.17 0.14 1.09
0.30 0.24 0.29 0.26 0.19 0.19 0.22 0.18 1.02
0.50 0.43 0.53 0.45 0.44 0.40 0.30 0.21 1.27
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FIG. 41. Likelihood scan as a function of V and F . The
best-fit observed (expected SM) value is represented by the
cross symbol (open circle) and its one, two, and three standard
deviation contours are shown by solid lines surrounding the
filled areas (dotted lines). NB. The y-axis spans a wider range
than the x-axis.

in the limit where F � V due to the increase of the
Higgs boson total width and the consequent reduction of
the branching fraction to WW bosons. Therefore, within
this framework, excluding µvbf =0 excludes F � V .

The best fit values are:

F = 0.93 +0.24
�0.18

+0.21
�0.14 = 0.93 +0.32

�0.23

V = 1.04 +0.07
�0.08

+0.07
�0.08 = 1.04 ± 0.11.

(stat.) (syst.)

(18)

and their correlation is ⇢=0.47. The correlation is de-
rived from the covariance matrix constructed from the
second-order mixed partial derivatives of the likelihood,
evaluated at the best-fit values of F and V .

E. Exclusion limits

The analysis presented in this paper has been opti-
mized for a Higgs boson of mass mH =125GeV, but, due
to the low mass resolution of the `⌫`⌫ channel, it is sen-
sitive to SM-like Higgs bosons of mass up to 200GeV
and above. The exclusion ranges are computed using the
modified frequentist method CLS [98]. A SM Higgs bo-
son of mass mH is considered excluded at 95% C.L. if
the value µ=1 is excluded at that mass. The analysis is
expected to exclude a SM Higgs boson with mass down
to 114GeV at 95% C.L. The clear excess of signal over
background, shown in the previous sections, results in
an observed exclusion range of 132<mH < 200GeV, ex-
tending to the upper limit of the search range, as shown
in Fig. 42.

Slides prepared using mainly material from

E. Gross and W. Vekerke talks.
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Enormous effort to search for new particles, for example the Higgs boson, 
we can have signatures in many decay channels


• Results → many plots with signal, background expectations, each with 
(systematic) uncertainties, and data


• Q: How do you conclude from this that you’ve seen the Higgs

(or not)?


–  we want an answer of type: ‘We can exclude that the Higgs (or a new 
particle) exists at 95% CL”, or “The significance of the observed excess is 
5σ”


Introduction
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[from G.Herten]

Quantifying discovery and exclusion – Frequentist approach

• Consider the simplest case – a counting experiment

– Observable: N (the number of events)

– Model F(N | s+b): Probability to get N events given an assumed value 
of signal expectation (s) and background expectation (b)


Let’s assume to know exactly the expected background b=5.


F is given by Poisson(N | s+b)


F (N |y) = yN

N !
e�y ) F (N |s+ b) =

(s+ b)N

N !
e�(s+b)
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Quantifying discovery and exclusion – Frequentist approach

Quantifying discovery and exclusion – Frequentist approach 

• Consider the simplest case – a counting experiment 
– Observable: N (the event count) 

– Model F(N|s): Poisson(N|s+b) with b=5 known exactly 

• Predicted distributions of N for various values of s 
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Quantifying discovery and exclusion – Frequentist approach

• Now make a measurement N=Nobs (example Nobs=7) 

• Can now define p-value(s), e.g. for bkg hypothesis 
– Fraction of future measurements with N=Nobs (or larger) if s=0 

 

 

 

 

 

 

 

 

 
  

Frequentist p-values – excess over expected bkg 
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f

obsN
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(probability that the background can fluctuate up to Nobs or above)

Nobs

b=5
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• p-values of background hypothesis is used to quantify  
‘discovery’ = excess of events over background expectation 

• Another example: Nobs=15 for same model, what is pb? 
 
 

 

 

 

 
 

 

 
– Result customarily re-expressed as odds of a  

Gaussian fluctuation with equal p-value (3.5 sigma for above case) 

– NB: Nobs=22 gives pb < 2.810-7 (‘5 sigma’) 

 

 

 

 

 

 

 
  

Frequentist p-values - excess over expected bkg 

)00022.0()0;(  � ³
f

obsN
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For large b the Poisson distribution becomes  a gaussian distribution

b=5
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pb = ps+b(s = 0) = p0
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Basic Definitions: p-ValueBasic Definitions: p-Value
• A lot of it is about a language A Th df f Q• A lot of it is about a language…. A 

jargon

• Discovery A deviation from the SM

• The pdf of Q….

Discovery…. A deviation from the SM 
- from the background only 
hypothesis…

• p-value = probability  that result is 
as or less compatible with the 
background only hypothesis

• Control region α
(or size α) defines the significance

• If result falls within the control region, 
i.e. p< α BG only hypothesis is 
rejected

Control region
Of size α

LHC Statistics for Pedestrians , Eilam Gross,Taiwan University, jan 20084

rejected
ÆA discovery

1σ

2σ

p0


From p0 to number of σ

An observed excess is nσ 
if the integral of the right tail above

the region delimited by the nσ 
interval is equal to the observed p0 
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Upper limits (one-sided confidence intervals) 

• Can also defined p-values for hypothesis with signal: ps+b 

– Note convention: integration range in ps+b is flipped 
 
 
 
 
 
 

 

 

 

 

 

• Convention: express result as value of s for which 
p(s+b)=5% Æ “s>6.8 is excluded at 95% C.L.” 

 
Wouter Verkerke, NIKHEF  

³
f

� � 
obsN

bs dNsbNPoissonp );(

p(s=15) = 0.00025 
p(s=10) = 0.007 
p(s=5)   = 0.13 
 
p(s=6.8) = 0.05 
 

Quantifying exclusion – Frequentist approach

We want to exclude a signal hypothesis s.

The question is: are my data compatible with the signal+background hypothesis?

or: what is the probability that s+b under fluctuates below the observed yield Nobs?

0

Upper limits (one-sided confidence intervals) 

• Can also defined p-values for hypothesis with signal: ps+b 

– Note convention: integration range in ps+b is flipped 
 
 
 
 
 
 

 

 

 

 

 

• Convention: express result as value of s for which 
p(s+b)=5% Æ “s>6.8 is excluded at 95% C.L.” 

 
Wouter Verkerke, NIKHEF  

³
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bs dNsbNPoissonp );(

p(s=15) = 0.00025 
p(s=10) = 0.007 
p(s=5)   = 0.13 
 
p(s=6.8) = 0.05 
 

b=5
CLs+b = ps+b
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The problem of this method is that it ignores sensitivity to signal. Even if you expect s=0.000001 
you would exclude any signal if your background under-fluctuates.

Small signals and background under-fluctuationsThe Problem of Small SignalThe Problem of Small Signal
• <N >=s+b leads to the physical requirement• <Nobs>=s+b leads to the physical requirement 

that Nobs>b

• A very small expected s might lead to an 
anomaly when N fluctuates far below the 0.18

0.2
H0
(b)anomaly when Nobs fluctuates far below the 

expected background, b.

• At one point DELPHI alone had CLs+b=0.03 
for mH=116 GeV 0.1

0.12

0.14

0.16

P
D
F

H1
(s+b)

(b)

for mH 116 GeV
• However, the cross section for 116 GeV 

Higgs at LEP was too small and Delphi 
actually had no sensitivity to observe it 0.04

0.06

0.08

0.1

1-CLb

CLs+b

• The frequntist would say: Suppose there is a 
116 GeV Higgs….
In 3% of the experiments the true signal 
would be rejected… (one would obtain a 

-20 -15 -10 -5 0 5 10 15 20
0

0.02

Likelihood

j (
result incompatible or more so with m=116)
i.e. a 116 GeV Higgs is excluded at the 97% 
CL…..

Observed Likelihood

LHC Statistics for Pedestrians , Eilam Gross,Taiwan University, jan 200825

Modified frequentist upper limits 

• Need to be careful about interpretation p(s+b) in terms 

of inference on signal only 

– Since p(s+b) quantifies consistency of signal plus background 

– Problem most apparent when observed data  

has downward stat. fluctations w.r.t background expectation 

• Example: Nobs =2 

 

 

• Modified approach to protect 

against such inference on s 

– Instead of requiring p(s+b)=5%, 

require  

 

 

 

 

 

Æ  ps+b(s=0) = 0.04 

 

 s≥0 excluded at >95% C.L. ?! 

s=0 

s=5 

s=10 
s=15 

%5
1

 
�

{ �

b

bs
S p

pCL

for N=2 exclude s>3.4 at 95% C.L.s, for large N effect on limit is small as pbÆ0 
The background hypothesis is not very likely, excluding 

background automatically excludes any signal
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If s <<b  CLs+b/CLb ~1 (no exclusion)

Small signals and background under-fluctuationsThe Problem of Small SignalThe Problem of Small Signal
• <N >=s+b leads to the physical requirement• <Nobs>=s+b leads to the physical requirement 

that Nobs>b

• A very small expected s might lead to an 
anomaly when N fluctuates far below the 0.18

0.2
H0
(b)anomaly when Nobs fluctuates far below the 

expected background, b.

• At one point DELPHI alone had CLs+b=0.03 
for mH=116 GeV 0.1

0.12

0.14

0.16

P
D
F

H1
(s+b)

(b)

for mH 116 GeV
• However, the cross section for 116 GeV 

Higgs at LEP was too small and Delphi 
actually had no sensitivity to observe it 0.04
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CLs+b

• The frequntist would say: Suppose there is a 
116 GeV Higgs….
In 3% of the experiments the true signal 
would be rejected… (one would obtain a 
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Modified frequentist upper limits 

• Need to be careful about interpretation p(s+b) in terms 

of inference on signal only 

– Since p(s+b) quantifies consistency of signal plus background 

– Problem most apparent when observed data  

has downward stat. fluctations w.r.t background expectation 

• Example: Nobs =2 
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against such inference on s 

– Instead of requiring p(s+b)=5%, 

require  
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for N=2 exclude s>3.4 at 95% C.L.s, for large N effect on limit is small as pbÆ0 

pb =

Z +1

Nobs

Poisson(N, b)dN

1� pb

if the background hypothesis is not very

 likely 1-pb → 0 compensating the numerator

CLb

CLs =
ps+b

1� pb
=

CLs+b

CLb
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

 the CLs method 
was introduced

<latexit sha1_base64="KIn6W1oTs5ZmwlMWOjErrruaSyM="></latexit>

ps+b =

Z Nobs

0
Poisson(N ; b+ s)dN

s = 0
! = 1�

Z +1

Nobs

Poisson(N ; b)dN = 1� pb
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Coverage

The CLs Method for Upper LimitsThe  CLs Method for Upper Limits
• The CLs method
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• If we exclude a signal  s at 95% C.L, we want that if we repeat the experiment may times in the s 
hypothesis, only 5% (false exclusion rate) of the times we get an event yield below the observed 
number of events, if such property holds we say that the C.L. is well covered;
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p-values and limits on non-trivial analysis 

• Typical Higgs search result is not a simple number 
counting experiment, but looks like this: 
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FIG. 35. Post-fit combined transverse mass distributions for nj  1 and for all lepton-flavor samples in the 7 and 8TeV data
analyses. The plot in (b) shows the residuals of the data with respect to the estimated background compared to the expected
distribution for an SM Higgs boson with mH =125GeV; the error bars on the data are statistical (

p
Nobs). The uncertainty on

the background (shown as the shaded band around 0) is at most about 25 events per mt bin and partially correlated between
bins. Background processes are scaled by post-fit normalization factors and the signal processes by the observed signal strength
µ from the likelihood fit to all regions. Their normalizations also include e↵ects from the pulls of the nuisance parameters.

ggF-enriched category is a new subcategory that targets
ggF signal production in this sample.

In summary, the analysis presented in this paper brings
a gain of 50% in the expected significance relative to the
previous published analysis [5].

IX. RESULTS AND INTERPRETATIONS

Combining the 2011 and 2012 data in all categories,
a clear excess of signal over the background is seen in
Fig. 35. The profile likelihood fit described in Sec. VIIB
is used to search for a signal and characterize the pro-

duction rate in the ggF and VBF modes. Observation
of the inclusive Higgs boson signal, and evidence for the
VBF production mode, are established first. Following
that, the excess in data is characterized using the SM
Higgs boson as the signal hypothesis, up to linear rescal-
ings of the production cross sections and decay modes.
Results include the inclusive signal strength as well as
those for the individual ggF and VBF modes. This in-
formation is also interpreted as a measurement of the
vector-boson and fermion couplings of the Higgs boson,
under the assumptions outlined in Ref. [68]. Because this
is the first observation in the WW ⇤

! `⌫`⌫ channel us-
ing ATLAS data, the exclusion sensitivity and observed
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We have two hypotheses:
1. Hs there is  a signal;

2. Hb there is only background

We have K bins, we know the acceptance in each bin i: εib for 
background, εis for signal: <Ni(Hs)> = εibb + εiss

L(N1, . . . , NK |Hb) =
KY

i=1

Poisson(Ni|✏bib) =
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(✏bib)
Ni

Ni!
e
�✏bib
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i=1

Poisson(Ni, ✏
b
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Neyman-Pearson lemma

The most powerful discriminant is the likelihood ratio

�(N1, . . . , NK |Hs, Hb) =
L(N1, . . . , NK |Hs)

L(N1, . . . , NK |Hb)

A selection that maximises  λ is such that, for a given signal efficiency εs, it allows to have the 
lowest background efficiency εb

L(N1, . . . , NK |Hb) =
KY

i=1

Poisson(Ni|✏bi ) =
KY

i=1

(✏bib)
Ni

Ni!
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Likelihood ratio for discovery

Discovery: what is the probability that the observed data are due to a 

background fluctuation?

Hypothesis 1: There is only background (we want to falsify this)

Hypothesis 2: There is a signal with arbitrary normalisation

If we expect s events from MC simulation of a signal with cross section σs, we test the s 
hypothesis with an arbitrary multiplicative factor μ (signal strength), I.e. we test an arbitrary signal 
yield μ∙s. 

This means that if data are better described by a signal, we  prefer it to the background 
hypothesis (in this sense we increase the separation power)


Assuming b and s are known without uncertainties (no systematic uncertainties)
fixed number

�(N1, . . . , NK |0) = L(N1, . . . , NK |b)
L(N1, . . . , NK |b+ µ̂s)

µ̂ is obtained by maximising the denominator of λ
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Likelihood ratio for discovery (the test statistics)

q0 = �2ln


L(N1, . . . , NK |b)

L(N1, . . . , NK |b+ µ̂s)

�

ᵡq0 distributes according a �2
ᵡdistribution with 1 degree of freedom (dF)

q0obs
This area is the probability to have a q0 value

higher than the observed one (it is the p0)


data are not background-like, L small, q0 
larger.
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Higgs  boson discovery

p0 is computed for each mass hypothesis, 
the mass hypothesis changes the signal 
distributions (this plot would have no shape 
in case of a single count experiment)
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Likelihood ratio for exclusion of signal strength μ

 qμ ≥ 0 and distributes according 

a �2distribution with 1 degree of freedomqμobs

1)Hμ hypothesis to have a signal that is μ times the SM expectation;

2)Hμ-hat hypothesis to have any signal strength 

We say that a signal with a cross section μ

times larger than the SM is excluded at 95% 

C.L. P(qμ > qμobs) < 5%, coverage is exact
dF: number of degree of freedom

qµ = �2ln


L(N1, . . . , NK |b+ µs)

L(N1, . . . , NK |b+ µ̂s)

�
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Example – 95% Exclusion limit vs mH for HÆWW 

Example point: ≈3 x SM HÆWW cross-section excluded at mH=125 GeV 

Example point: ≈0.5 x SM HÆWW cross-section excluded at mH=165 GeV 

Higgs with 1.0x SM cross-section excluded at 95% CL for mH in range [150,~187] 

Expected exclusion limit 
for background-only hypothesis 
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How does likelihood ratio behave for small signals?

Let’s assume to have 1 bin, and we want to test the μ = 1 hypothesis:

dL

dµ
=

d

dµ

(b+ µs)N1

N1!
e�b�µs =

s(b+ µs)N1�1

N1!
e�b�µs (N1 � b� µs)

If data under fluctuate below b the derivative is negative, so L decreases with μ and its

maximum is at µ = 0 ! µ̂ = 0

q1 = �2ln


L(N1, b+ s)

L(N1, b+ µ̂s)

�
= �2ln


Poisson(N1, b+ s)

Poisson(N1, b+ µ̂s)

�

q1 = �2ln


L(N1, b+ s)

L(N1, b)

�

This term works like 1-pb in the CLs method,

if s<<b L(N1,b+s)~L(N1,b) and q1 = 0, so we cannot 

exclude the signal at any confidence level.

q1obs

100%

CLs = 0%

In order to evaluate µ̂



B. Di Micco Università degli Studi di Roma Tre

Summary

CLs+b: coverage ok, but dangerous for s<<b;

CLs: ok, but undercoverage

Likelihood ratio: coverage ok, protected for s<<b

                            can be used to test distributions 
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Confidence belt

Up to now, discussed only about observation and 
exclusions, what about measurements?

 Measurements are useful to look for deviations from SM, tune 
MC, check SM prediction: i.e. sin(2β), N.P. Kobayashi-Maskawa

I measure the Higgs mass mH, what an error on mH 
means?
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Bayesian versus frequentist (the religious war)

1) the error on mH means that there is 68% probability that the true

mH is between mH - σmH  and mH + σmH

What this probability is? mH has only one value… Do we mean that if we generate 100 
universes in the 68% of cases mH will lay in that interval?
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Bayesian versus frequentist (the religious war)

1) the error on mH means that there is 68% probability that the true

mH is between mH - σmH  and mH + σmH

What this probability is? mH has only one value… Do we mean that if we generate 100 
universes in the 68% of cases mH will lie in that interval?

2) it is our degree of believe…, it is like a bet:  What is the probability that Juventus will win 
the Italian league? 


In this case it is subjective, and it tries to estimate an objective number: 


given the parameters I know about Juventus potentiality to win a match, if I take a sample  of 
those parameters and try to simulate a match, what is the fraction of times Juventus will win?


There is always something subjective in this.

Bayesian
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Frequentist approach (Neyman construction of conf. belt)
If the Higgs mass is mH, 68% of the experiments will measure an interval [mHmeas - σ, 
mHmeas + σ] that will contain the value mH.


There is no subjective statement, the probability has a strictly  frequentist definition

38. Statistics 25

38.4.2.1. The Neyman construction for confidence intervals:

Consider a p.d.f. f(x; θ) where x represents the outcome of the experiment and θ is the
unknown parameter for which we want to construct a confidence interval. The variable
x could (and often does) represent an estimator for θ. Using f(x; θ), we can find for a
pre-specified probability 1 − α, and for every value of θ, a set of values x1(θ, α) and
x2(θ, α) such that

P (x1 < x < x2; θ) =

∫ x2

x1

f(x; θ) dx ≥ 1 − α . (38.62)

If x is discrete, the integral is replaced by the corresponding sum. In that case there may
not exist a range of x values whose summed probability is exactly equal to a given value
of 1 − α, and one requires by convention P (x1 < x < x2; θ) ≥ 1 − α.

This is illustrated for continuous x in Fig. 38.3: a horizontal line segment
[x1(θ, α), x2(θ, α)] is drawn for representative values of θ. The union of such inter-
vals for all values of θ, designated in the figure as D(α), is known as the confidence belt.
Typically the curves x1(θ, α) and x2(θ, α) are monotonic functions of θ, which we assume
for this discussion.

Possible experimental values x
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 θ x2(θ), θ2(x) 

x1(θ), θ1(x) 

x1(θ0) x2(θ0) 

D(α)

θ0

Figure 38.3: Construction of the confidence belt (see text).

Upon performing an experiment to measure x and obtaining a value x0, one draws
a vertical line through x0. The confidence interval for θ is the set of all values of θ for
which the corresponding line segment [x1(θ, α), x2(θ, α)] is intercepted by this vertical
line. Such confidence intervals are said to have a confidence level (CL) equal to 1 − α.

February 8, 2016 19:57
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for 1σ 1-α = 0.68

when we change θ we get two curves for x1 and 
x2. We build the confidence belt using simulation.


The definition above doesn’t define the belt fully, 
further conditions need to be applied: x1 = 0 is a 
choice, or more often a symmetric condition is 
added:


<latexit sha1_base64="ud0qicJCMpruK0TIOadzRw3XBrY="></latexit>

x1, x2 :

Z x̄

x1

f(x; ✓)dx =

Z x2

x̄
f(x; ✓)dx
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Frequentist approach (Neyman construction of conf. belt)
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for 1σ 1-α = 0.68
when we change θ we get two 
curves for x1 and x2. We build the 
confidence belt using simulation.


Then we measure xmeas

xmeas
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for 1σ 1-α = 0.68
when we change θ we get two 
curves for x1 and x2. We build the 
confidence belt using simulation.


xmeas

θ1 (xmeas)

θ2 (xmeas)

we set as interval for θ the range [θ1, θ2].
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If the Higgs mass is mH, 68% of the experiments will measure an interval [mHmeas - σ, mHmeas + σ] 
that will contain the value mH.


There is no subjective statement, the probability has a strictly frequentist definition
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pre-specified probability 1 − α, and for every value of θ, a set of values x1(θ, α) and
x2(θ, α) such that

P (x1 < x < x2; θ) =

∫ x2

x1

f(x; θ) dx ≥ 1 − α . (38.62)

If x is discrete, the integral is replaced by the corresponding sum. In that case there may
not exist a range of x values whose summed probability is exactly equal to a given value
of 1 − α, and one requires by convention P (x1 < x < x2; θ) ≥ 1 − α.

This is illustrated for continuous x in Fig. 38.3: a horizontal line segment
[x1(θ, α), x2(θ, α)] is drawn for representative values of θ. The union of such inter-
vals for all values of θ, designated in the figure as D(α), is known as the confidence belt.
Typically the curves x1(θ, α) and x2(θ, α) are monotonic functions of θ, which we assume
for this discussion.

Possible experimental values x
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Figure 38.3: Construction of the confidence belt (see text).

Upon performing an experiment to measure x and obtaining a value x0, one draws
a vertical line through x0. The confidence interval for θ is the set of all values of θ for
which the corresponding line segment [x1(θ, α), x2(θ, α)] is intercepted by this vertical
line. Such confidence intervals are said to have a confidence level (CL) equal to 1 − α.
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xmeas

θ1 (xmeas)

θ2 (xmeas)if θ0 is the true value, we will 
have x1 < xmeas < x2 in 1-α of the 
cases (experiments) and 
consequently θ1 (Xmeas) < θ0 < 
θ2 (Xmeas) in the same fraction of 
cases, where θ1 and θ2 are 
random variables that is the 
outcome of the experiment.

Frequentist approach (Neyman construction of conf. belt)
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The Bayesian WayThe Bayesian Way
θπθxL )()|(

∫
=

θθπθ
θπθθ
dxL

xL
xp

)()|(
)()|()|(

• Can the model have a probability?

∫ θθπθ dxL )()|(

• Can the model have a probability?
• We assign a degree of belief in models 

t i d b θparameterized by θ
• Instead of talking about confidence intervals we 

talk about credible intervals, where p(θ|x) is the 
credibility of θ given the data.

LHC Statistics for Pedestrians , Eilam Gross,Taiwan University, jan 200810

likelihood of measured x given θ

a-priori distribution for θnew distribution for θ, improved 
after the measurement of x

if θ and x are random variables, 
this is a theorem otherwise it is the 
definition of p(θ,x )
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Nuisance parameters (Systematics)

• Nuisance - something causing inconvenience or annoyance (Oxford 
Dictionary)


• Systematic Errors are equivalent to Nuisance parameters in the 
statistics jargon

Nuisance Parameters (Systematics)Nuisance Parameters (Systematics)
• Nuisance a thing causing inconvenience or annoyance (Oxford• Nuisance – a thing causing inconvenience or annoyance (Oxford 

Dictionary)
• Systematic Errors are equivalent in the statisticians jargon to 

Nuisance parameters – parameters of no interestNuisance parameters parameters of no interest…
Will the Physicist ever get used to this jargon?

• D. Sinervo classified uncertainties into three classes classes:
– Class I: Statistics like – uncertainties that are reduced with increasingClass I: Statistics like uncertainties that are reduced with increasing 

statistics. Example: Calibration constants for a detector whose precision 
of (auxiliary) measurement is statistics limited

– Class II: Systematic uncertainties that arise from one’s limited knowledge 
of some data features and cannot be constrained by auxiliaryof some data features and cannot be constrained by auxiliary 
measurements … One has to do some assumptions. Example: 
Background uncertainties due to fakes, isolation criteria in QCD events, 
shape uncertainties…. These uncertainties do not normally scale down 

ith increasing statisticswith increasing statistics
– Class III: The “Bayesian” kind… The theoretically motivated ones… 

Uncertainties in the model, Parton Distribution Functions, Hadronization 
Models…..

LHC Statistics for Pedestrians , Eilam Gross,Taiwan University, jan 200811
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Nuisance Parameters (Systematics)Nuisance Parameters (Systematics)

Th t l t d i• There are two related issues:
– Classifying and estimating the systematic 

uncertaintiesuncertainties
– Implementing them in the analysis

• The physicist must make the difference between• The physicist must make the difference between 
cross checks and identifying the sources of the 
systematic uncertainty.systematic uncertainty.
– Shifting cuts around and measure the effect on the 

observable…
Very often the observed variation is dominated by the 
statistical uncertainty in the measurement.

LHC Statistics for Pedestrians , Eilam Gross,Taiwan University, jan 200812
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Treatment of Systematic Errors , 
h B Wthe Bayesian Way

M i li ti (I t ti ) (Th C&H• Marginalization (Integrating) (The  C&H 
Hybrid)

I t t L ibl l f i– Integrate L over possible values of nuisance 
parameters (weighted by their prior belief 
functions -- Gaussian,gamma, others...)functions Gaussian,gamma, others...)

– Consistent Bayesian interpretation of 
uncertainty on nuisance parametersy p

• Note that in that sense MC “statistical” 
i i (lik b k d i i luncertainties (like background statistical 

uncertainty) are systematic uncertainties 

LHC Statistics for Pedestrians , Eilam Gross,Taiwan University, jan 200813

Tom Junk

Cousins and Highland
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Integrating Out The Nuisance Parameters
(M l )(Marginalization)

xLxL )()|()()|( λθπλθλθπλθ
ionNormalizat

xL
ddxL

xL
xp

),(),|(
),(),|(
),(),|()|,( λθπλθ

λθλθπλθ
λθπλθλθ ==

∫

• Our degree of belief in θ is the sum of our 
d f b li f i θ i λ (degree of belief in θ given λ (nuisance 
parameter), over “all” possible values of λ

∫= λλθθ dxpxp )|()|( ∫= λλθθ dxpxp )|,()|(
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Priors ∫ λθλπλθθ dddataLdataP )(),|(~)|(Priors
• A prior probability is interpreted as a description of what we 

b li b di h i

∫ λθλπλθθ dddataLdataP )(),|()|(

believe about a parameter preceding  the current experiment
– Informative Priors: When you have some information about λ the 

prior might be informative (Gaussian or Truncated Gaussians…)p g ( )
• Most would say that subjective informative priors about the 

parameters of interest should be avoided (“….what's wrong with 
assuming that there is a Higgs in the mass range [115,140] with g gg g [ , ]
equal probability for each mass point?”)

• Subjective informative priors about the Nuisance parameters are 
more difficult to argue withmore difficult to argue with

– These Priors can come from our assumed model (Pythia, Herwig 
etc…)

– These priors can come from subsidiary measurements of the p y
response of the detector to the photon energy, for example.

– Some priors come from subjective assumptions (theoretical, 
prejudice symmetries….) of our model

LHC Statistics for Pedestrians , Eilam Gross,Taiwan University, jan 200815
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Priors – Uninformative PriorsPriors – Uninformative Priors
Uninformative Priors: All priors on the parameter of interest– Uninformative Priors: All priors on the parameter of interest 
should be uninformative…. 
IS THAT SO?
Therefore flat uninformative priors are most common in HEP. p

• When taking a uniform prior for the Higgs mass [115, ∞]… is it really 
uninformative? do uninformative priors exist?

• When constructing an uninformative prior you actually put some 
i f ti i itinformation in it… 

– But a prior flat in the coupling g will not be flat in σ~g2

Depends on the metric!Depends on the metric!
(Æ try Jeffrey Priors)

– Moreover, flat priors are improper and lead to serious problems 
of undercoverage (when one deals with >1 channel, i.e. beyond g ( , y
counting, one should AVOID them

–See Joel Heinrich Phystat 2005

LHC Statistics for Pedestrians , Eilam Gross,Taiwan University, jan 200816
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Choice of PriorsChoice of Priors
• A W F Edwards: “Let me say at once that I can see no reason why it should• A.W.F. Edwards: Let me say at once that I can see no reason why it should 

always be possible to eliminate nuisance parameters. Indeed, one of the 
many objections to Bayesian inference is that is always permits this 
elimination.” 

Anonymous: “Who the ---- is A.W.F. Edwards…” http://en.wikipedia.org/wiki/A._W._F._Edwards

• But can you really argue with subjective informative priors about the 
Nuisance parametersNuisance parameters 
(results of analysis are aimed at the broad scientific community.. See talk by 
Leszek Roszkowski constrained MSSM)

Ch i h i h i i i b i lf• Choosing the right priors is a science by itself

• Should we publish Bayesian (or hybrid ) results with various priors?
• Should we investigate the coverage of Bayesian (credible) intervals?• Should we investigate the coverage of Bayesian (credible) intervals?

• Anyway, results should be given with the priors specified

LHC Statistics for Pedestrians , Eilam Gross,Taiwan University, jan 200817
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C&H Hybrid Methody
• This method is coping with the Nuisance parameters by 

averaging on them weighted by a posterioraveraging on them  weighted by a posterior.
• The Bayesian nature of the calculation is in the Nuisance 

parameters only…. p y
• Say in a subsidiary measurement y of b, then the posterior 

is p(b|y); μ is the x expectation.
• C&H will calculate the p value of the observation (x y )• C&H will calculate the p-value of the observation (xo,yo)

dbybpyxpyxp ooooo )|(),|()|,(
0

μμ = ∫
∞

yp
bpbyp

ybp
o

o
o )(

)()|()|(

0

=

∫

Note:
The original C&H used the

uniformbp
byGbyp boo

)(
),|()|( σ=

The original C&H used the
Luminosity as the Nuisance
parameter….
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C&H Cousins & Highland
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The Profile Likelihood MethodThe Profile Likelihood Method
)ˆˆ(
)ˆ̂,()(

)ˆˆ(
)ˆ̂,()(

bL
bsLsQ

bL
bsLs =⇒=A ( )sbsLsQ 2)ˆ̂,(ln2)(ln2 χ→−=−),ˆ(),ˆ( bsLbsL

..%907.22 IC→=Δχ

( )s
bsL

sQ
)ˆ,ˆ(

ln2)(ln2 χ→

• The advantages of the Profile Likelihoodg
– It has been with us for years….. (MINOS of MINUIT)

(Fred James)

– In the asymptotic limit it is approaching a χ2 

di t ib tidistribution
F. James, e.g. Computer Phys. Comm. 20 (1980) 29 -35
W. Rolke, A. Lopez, J.Conrad. Nucl. Inst.Meth A 551 (2005) 493-503
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ŝ b̂
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

obtained by maximizing the denominator
ˆ̂b

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

obtained by maximizing the numerator
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The Profile Likelihood The Profile Likelihood 
f S f C l lf S f C l lfor Significance Calculationfor Significance Calculation

• A counting experiment with background uncertainty

• The Likelihood ratio

( , | , , ) ( | ) ( | , )meas meas bL n b s b Poiss n s b G b bμ μ σ= +

• The Likelihood-ratio

( , | , , )
( , ) ˆˆ( | )

measL n b s b
b

L b b
μλ μ = Where          are MLEˆˆ,s b

is distributed as 
f f f

ˆ( , | , , )measL n b s bμ

2
2 log ( )λ μ−

a       with N degrees of freedom , N being the number of 
free parameters (parameters of interest) 

2χ

(i thi N 2)
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(in this case N=2)

MLE: Maximum Likelihood Estimators
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µ

b b

Confidence intervals

Confidence intervalsConfidence intervals
N t ith Δ 2%Nσ contours with Δ=2%
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Profile likelihood

B. Di Micco Università degli Studi di Roma Tre

Profiling the LikelihoodProfiling the Likelihood
• Profile Likelihood:

{ }2 2 2 21ˆ̂
μ

{ }2 2 2 21( ) ( ) 4
2 meas b meas b bb b s b s nμ μ σ μ σ σ= − − + + − +

125
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•  distributes as a χ2 with 1 d.o.f

•  this ensures simplicity, coverage, speed 
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The Profile Likelihood 
f S f C l lfor Significance Calculation

2ˆ2 log ( )N Nλ μ σ± =ˆ2 log ( )

2 log ( )

N N

N
μλ μ σ

λ μ

− ± =

= −

• In particular if we generate background only
experiments,  λ(μ=0) is distributed as χ2  with 1 d.o.fp , (μ ) χ

• Discovery has to do with a low probability of the 
background only experiment to fluctuate and give us abackground only experiment to fluctuate and give us a 
signal like result…. 

To estimate a discovery sensitivity we simulate a data• To estimate a discovery sensitivity we simulate a data 
compatible with a signal (s+b) and evaluate for this 
data λ(μ=0). For this data, the MLE of μ is 1

LHC Statistics for Pedestrians , Eilam Gross,Taiwan University, jan 200845
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0% BG Systematics0% BG Systematics

106

LHC Statistics for Pedestrians , Eilam Gross,Taiwan University, jan 200846
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With 10% Background Systematics

For b=100 with 10% systematics, significance for S/√B=5 drops to ~3.6 

LHC Statistics for Pedestrians , Eilam Gross,Taiwan University, jan 200848
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A lesson on systematics

• in absence of systematics the significance can be approximated to be 

• however, if there is a fractional systematic error on b given by Δ
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• to reach 5σ one needs  s/b > 5Δ

•  with 10% systematics this implies: s/b > 0.5
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Profile LikelihoodProfile Likelihood
Th d d ll t d• The speed and ease allow us to produce 
all sorts of views in seconds!

• No numerical problems, can go up to any p , g p y
significance

LHC Statistics for Pedestrians , Eilam Gross,Taiwan University, jan 200850
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Why Profile Likelihood?Why Profile Likelihood?
F SUSY i t t ti ll h• For SUSY interpretations you usually have 
results in a grid (i.e. tgβ,mA)

• Each point is a different experiment

• There are 10s-100000s of possible points per 
channel

• In a shape-based analysis each bin is treated 
like a channellike a channel….

• The difference between O(minutes) per point

LHC Statistics for Pedestrians , Eilam Gross,Taiwan University, jan 200851

The difference between O(minutes) per point 
and O(0.1 seconds) per point is critical!
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Exclusion with Profile LikelihoodExclusion with Profile Likelihood
• Exclusion is related to the probability of the 

“would be” signal to fluctuate down to the 
background only region (i.e. the p-value of the 
s+b  “observation”  )

• Here we suppose the data is the background 
only and the exclusion sensitivity is given by

2 ( 1)N λ μ= =

• Exclusion at the 95% C.L. means N=2

2 ( 1)N λ μ= − =

LHC Statistics for Pedestrians , Eilam Gross,Taiwan University, jan 200852

Exclusion at the 95% C.L. means N 2
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Signal Efficiencies UncertaintiesSignal Efficiencies Uncertainties
( )L s bμε +

• How to cope with
with background and efficiency 

( )μ

g y
systematics 

ff ff• Efficiency systematics have no effect on 
discovery sensitivity but can have large y y g
effects on exclusion sensitivity

LHC Statistics for Pedestrians , Eilam Gross,Taiwan University, jan 200855
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Including error on signal efficiency

10% error on ε 
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Including error on signal efficiency

30% error on ε 
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Combining Higgs channels (and experiments) 

• Procedure: define joint likelihood 

 

 

 

 

 

 

• Correlations between θWW,θγγ etc and between 
θATLAS,θCMS requires careful consideration! 

• The construction profile likelihood ratio test statistic 
from joint likelihood and proceed as usual 

Wouter Verkerke, NIKHEF  
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Comb: p-value of background-only hypothesis (‘discovery’) 

Note that ‘peak’ around 160 GeV 
reflects increased  

experimental sensitivity not SM 
prediction of Higgs mass 

Expected p-value for background 
hypothesis of a data sample 
containing SM Higgs boson 
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Pros and Cons Profile LikelihoodPros and Cons Profile Likelihood
CONS: PROS:• CONS:
– The only disadvantage I 

see is its incapability to 
take the Look Elsewhere

• PROS:
– It is simple and easy to 

understand and apply
take the Look Elsewhere 
Effect in a built-in way….

– One has to take the Look

– It is statistically  reliable 
and a frequentists favorite

One has to take the Look 
Elsewhere Effect in the 
LEP way 
(Using MC and factorize 
th lti i ifi

– It can cope with 
Systematics and has the 
proper coverage

the resulting significance-
need to be studied)

p p g

– It is FAST!!!!!!  O(0.1 Sec) 
vs O(Minutes).

– Its probably the only 
method that can cope with 
as many as SUSY

LHC Statistics for Pedestrians , Eilam Gross,Taiwan University, jan 200861

as many as SUSY 
scenarios one wants!

Conclusions
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Basic DefinitionsBasic Definitions
• Normally we make one experiment and try toNormally, we make one experiment and try to 

estimate from this one experiment the 
confidence interval at a specified CL%confidence interval at a specified CL% 
Confidence Level….

• In simple cases like Gaussians PDFs G(s,strue) 
th C fid I t l b l l t dthe Confidence Intrerval can be calculated 
analytically and ensures a complete coverage
F l 68% i i f ˆ ±For example 68% coverage is precise for ss ˆσ±

LHC Statistics for Pedestrians , Eilam Gross,Taiwan University, jan 200829

Confidence intervals
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Frequentist approach (Neyman constr. of conf. belt)

38. Statistics 25

38.4.2.1. The Neyman construction for confidence intervals:

Consider a p.d.f. f(x; θ) where x represents the outcome of the experiment and θ is the
unknown parameter for which we want to construct a confidence interval. The variable
x could (and often does) represent an estimator for θ. Using f(x; θ), we can find for a
pre-specified probability 1 − α, and for every value of θ, a set of values x1(θ, α) and
x2(θ, α) such that

P (x1 < x < x2; θ) =

∫ x2

x1

f(x; θ) dx ≥ 1 − α . (38.62)

If x is discrete, the integral is replaced by the corresponding sum. In that case there may
not exist a range of x values whose summed probability is exactly equal to a given value
of 1 − α, and one requires by convention P (x1 < x < x2; θ) ≥ 1 − α.

This is illustrated for continuous x in Fig. 38.3: a horizontal line segment
[x1(θ, α), x2(θ, α)] is drawn for representative values of θ. The union of such inter-
vals for all values of θ, designated in the figure as D(α), is known as the confidence belt.
Typically the curves x1(θ, α) and x2(θ, α) are monotonic functions of θ, which we assume
for this discussion.

Possible experimental values x
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x1(θ), θ1(x) 

x1(θ0) x2(θ0) 
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Figure 38.3: Construction of the confidence belt (see text).

Upon performing an experiment to measure x and obtaining a value x0, one draws
a vertical line through x0. The confidence interval for θ is the set of all values of θ for
which the corresponding line segment [x1(θ, α), x2(θ, α)] is intercepted by this vertical
line. Such confidence intervals are said to have a confidence level (CL) equal to 1 − α.
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Upon performing an experiment to measure x and obtaining a value x0, one draws
a vertical line through x0. The confidence interval for θ is the set of all values of θ for
which the corresponding line segment [x1(θ, α), x2(θ, α)] is intercepted by this vertical
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it is not enough to define x1 and x2, need to add 
further informations: i.e. central values xc is such that

P(x < x1) = P( x > x2) = α/2


