Statistical tools in Higgs search and discovery

Slides prepared using mainly material from E. Gross and W. Vekerke talks.

Introduction

Enormous effort to search for Higgs signature in many decay channels

- Results \rightarrow many plots with signal, background expectations, each with (systematic) uncertainties, and data
- Q: How do you conclude from this that you've seen the Higgs (or not)?
- Want answer of type: 'We can exclude that the Higgs
exist at 95% CL", or "The significance of the observed excess is 5σ "

Quantifying discovery and exclusion - Frequentist approach

- Consider the simplest case - a counting experiment
- Observable: N (the number of events)
- Model F(NIs+b): Probability to get N events given an assumed value of signal expectation (s) and background expectation (b)

Let's assume to know exactly the expected background $b=5$.
F is given by Poisson(Nls+b)

$$
F(N \mid y)=\frac{y^{N}}{N!} e^{-y} \Rightarrow F(N \mid s+b)=\frac{(s+b)^{N}}{N!} e^{-(s+b)}
$$

Quantifying discovery and exclusion - Frequentist approach

Quantifying discovery and exclusion - Frequentist approach

- Now make a measurement $\mathrm{N}=\mathrm{N}_{\text {obs }}$ (example $\mathrm{N}_{\text {obs }}=7$)
- Can now define p-value(s), e.g. for bkg hypothesis
- Fraction of future measurements with $N=$ Nobs (or larger) if $s=0$ (probability that the background can fluctuate up to $N_{\text {obs }}$ or above)

- p -values of background hypothesis is used to quantify 'discovery' = excess of events over background expectation
- Another example: $\mathrm{N}_{\mathrm{obs}}=15$ for same model, what is p_{b} ?

For large b the Poisson distribution becomes a gaussian distribution

From po to number of σ

An observed excess is no if the integral of the right tail above the region delimited by the no interval is equal to the observed po

po

Quantifying exclusion - Frequentist approach

We want to exclude a signal hypothesis s.
The question is: are my data compatible with the signal+background hypothesis? or: what is the probability that s+b under fluctuates below the observed yield Nobs?

- Convention: express result as value of \mathbf{s} for which $p(s+b)=5 \% \rightarrow$ "s>6.8 is excluded at 95\% C.L."

Small signals and background under-fluctuations

- $<\mathrm{N}_{\mathrm{obs}}>=\mathrm{s}+\mathrm{b}$ leads to the physical requirement that $\mathrm{N}_{\text {obs }}>\mathrm{b}$
- A very small expected s might lead to an anomaly when $\mathrm{N}_{\text {obs }}$ fluctuates far below the expected background, b.
- At one point DELPHI alone had $\mathrm{CL}_{\mathrm{s}+\mathrm{b}}=0.03$ for $m_{H}=116 \mathrm{GeV}$
- However, the cross section for 116 GeV Higgs at LEP was too small and Delphi actually had no sensitivity to observe it
- The frequntist would say: Suppose there is a 116 GeV Higgs....
In 3\% of the experiments the true signal would be rejected... (one would obtain a result incompatible or more so with $\mathrm{m}=116$)

i.e. a 116 GeV Higgs is excluded at the 97% The background hypothesis is not very likely, excluding CL..... background automatically excludes any signal

The problem of this method is that it ignores sensitivity to signal. Even if you expect $\mathrm{s}=0.000001$ you would exclude any signal if your background under fluctuates.

Small signals and background under-fluctuations

- $<\mathrm{N}_{\mathrm{obs}}>=\mathrm{s}+\mathrm{b}$ leads to the physical requirement that $\mathrm{N}_{\text {obs }}>\mathrm{b}$
- A very small expected s might lead to an anomaly when $\mathrm{N}_{\text {obs }}$ fluctuates far below the expected background, b.
- At one point DELPHI alone had $\mathrm{CL}_{\mathrm{s}+\mathrm{b}}=0.03$ for $m_{H}=116 \mathrm{GeV}$
- However, the cross section for 116 GeV Higgs at LEP was too small and Delphi actually had no sensitivity to observe it
- The frequntist would say: Suppose there is a 116 GeV Higgs....
In 3\% of the experiments the true signal would be rejected... (one would obtain a result incompatible or more so with $\mathrm{m}=116$) i.e. a 116 GeV Higgs is excluded at the 97% CL.....

$$
p_{b}=\int_{\mathrm{N}_{\mathrm{obs}}}^{+\infty} \operatorname{Poisson}(N, b) d N
$$

$$
C L_{s}=\frac{C L_{s+b}}{1-p_{b}} \quad \begin{aligned}
& \text { if the background hypothesis } \\
& \text { is not very likely } 1-\mathrm{pb}_{\mathrm{b}} \rightarrow 0 \\
& \text { compensating the numerator }
\end{aligned}
$$

If $s \ll b \quad L_{s+b} / C L_{b} \sim 1$ (no exclusion)

Coverage

- If we exclude a signal s at 95\% C.L, we want that if we repeat the experiment may times in the s hypothesis, 95% of the times we get an event yield above the observed number of events, if such property holds we say that the C.L. is well covered
- $\mathrm{CL}_{s+\mathrm{b}}$ is well covered by definition (we take the tail of the poissonian that integrates to 95\% to set the 95\% exclusion);
- $C_{s}=C L_{s+b} / C L_{b}$ undercovers: if we set an exclusion at 95\% C.L. more than 95% of the experiments will give a number of events above the observed one for the exluded signal hypothesis s

The problem: under coverage

for low σ signals the true false exclusion rate is below 5% (when quoting according to this recipe a 95\% CL exclusion)

Basic Definitions

- Normally, we make one experiment and try to estimate from this one experiment the confidence interval at a specified CL\% Confidence Level....
- In simple cases like Gaussians PDFs $G\left(s, s_{\text {true }}\right)$ the Confidence Intrerval can be calculated analytically and ensures a complete coverage For example 68% coverage is precise for $\hat{S} \pm \sigma_{\hat{s}}$
- Typical Higgs search result is not a simple number counting experiment, but looks like this:

- Result is a distribution, not a single number
- Models for signal and background have intrinsic uncertainties
We have two hypotheses:

1. H_{s} there is a signal;
2. H_{b} there is only background

We have K bins, we know the acceptance in each bin i: ε_{i}^{b} for background, ε_{i}^{s} for signal: $\left\langle N_{i}\left(H_{s}\right)\right\rangle=\varepsilon_{i}^{b} b+\varepsilon_{i}^{s} s$

$$
\begin{gathered}
L\left(N_{1}, \ldots, N_{K} \mid H_{s}\right)=\prod_{i=1}^{K} \operatorname{Poisson}\left(N_{i}, \epsilon_{i}^{b} b+\epsilon_{i}^{s} s\right)=\prod_{i=1}^{k}\left(\epsilon_{i}^{b} b+\epsilon_{i}^{s} s\right)^{k} e^{-\epsilon_{i}^{b} b-\epsilon_{i}^{s} s} \\
L\left(N_{1}, \ldots, N_{K} \mid H_{b}\right)=\prod_{i=1}^{K} \operatorname{Poisson}\left(N_{i} \mid \epsilon_{i}^{b}\right)=\prod_{i=1}^{K} \frac{\left(\epsilon_{i}^{b} b\right)^{N_{i}}}{N_{i}!} e^{-\epsilon_{i}^{b} b}
\end{gathered}
$$

Neyman-Pearson lemma

$$
\begin{gathered}
L\left(N_{1}, \ldots, N_{K} \mid H_{s}\right)=\prod_{i=1}^{K} \operatorname{Poisson}\left(N_{i}, \epsilon_{i}^{b} b+\epsilon_{i}^{s} s\right)=\prod_{i=1}^{k}\left(\epsilon_{i}^{b} b+\epsilon_{i}^{s} s\right)^{k} e^{-\epsilon_{i}^{b} b-\epsilon_{i}^{s} s} \\
L\left(N_{1}, \ldots, N_{K} \mid H_{b}\right)=\prod_{i=1}^{K} \operatorname{Poisson}\left(N_{i} \mid \epsilon_{i}^{b}\right)=\prod_{i=1}^{K} \frac{\left(\epsilon_{i}^{b} b\right)^{N_{i}}}{N_{i}!} e^{-\epsilon_{i}^{b} b}
\end{gathered}
$$

The most powerful discriminant is the likelihood ratio

$$
\lambda\left(N_{1}, \ldots, N_{K} \mid H_{s}, H_{b}\right)=\frac{L\left(N_{1}, \ldots, N_{K} \mid H_{s}\right)}{L\left(N_{1}, \ldots, N_{K} \mid H_{b}\right)}
$$

A selection that maximises λ is such that, for a given signal efficiency ε_{s}, it allows to have the lowest background efficiency ε_{b}

Likelihood ratio for discovery

Discovery: what is the probability that the observed data are due to a background fluctuation?

Hypothesis 1: There is only background (we want to falsify this)
Hypothesis 2: There is a signal with arbitrary normalisation
If we expect \mathbf{s} events from MC simulation of a signal with cross section $\boldsymbol{\sigma}_{\mathbf{s}}$, we test the \mathbf{s} hypothesis with an arbitrary multiplicative factor $\boldsymbol{\mu}$ (signal strength), I.e. we test an arbitrary signal yield $\boldsymbol{\mu} \cdot \mathbf{s}$.

This means that if data are better described by a signal, we prefer it to the background hypothesis (in this sense we increase the separation power)

Assuming b and s are known without uncertainties (no systematic uncertainties)
$\lambda\left(N_{1}, \ldots, N_{K} \mid 0\right)=\frac{L\left(N_{1}, \ldots, N_{K} \mid b\right)}{L\left(N_{1}, \ldots, N_{K} \mid b+\hat{\mu} s\right)}$ fixed number
$\hat{\mu}$ is obtained by maximising the denominator of λ

Likelihood ratio for discovery (the test statistics)

$$
q_{0}=-2 \ln \left[\frac{L\left(N_{1}, \ldots, N_{K} \mid b\right)}{L\left(N_{1}, \ldots, N_{K} \mid b+\hat{\mu} s\right)}\right]
$$

qo distributes according a χ^{2} distribution with 1 degree of freedom (dF)

Higgs discovery

po is computed for each mass hypothesis, the mass hypothesis changes the signal distributions (this plot would have no shape in case of a single count experiment)

Likelihood ratio for exclusion of signal strength μ

1) H_{1} hypothesis to have a signal that is μ times the SM expectation;
2) H_{μ} hypothesis to have any signal with signal strength μ
$q_{\mu}=-2 \ln \left[\frac{L\left(N_{1}, \ldots, N_{K} \mid b+\mu s\right)}{L\left(N_{1}, \ldots, N_{K} \mid b+\hat{\mu} s\right)}\right]$

$q_{\mu} \geq 0$ and distributes according a χ^{2} distribution with 1 degree of freedom

We say that a signal with a cross section μ times larger than the SM is excluded at 95\% C.L. if $\mathrm{P}\left(\mathrm{q}_{\mu}>\mathrm{q}_{\mu}{ }^{\text {obs }}\right)<5 \%$, coverage is exact dF : number of degree of freedom

Example - 95\% Exclusion limit vs m_{H} for $\mathrm{H} \rightarrow$ WW

Example point: $\approx 3 \times \mathrm{SM} H \rightarrow W W$ cross-section excluded at $\mathrm{m}_{\mathrm{H}}=125 \mathrm{GeV}$

Example point: $\approx 0.5 \times \mathrm{SM} H \rightarrow W W$ cross-section excluded at $\mathrm{m}_{\mathrm{H}}=165 \mathrm{GeV}$
Higgs with 1.0x SM cross-section excluded at 95\% CL for m_{H} in range [150, $\left.\sim 187\right]$

How does likelihood ratio behaves for small signals?

Let's assume to have 1 bin:

$$
q_{1}=-2 \ln \left[\frac{L\left(N_{1}, b+s\right)}{L\left(N_{1}, b+\hat{\mu} s\right)}\right]=-2 \ln \left[\frac{\operatorname{Poisson}\left(N_{1}, b+s\right)}{\operatorname{Poisson}\left(N_{1}, b+\hat{\mu} s\right)}\right]
$$

In order to evaluate $\hat{\mu}$

$$
\frac{d L}{d \mu}=\frac{d}{d \mu} \frac{(b+\mu s)^{N_{1}}}{N_{1}!} e^{-b-\mu s}=\frac{s(b+\mu s)^{N_{1}-1}}{N_{1}!} e^{-b-\mu s}\left(N_{1}-b-\mu s\right)
$$

If data under fluctuate below b the derivative is negative, so L decreases with μ and its maximum is at $\mu=0 \rightarrow \hat{\mu}=0$

$$
q_{1}=-2 \ln \left[\frac{L\left(N_{1}, b+s\right)}{L\left(N_{1}, b\right)}\right]
$$

This term works like 1-p p_{b} in the CL_{s} method, if $\mathrm{s} \ll \mathrm{b} L\left(\mathrm{~N}_{1}, \mathrm{~b}+\mathrm{s}\right) \sim L\left(\mathrm{~N}_{1}, \mathrm{~b}\right)$ and $\mathrm{q}_{1}=0$, so we cannot exclude the signal at any confidence level.

Summary

$\mathrm{CL}_{\mathrm{s}+\mathrm{b}}$: coverage ok, but dangerous for $\mathrm{s} \ll \mathrm{b}$;
CLs: ok, but undercoverage
Likelihood ratio: coverage ok, protected for $s \ll b$ can be used to test distributions

Confidence belt

Up to know, discussed only about observation and exclusions, what about measurements?

1) Who cares of measurements?
2) Measurements are useful to look for deviations from SM, tune MC, check SM prediction: i.e. sin(2ß), N.P. Kobayashi-Maskawa

I measure the Higgs mass m_{H}, what an error on $\mathrm{m}_{\boldsymbol{H}}$ means?

Bayesian versus frequentist (the religious war)

1) the error on $\mathrm{m}_{н}$ means that there is 68% probability that the true m_{H} is between $m_{H}-\sigma_{m H}$ and $m_{H}+\sigma_{m H}$

What this probability is? m_{H} has only one value... Do we mean that if we generate 100 universes in the 68% of cases $\mathrm{m}_{\boldsymbol{H}}$ will lie in that interval?

Bayesian versus frequentist (the religious war)

1) the error on $\mathrm{m}_{н}$ means that there is 68% probability that the true m_{H} is between $m_{H}-\sigma_{m H}$ and $m_{H}+\sigma_{m H}$

What this probability IS? Mrinasonly one value... Do we mean that if we generate 100 universes in the 68\% of cases munuill lic in that interval?
2) it is our degree of believe..., it is like a bet: What is the probability that Juventus will win the Italian league?

In this case it is subjective, and it tries to estimate an objective number:
Given the parameters I know about Juventus potentiality to win a match, if I take a sample of those parameters and try to simulate a match, what is the fraction of times Juventus will win?

There is always something subjective in this.

Frequentist approach (Neyman construction of conf. belt)

If the Higgs mass is $m_{H}, 68 \%$ of the experiments will measure an interval [$m_{H}{ }^{\text {meas }}-\sigma$, $m_{H}{ }^{\text {meas }}+\sigma$] that will contain the value m_{H}.

There is no subjective statement, the probability has a strictly frequentist definition
Neyman construction of confidence belt:
$f(x ; \theta)$ distribution of x given θ
$P\left(x_{1}<x<x_{2} ; \theta\right)=\int_{x_{1}}^{x_{2}} f(x ; \theta) d x \geq 1-\alpha$
for 1o 1-a=0.68
when we change θ we get two curves for x_{1} and x_{2}. We build the confidence belt using simulation.

Possible experimental values x

Frequentist approach (Neyman constr. of conf. belt)

If the Higgs mass is $m_{H}, 68 \%$ of the experiments will measure an interval [$m_{H}{ }^{\text {meas }}-\sigma$, $m_{H}{ }^{\text {meas }}+\sigma$] that will contain the value m_{H}.

There is no subjective statement, the probability has strictly a frequentist definition
Neyman construction of confidence belt:
$f(x ; \theta)$ distribution of x given θ
$P\left(x_{1}<x<x_{2} ; \theta\right)=\int_{x_{1}}^{x_{2}} f(x ; \theta) d x \geq 1-\alpha$
for 1o 1-a=0.68
when we change θ we get two curves for x_{1} and x_{2}. We build the confidence belt using simulation.

Then we measure $\mathrm{x}_{\text {meas }}$

Possible experimental values x

Frequentist approach (Neyman constr. of conf. belt)

If the Higgs mass is $m_{H}, 68 \%$ of the experiments will measure an interval [$m_{H}{ }^{\text {meas }}-\sigma$, $m_{H}{ }^{\text {meas }}+\sigma$] that will contain the value $\mathrm{m}_{н}$.

There is no subjective statement, the probability has strictly a frequentist definition
Neyman construction of confidence belt:
$f(x ; \theta)$ distribution of x given θ
$P\left(x_{1}<x<x_{2} ; \theta\right)=\int_{x_{1}}^{x_{2}} f(x ; \theta) d x \geq 1-\alpha$
for $1 \sigma 1-a=0.68$
when we change θ we get two curves for x_{1} and x_{2}. We build the confidence belt using simulation.
then we measure $\mathrm{X}_{\text {meas }}$
we set as interval for θ the range $\left[\theta_{1}, \theta_{2}\right]$.

Frequentist approach (Neyman constr. of conf. belt)

If the Higgs mass is $\mathrm{m}_{\boldsymbol{H}}, 68 \%$ of the experiments will measure an interval [$\mathrm{m}_{H^{\text {low }}}, \mathrm{m}_{\boldsymbol{H}}{ }^{\text {high }}$] that will contain the value m_{H}.

There is no subjective statement, the probability has a strictly frequentist definition
if θ_{0} is the true value, we will have $x_{1}<x_{\text {meas }}<x_{2}$ in $1-a$ of the cases (experiments) and consequently $\theta_{1}<\theta_{0}<$ θ_{2} in the same fraction of cases, where θ_{1} and θ_{2} are random variables that is the outcome of the experiment.

Possible experimental values x

Frequentist approach (Neyman constr. of conf. belt)

$$
P\left(x_{1}<x<x_{2} ; \theta\right)=\int_{x_{1}}^{x_{2}} f(x ; \theta) d x \geq 1-\alpha
$$

it is not enough to define x_{1} and x_{2}, need to add
further informations: i.e. central values x_{c} is such that $P\left(x<x_{1}\right)=P\left(x>x_{2}\right)=a / 2$

Possible experimental values x

- Can the model have a probability?
- We assign a degree of belief in models if θ and x are random variables, this is a theorem otherwise it is the definition of $p(\theta, x)$ parameterized by θ
- Instead of talking about confidence intervals we talk about credible intervals, where $p(\theta \mid x)$ is the credibility of θ given the data.

Nuisance Parameters (Systematics)

- Nuisance - a thing causing inconvenience or annoyance (Oxford Dictionary)
- Systematic Errors are equivalent in the statisticians jargon to Nuisance parameters - parameters of no interest... Will the Physicist ever get used to this jargon?
- D. Sinervo classified uncertainties into three classes classes:
- Class I: Statistics like - uncertainties that are reduced with increasing statistics. Example: Calibration constants for a detector whose precision of (auxiliary) measurement is statistics limited
- Class II: Systematic uncertainties that arise from one's limited knowledge of some data features and cannot be constrained by auxiliary measurements ... One has to do some assumptions. Example: Background uncertainties due to fakes, isolation criteria in QCD events, shape uncertainties.... These uncertainties do not normally scale down with increasing statistics
- Class III: The "Bayesian" kind... The theoretically motivated ones... Uncertainties in the model, Parton Distribution Functions, Hadronization Models.....

Nuisance Parameters (Systematics)

- There are two related issues:
- Classifying and estimating the systematic uncertainties
- Implementing them in the analysis
- The physicist must make the difference between cross checks and identifying the sources of the systematic uncertainty.
- Shifting cuts around and measure the effect on the observable...
Very often the observed variation is dominated by the statistical uncertainty in the measurement.

Treatment of Systematic Errors,
the Bayesian Way

- Marginalization (Integrating) (The C\&H Hybrid)
- Integrate L over possible values of nuisance parameters (weighted by their prior belief functions -- Gaussian,gamma, others...)
- Consistent Bayesian interpretation of uncertainty on nuisance parameters
- Note that in that sense MC "statistical" uncertainties (like background statistical uncertainty) are systematic uncertainties

Integrating Out The Nuisance Parameters (Marginalization)

$$
p(\theta, \lambda \mid x)=\frac{L(x \mid \theta, \lambda) \pi(\theta, \lambda)}{\int L(x \mid \theta, \lambda) \pi(\theta, \lambda) d \theta d \lambda}=\frac{L(x \mid \theta, \lambda) \pi(\theta, \lambda)}{\text { Normalization }}
$$

- Our degree of belief in θ is the sum of our degree of belief in θ given λ (nuisance parameter), over "all" possible values of λ

$$
p(\theta \mid x)=\int p(\theta, \lambda \mid x) d \lambda
$$

Priors

$$
P(\theta \mid \text { data }) \sim \int L(\text { data } \mid \theta, \lambda) \pi(\lambda) d \theta d \lambda
$$

- A prior probability is interpreted as a description of what we believe about a parameter preceding the current experiment
- Informative Priors: When you have some information about λ the prior might be informative (Gaussian or Truncated Gaussians...)
- Most would say that subjective informative priors about the parameters of interest should be avoided ("....what's wrong with assuming that there is a Higgs in the mass range $[115,140]$ with equal probability for each mass point?")
- Subjective informative priors about the Nuisance parameters are more difficult to argue with
- These Priors can come from our assumed model (Pythia, Herwig etc...)
- These priors can come from subsidiary measurements of the response of the detector to the photon energy, for example.
- Some priors come from subjective assumptions (theoretical, prejudice symmetries....) of our model

Priors - Ininformative Priors

- Uninformative Priors: All priors on the parameter of interest should be uninformative....
IS THAT SO?
Therefore flat uninformative priors are most common in HEP.
- When taking a uniform prior for the Higgs mass $[115, \infty] \ldots$ is it really uninformative? do uninformative priors exist?
- When constructing an uninformative prior you actually put some information in it...
- But a prior flat in the coupling g will not be flat in $\sigma \sim g^{2}$ Depends on the metric!
(\rightarrow try Jeffrey Priors)
- Moreover, flat priors are improper and lead to serious problems of undercoverage (when one deals with >1 channel, i.e. beyond counting, one should AVOID them
-See Joel Heinrich Phystat 2005

Choice of Priors

- A.W.F. Edwards: "Let me say at once that I can see no reason why it should always be possible to eliminate nuisance parameters. Indeed, one of the many objections to Bayesian inference is that is always permits this elimination."

Anonymous: "Who the ---- is A.W.F. Edwards..." http://en.wikipedia.org/wiki/A. W. F. Edwards

- But can you really argue with subjective informative priors about the Nuisance parameters (results of analysis are aimed at the broad scientific community.. See talk by Leszek Roszkowski constrained MSSM)
- Choosing the right priors is a science by itself
- Should we publish Bayesian (or hybrid) results with various priors?
- Should we investigate the coverage of Bayesian (credible) intervals?
- Anyway, results should be given with the priors specified

CoHHybrid Method

- This method is coping with the Nuisance parameters by averaging on them weighted by a posterior.
- The Bayesian nature of the calculation is in the Nuisance parameters only....
- Say in a subsidiary measurement y of b, then the posterior is $p(b \mid y) ; \mu$ is the x expectation.
- $\mathrm{C} \& \mathrm{H}$ will calculate the p -value of the observation $\left(x_{0}, y_{0}\right)$

$$
\begin{array}{ll}
p\left(x_{o}, y_{o} \mid \mu\right)=\int_{0}^{\infty} p\left(x_{o} \mid y_{o}, \mu\right) p\left(b \mid y_{o}\right) d b \\
p\left(b \mid y_{o}\right)=\frac{p\left(y_{o} \mid b\right) p(b)}{p\left(y_{o}\right)} & \begin{array}{l}
\text { Note: } \\
\text { The original C\&H used the } \\
\text { Luminosity as the Nuisance } \\
\text { parameter.... }
\end{array} \\
p\left(y_{o} \mid b\right)=G\left(y_{o} \mid b, \sigma_{b}\right) &
\end{array}
$$

The Profile Likelihood Method
 $$
\begin{aligned} & \ell(s)=\frac{L(s, \hat{b})}{L(\hat{s}, \hat{b})} \Rightarrow Q(s)=\frac{L(s, \hat{b})}{L(\hat{s}, \hat{b})} \quad-2 \ln Q(s)=-2 \ln \frac{L(s, \hat{b})}{L(\hat{s}, \hat{b})}- \\ & \Delta \chi^{2}=2.7 \end{aligned} \rightarrow 90 \% \text { C.I. }
$$

- The advantages of the Profile Likelihood
- It has been with us for years..... (MINOS of MINUIT) (Fred James)
- In the asymptotic limit it is approaching a χ^{2} distribution
F. James, e.g. Computer Phys. Comm. 20 (1980) 29 -35
W. Rolke, A. Lopez, J.Conrad. Nucl. Inst.Meth A 551 (2005) 493-503

The Profile Likelihood for Significance Calculation

- A counting experiment with background uncertainty

$$
L\left(n, b_{\text {meas }} \mid \mu, s, b\right)=\operatorname{Poiss}(n \mid \mu s+b) G\left(b_{\text {meas }} \mid b, \sigma_{b}\right)
$$

- The Likelihood-ratio

$$
\lambda(\mu, b)=\frac{L\left(n, b_{\text {meas }} \mid \mu, s, b\right)}{L\left(n, b_{\text {meas }} \mid \hat{\mu}, s, \hat{b}\right)} \quad \text { Where } \hat{s}, \hat{b} \text { are MLE }
$$

$-2 \log \lambda(\mu)$ is distributed as
a χ^{2} with N degrees of freedom, N being the number of free parameters (parameters of interest)
(in this case $\mathrm{N}=2$)

Confidence intervals

Profiling the Likelihood

- Profile Likelihood:

$$
\begin{aligned}
& \mu \\
& \hat{\hat{b}}(\mu)=\frac{1}{2}\left\{b_{\text {meas }}-\mu s-\sigma_{b}^{2}+\sqrt{\left(b_{\text {meas }}+\mu s-\sigma_{b}^{2}\right)^{2}+4 n \sigma_{b}^{2}}\right\}
\end{aligned}
$$

distributes as a χ^{2} with 1 d.o.f

- This ensures simplicity, coverage, speed

$$
\begin{aligned}
& \text { The Profile Likelihood } \\
& \text { for Significance Calculation } \\
& \qquad \begin{array}{l}
-2 \log \lambda\left(\hat{\mu} \pm N \sigma_{\hat{\mu}}\right)=N^{2} \\
N=\sqrt{-2 \log \lambda(\mu)}
\end{array}
\end{aligned}
$$

- In particular if we generate background only experiments, $\lambda(\mu=0)$ is distributed as χ^{2} with 1 d.o.f
- Discovery has to do with a low probability of the background only experiment to fluctuate and give us a signal like result....
- To estimate a discovery sensitivity we simulate a data compatible with a signal $(\mathrm{s}+\mathrm{b})$ and evaluate for this data $\lambda(\mu=0)$. For this data, the MLE of μ is 1

0% BGSystematics

A Lesson in Systematic

- In absence of systematics significance can be approximated to be
- However if there is systematics, say, $\Delta \mathrm{b}$ the significance is reduced to
$\frac{\text { reduced }}{\sqrt{(\sqrt{b})^{2}+(\Delta \cdot b)^{2}}}=\frac{s}{\sqrt{b\left(1+\Delta^{2} \cdot b\right)}} \rightarrow \frac{s}{\Delta \cdot b}$
- For 5σ one needs

$$
\frac{s}{b}>5 \Delta
$$

- For 10% systematics this implies

$$
\frac{s}{b}>0.5
$$

With 10\% Background Systematics

For $b=100$ with 10% systematics, significance for $S / J B=5$ drops to ~ 3.6

Profile Likelihood

- The speed and ease allow us to produce all sorts of views in seconds!
- No numerical problems, can go up to any significance

Why Profile Likelihood?

- For SUSY interpretations you usually have results in a grid (i.e. $\operatorname{tg} \beta, m_{A}$)
- Each point is a different experiment
- There are $10 \mathrm{~s}-100000$ s of possible points per channel
- In a shape-based analysis each bin is treated like a channel....
- The difference between O (minutes) per point and $\mathrm{O}(0.1$ seconds) per point is critical!

Exclusion with Profile Likelihood

- Exclusion is related to the probability of the "would be" signal to fluctuate down to the background only region (i.e. the p-value of the s+b "observation")
- Here we suppose the data is the background only and the exclusion sensitivity is given by

$$
N=\sqrt{-2 \lambda(\mu=1)}
$$

- Exclusion at the 95% C.L. means $\mathrm{N}=2$

Signal Efficiencies Uncertainties

$$
L(\mu \varepsilon s+b)
$$

- How to cope with with background and efficiency systematics
- Efficiency systematics have no effect on discovery sensitivity but can have large effects on exclusion sensitivity

Including error on signal efficiency

$$
L(\mu)=\operatorname{Poiss}(n \mid \mu \varepsilon s+b) G\left(b_{\text {meas }} \mid b\right) G\left(\varepsilon_{\text {meas }} \mid \varepsilon\right)
$$

$-2 \log \lambda(\mu, \varepsilon)$

Including error on signal efficiency

$$
L(\mu)=\operatorname{Poiss}(n \mid \mu \varepsilon s+b) G\left(b_{\text {meas }} \mid b\right) G\left(\varepsilon_{\text {meas }} \mid \varepsilon\right)
$$

$-2 \log \lambda(\mu, \varepsilon)$

Conclusions

Pros and Cons Profile Likelihood

- CONS:
- The only disadvantage I see is its incapability to take the Look Elsewhere Effect in a built-in way....
- One has to take the Look Elsewhere Effect in the LEP way (Using MC and factorize the resulting significanceneed to be studied)
- PROS:
- It is simple and easy to understand and apply
- It is statistically reliable and a frequentists favorite
- It can cope with Systematics and has the proper coverage
- It is FAST!!!!!! $\mathrm{O}(0.1 \mathrm{Sec})$ vs O(Minutes).
- Its probably the only method that can cope with as many as SUSY
scenarios one wants!

Combining Higgs channels (and experiments)

- Procedure: define joint likelihood

$L\left(\mu, \theta_{\text {comb }}\right)=L_{H \rightarrow W W}\left(\mu, \theta_{W W}\right) \cdot L_{H \rightarrow Z Z}\left(\mu, \theta_{Z Z}\right) \cdot L_{H \rightarrow \gamma}\left(\mu, \theta_{\gamma r}\right) \cdot \ldots$
$L\left(\mu, \theta_{L H C}\right)=L_{\text {ATLAS }}\left(\mu, \theta_{\text {ATLAS }}\right) \cdot L_{C M S}\left(\mu, \theta_{C M S}\right) \cdot \ldots$
- Correlations between $\theta_{w w,} \theta_{y y}$ etc and between $\theta_{\text {ATLAS }}, \theta_{\text {CMS }}$ requires careful consideration!
- The construction profile likelihood ratio test statistic from joint likelihood and proceed as usual

$$
\widetilde{q}_{\mu}=-2 \ln \frac{L\left(\operatorname{data} \mid \mu, \hat{\hat{\theta}}_{\mu}\right)}{L(\operatorname{data} \mid \hat{\mu}, \hat{\theta})}
$$

Comb: p-value of background-only hypothesis ('discovery')

Conclusions

The simulation chain

MC simulations in particle physics

How Monte Carlo simulation works

- Numerical process generation based on random numbers
- Method very powerful in particle physics

Event generation programs:

Pythia6, Pythia8, Herwig, Herwig++, Sherpa ...

Hard partonic subprocess + fragmentation and hadronisation.

Detector simulation:
Geant4
Fluka low energy hadron interactions...

Event Generator
simulate physics process
(quantum mechanics: probabilities!)

Detector Simulation

 simulate interaction with detector material
Digitisation

translate interactions with detector into realistic signals

Reconstruction/Analysis as for real data interaction \& response of all produced particles ...

Baseline of the simulation process

Typically, we need to generate a continuous variable following some distribution i.e. energy loss of a particle in a given material segment; angle of a photon in the h reference frame for the $h \rightarrow \gamma \gamma$ decay

$$
\begin{aligned}
& d P=f(x, . .) d x \\
& \hookrightarrow \\
& \hookrightarrow
\end{aligned} \text { distribution formula }
$$

probability to get an x_{0} value between x and $x+d x$

$$
d P=f(\theta, \phi) d \theta d \phi=\operatorname{sen} \theta d \theta d \phi
$$

flat distribution in Φ
non flat in θ

Distribution function transformation properties

1) software libraries provide basic functions to produce flat distributed random numbers in the interval $[0,1]$ (ex. root TRandom3 class), they are typically fast and accurate uniform random numbers generators;
2) starting from uniform distributed random numbers, it is possible to generate numbers following any distribution using different techniques

$$
d P_{x}=f(x) d x \quad y=g(x) \quad \text { How "y" distributes in }\left[g\left(x_{\mathrm{a}}\right), g\left(\mathrm{x}_{\mathrm{b}}\right)\right] ?
$$

$$
x \in\left[x_{a}, x_{b}\right]
$$

Because y is a monotonic function of x the probability

$$
d P_{y}=h(y) d y=h(y) g^{\prime}(x) d x
$$ to have y between $g(x)$ and $g(x+d x)$ is equal to the probability to have x between x and $x+d x$

$h(y) g^{\prime}(x)=f(x) \Rightarrow h(y)=\frac{f(x)}{g^{\prime}(x)}=\frac{f\left(g^{-1}(y)\right)}{g^{\prime}\left(g^{-1}(y)\right)}$
Ex.: range map

$$
[0,1] \rightarrow[a, b] \quad y=(b-a) x+a
$$

$f(x)=1 \quad g^{\prime}(x)=b-a \quad h(y)=\frac{1}{b-a} \quad \mathrm{y}$ is uniform

Distribution function transformation properties

Ex. 2: integration method:

$$
\begin{gathered}
g(x)=\frac{1}{\int_{a}^{b} f\left(x^{\prime}\right) d x^{\prime}} \int_{a}^{x} f\left(x^{\prime}\right) d x^{\prime} \quad g^{\prime}(x)=\frac{f(x)}{\int_{a}^{b} f\left(x^{\prime}\right) d x^{\prime}} \\
h(y)=\frac{f(x)}{g^{\prime}(x)}=\frac{f\left[g^{-1}(y)\right]}{f\left[g^{-1}(y)\right]} \cdot \int_{a}^{b} f\left(x^{\prime}\right) d x^{\prime}=\int_{a}^{b} f\left(x^{\prime}\right) d x^{\prime}
\end{gathered}
$$

y is uniformly distributed:

1) generate y flat in [f min,$f_{\text {max }}$];
2) compute $x=g^{-1}(y), x$ will be distributed in $g^{-1}\left(f_{\min }\right), g^{-1}\left(f_{\max }\right)$

Finding $\mathrm{g}^{-1}(\mathrm{y})$ is equivalent to solve the equation:

$$
\frac{1}{\int_{a}^{b} f\left(x^{\prime}\right) d x^{\prime}} \int_{a}^{x} f\left(x^{\prime}\right) d x^{\prime}=y
$$

Hit or miss method.

1) generate x flat in $x_{\text {min }}, x_{\text {max }}$
2) generate y flat in $0, f_{\text {max }}$
3) if $y<f(x)$ accept the event, otherwise ignore it
for a given x in $\mathrm{x}, \mathrm{x}+\mathrm{dx}$ the fraction of accepted events is proportional to $f(x) d x->d P x=f(x) d x$
4) advantages:

- can be used for all functions, even non continuous ...

- can be extended to N-dimension (generate $\left.x_{1}, x_{2}, \ldots, x_{n}\right)$, y accept if $y<f\left(x_{1}, x_{2}, . ., x_{n}\right)$

2) disadvantages

- can be extremely slow
points generated uniformly in the square points accepted only below the curve

MC generators implement "smart" generation techniques to increase efficiencies

Comparison between real and simulated events

Simulation elements

Simulation elements

GEANT Geometry And Tracking

Detailed description of detector geometry [sensitive \& insensitive volumes]

Tracking of all particles through detector material ...

\rightarrow Detector response

Developed at CERN since 1974 (FORTRAN)
[Today: Geant4; programmed in C^{++}]

Strong interactions:

No free Quarks

Expect jets
i.e. bundles of particles at high energies [hadron p_{T} range limited w.r.t. initial parton]

First observation of jets
in $\mathrm{e}^{+} \mathrm{e}^{-}$collisions @ Ecms $>6 \mathrm{GeV}$ [SPEAR, SLAC, 1975]

Later also observed in hadron-hadron collisions [e.g. @ CERN ISR]

An event with 4 jets @ LHC

Goal: Infer parton properties from jet properties [need to calculate and/or model fragmentation \& hadronisation process]

Pure matrix element (ME) simulation:

MC integration of cross section \& PDFs, no hadronisation (recall: cross section $=\mid$ matrix element $\left.\right|^{2} \otimes$ phase space)

Useful for theoretical studies, no exclusive events generated
[Example: MCFM (http://mcfm.fnal.gov); many LHC processes up to NLO, HNNLO (http://theory.fi.infn.it/grazzini/codes.html) Higgs production at NNLO]

Event generators:

Combination of ME and parton showers ...
Typical: generator for leading order ME combined with leading log (LL) parton shower MC (see later)

Exclusive events \rightarrow useful for experimentalists ...

Parton showers

A realistic simulation needs many particles in the final state, it is quite difficult (sometimes impossible) to compute a pp (2) \rightarrow many particles process
$(2 \rightarrow n)=\ldots$

$$
\ldots=(2 \rightarrow 2) \oplus I S R \oplus F S R
$$

FSR: Final state radiation
$\mathrm{Q}^{2} \sim \mathrm{~m}^{2}>0$ decreasing
[time-like shower]

ISR: Initial state radiation
$Q^{2} \sim-m^{2}>0$ increasing
[space-like shower]

Calculable

Hard process [2 $\rightarrow 2$]:

$$
\sigma=\iiint \mathrm{d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} \hat{t} f_{i}\left(x_{1}, Q^{2}\right) f_{j}\left(x_{2}, Q^{2}\right) \frac{\mathrm{d} \widehat{\sigma}_{i j}}{\mathrm{~d} \hat{t}}
$$

Shower evolution:
Viewed as probabilistic process, which occurs with unit total probability; cross section not directly affected; only indirectly via changed event shape.

Parton showers

$$
\text { Cross Section: } \frac{d \sigma_{\mathrm{qqg}}}{d x_{1} d x_{2}}=\frac{4}{3} \frac{\alpha_{s}}{2 \pi} \cdot \sigma_{0} \cdot \frac{x_{1}^{2}+x_{2}^{2}}{\left(1-x_{1}\right)\left(1-x_{2}\right)}
$$

Cross section has large contributions for $\mathrm{x}_{1}, \mathrm{x}_{2} \rightarrow 1 \quad\left[\mathrm{~m}_{\mathrm{q}}=0\right.$; see e.g. Halzen/Martin $]$

$$
\begin{aligned}
& \text { from } p_{T} \\
& \text { balance } \\
& 1-x_{2}
\end{aligned}=\frac{m_{13}^{2}}{E_{\mathrm{cm}}^{2}}=\frac{Q^{2}}{E_{\mathrm{cm}}^{2}} m_{13}^{2} \sim 2 E_{1} E_{2}(1-\cos \theta) x_{2} \rightarrow 1 \Rightarrow m_{13}^{2} \rightarrow 0 \Rightarrow \theta \rightarrow 0 \text { collinear limit }
$$

$$
\text { Rewrite for } \mathrm{x}_{2} \rightarrow 1 \text { : }
$$

[ag collinear limit]
[qg collinear limit]

$$
d x_{2}=-\frac{d Q^{2}}{E_{\mathrm{cm}}^{2}}
$$

$$
\begin{aligned}
& x_{1} \approx z \quad d x_{1} \approx d z \\
& x_{3} \approx 1-z
\end{aligned}
$$

व

$$
d \mathcal{P}_{a \rightarrow b c}=\frac{\alpha_{s}}{2 \pi} \frac{d Q^{2}}{Q^{2}} P_{a \rightarrow b c}(z) d z \quad \text { Splitting probability determined by splitting functions } \mathrm{P}_{\mathrm{q} \rightarrow \mathrm{qg}}
$$ Analogous splitting functions used in PDF evolution

$$
\begin{aligned}
& P_{\mathrm{q} \rightarrow \mathrm{qg}}=\frac{4}{3} \frac{1+z^{2}}{1-z} \\
& P_{\mathrm{g} \rightarrow \mathrm{gg}}=3 \frac{(1-z(1-z))^{2}}{z(1-z)} \\
& P_{\mathrm{g} \rightarrow \mathrm{q} \overline{\mathrm{q}}}=\frac{n_{f}}{2}\left(z^{2}+(1-z)^{2}\right)
\end{aligned}
$$

z : fractional momentum of radiated parton
n_{f} : number of quark flavours

Need soft/collinear cut-offs to avoid non-perturbative regions ... [divergencies!]

Details model-dependent

$$
\begin{array}{ll}
\text { e.g. } & Q>m_{0}=\min \left(m_{i j}\right) \approx 1 \mathrm{GeV}, \\
& Z_{\min }(E, Q)<z<Z_{\max }(E, Q) \text { or } \\
& P_{\perp}>P_{\perp \min } \approx 0.5 \mathrm{GeV}
\end{array}
$$

Parton shower evolution 1

Conservation of total probability:

$$
\mathcal{P}(\text { nothing happens })=1-\mathcal{P}(\text { something happens })
$$

Time evolution:

$$
\begin{aligned}
\mathcal{P}_{\text {nothing }}(0<t \leq T) & =\mathcal{P}_{\text {nothing }}\left(0<t \leq T_{1}\right) \mathcal{P}_{\text {nothing }}\left(T_{1}<t \leq T\right) \\
\mathcal{P}_{\text {nothing }}(0<t \leq T) & =\lim _{n \rightarrow \infty} \prod_{i=0}^{n-1} \mathcal{P}_{\text {nothing }}\left(T_{i}<t \leq T_{i+1}\right) \\
& =\lim _{n \rightarrow \infty} \prod_{i=0}^{n-1}\left(1-\mathcal{P}_{\text {something }}\left(T_{i}<t \leq T_{i+1}\right)\right) \\
& =\exp \left(-\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} \mathcal{P}_{\text {something }}\left(T_{i}<t \leq T_{i+1}\right)\right) \quad e^{-x} \approx 1-x \\
& =\exp \left(-\int_{0}^{T} \frac{\mathrm{~d} \mathcal{P}_{\text {something }}(t)}{\mathrm{d} t} \mathrm{~d} t\right)
\end{aligned}
$$

$$
\rightarrow \mathrm{d} \mathcal{P}_{\text {first }}(T)=\mathrm{d} \mathcal{P}_{\text {something }}(T) \exp \left(-\int_{0}^{T} \frac{\mathrm{~d} \mathcal{P}_{\text {something }}(t)}{\mathrm{d} t} \mathrm{~d} t\right)
$$

Parton shower evolution 2

Instead of evolving to later and later times need to evolve to smaller and smaller Q^{2}...

$$
\mathrm{d} \mathcal{P}_{a \rightarrow b c}=\frac{\alpha_{\mathrm{S}}}{2 \pi} \frac{\mathrm{~d} Q^{2}}{Q^{2}} P_{a \rightarrow b c}(z) \mathrm{d} z \exp \left(-\sum_{b, c} \int_{Q^{2}}^{Q_{\max }^{2}} \frac{\mathrm{~d} Q^{\prime 2}}{Q^{\prime 2}} \int \frac{\alpha_{\mathrm{s}}}{2 \pi} P_{a \rightarrow b c}\left(z^{\prime}\right) \mathrm{d} z^{\prime}\right)
$$

Probability to radiated with virtuality Q^{2}
Note that $\sum_{\mathrm{b}, \mathrm{c}} \iint_{\mathrm{dPa} \rightarrow \mathrm{bc}} \equiv 1 \ldots$
[Convenient for Monte Carlo]
Sudakov form factor ...
... provides "time" ordering of shower ... [lower $\mathrm{Q}^{2} \Leftrightarrow$ longer times]
... regulates singularity for first emission ...
But in the limit of repeated soft emissions $q \rightarrow q g$ (but no $g \rightarrow g g$) one obtains the same inclusive Q emission spectrum as for $M E$, i.e. divergent ME spectrum \Leftrightarrow infinite number of PS emissions

No radiation for higher virtualities i.e. for $Q^{2} \ldots Q^{2}$ max

Sudakov picture of parton showers

Basic algorithm: Markov chain

[each step requires only knowledge only of previous step]
(i) Start with virtuality Q_{1} and momentum fraction x_{1}
(ii) Generate target virtuality Q_{2} with random number R_{T} uniform distributed in $[0,1]$

Probability to not have $Q_{x}>Q_{2}$

$$
\Delta\left(Q_{i}^{2}\right)=\exp \left(-\sum_{b, c} \int_{Q_{i}^{2}}^{Q_{\max }^{2}} \frac{d Q^{\prime 2}}{Q^{\prime 2}} \int \frac{\alpha_{s}}{2 \pi} P_{a \rightarrow b c}\left(z^{\prime}\right) d z^{\prime}\right) \text { solve the equation for } Q_{2} \quad R_{t}=\frac{\Delta\left(Q_{2}^{2}\right)}{\Delta\left(Q_{1}^{2}\right)}
$$

[probability to evolve from t_{1} to t_{2} without radiation]

(iii) Q_{2} known (x_{2} known), need to compute $\mathrm{x}_{1} \sim \mathrm{z}$

$$
P_{\mathrm{q} \rightarrow \mathrm{qg}}=\frac{4}{3} \frac{1+z^{2}}{1-z} \quad R_{z}=\frac{\int_{0}^{z} P\left(z^{\prime}\right) d z^{\prime}}{\int_{0}^{1} P\left(z^{\prime}\right) d z^{\prime}} \quad \text { flat distributed }
$$

1 (iv) Generate random azimuthal angle Φ flat distributed
Process ends when partons are below threshold ($\mathrm{p}_{\mathrm{T}, \mathrm{Q}}$)

Parton shower and logarithmic resummation

If a_{s} is small higher contributions are power suppressed, but...
 a_{s} increases at small Q^{2}

$$
\begin{gathered}
\alpha_{s}\left(Q_{n}\right) \sim \alpha_{s}\left(Q_{1}\right) \ln \left(Q_{1} / Q_{n}\right) \\
\alpha_{s}\left(Q_{1}\right)+\alpha_{s}\left(Q_{1}\right) \alpha_{s}\left(Q_{2}\right)+\ldots+\alpha_{s}\left(Q_{1}\right) \cdot \ldots \cdot \alpha_{s}\left(Q_{n}\right) \\
\sim\left[\alpha_{s}\left(Q_{1}\right) \ln \left(Q_{1}\right)\right]^{2} \sim\left[\alpha_{s}\left(Q_{1}\right) \ln \left(Q_{1}\right)\right]^{n}
\end{gathered}
$$

$$
\text { if } \quad \alpha_{s}\left(Q_{1}\right) \ln \left(Q_{1}\right)
$$

is large, the expansion is broken, PS allow to sum up all the large contribution [Leading Log resummation]

Parton shower ordering

$$
\mathrm{d} \mathcal{P}_{a \rightarrow b c}=\frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{\mathrm{~d} Q^{2}}{Q^{2}} P_{a \rightarrow b c}(z) \mathrm{d} z \exp \left(-\sum_{b, c} \int_{Q^{2}}^{Q_{\max }^{2}} \frac{\mathrm{~d}{Q^{\prime}}^{2}}{{Q^{\prime 2}}^{2}} \int \frac{\alpha_{\mathrm{s}}}{2 \pi} P_{a \rightarrow b c}\left(z^{\prime}\right) \mathrm{d} z^{\prime}\right)
$$

In the splitting function appears only d^{2} / Q^{2}, therefore if $P=f(z) Q^{2} d P / P=d Q^{2} / Q^{2}$
Three main approaches to showering in use: $p_{\perp}^{2} \approx z(1-z) m^{2}$ рт ordered showers $\quad E^{2} \theta^{2} \approx m^{2} /(z(1-z))$ angular ordered showers
Two are based on the standard shower language of $a \rightarrow$ bc successive branchings:

PYTHIA, 8 (basic) : $\mathrm{Q}^{2}=\mathrm{m}^{2}$ (timelike) or $=-\mathrm{m}^{2}$ (spacelike)
PYTHIA6, 8 ($\mathrm{p}_{\text {T }}$ oredered) : mixture: collinear splitting but di-pole kinematic
One is based on a picture of dipole emission:

Ariadne : $Q^{2}=p^{2} _; F S R$ mainly, ISR is primitive ...
consider the full recoil and not only the branching

Color coherence

QED: Chudakov effect (mid-fifties)

emulsion plate
reduced
ionization
normal
ionization

1. soft gluons see the pair of split gluons as a whole, color screening reduce their emission
2. angular ordered and p_{T} ordered PS reproduce the correct color coherence
3. Pythia Q^{2} needs aposteriori corrections

QCD: colour coherence for soft gluon emission

solved by - requiring emission angles to be decreasing
or - requiring transverse momenta to be decreasing

Compariosn to LHC data

Example of processes implemented in Pythia6

No. Subprocess	No. Subprocess	No. Subprocess	No. Subprocess
Hard QCD processes:	$36 \quad \mathrm{f}_{\wedge} \gamma \rightarrow \mathrm{f}_{k} \mathrm{~W}^{ \pm}$	New gauge bosons:	Higgs pairs:
$11 \quad \mathrm{f}_{\mathrm{i}} \mathrm{f}_{j} \rightarrow \mathrm{f}_{\mathrm{i}} \mathrm{f}_{j}$	$69 \quad \gamma \gamma \rightarrow \mathrm{~W}^{+} \mathrm{W}^{-}$	$141 \quad \mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{i} \rightarrow \gamma / \mathrm{Z}^{0} / Z^{\prime 0}$	$297 \mathrm{f}_{\mathrm{f}} \mathrm{f}_{\mathrm{f}} \rightarrow \mathrm{H}^{ \pm} \mathrm{h}^{0}$
$12 \quad \mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{i} \rightarrow \mathrm{f}_{k} \overline{\mathrm{f}}_{k}$	$70 \quad \gamma \mathrm{~W}^{ \pm} \rightarrow \mathrm{Z}^{0} \mathrm{~W}^{ \pm}$	$142 \quad \mathrm{f}_{1} \overline{\mathrm{f}}_{j} \rightarrow \mathrm{~W}^{\prime+}$	$298 \mathrm{f}_{\mathrm{f}} \mathrm{f}_{j} \rightarrow \mathrm{H}^{ \pm} \mathrm{H}^{\text {b }}$
$13 \quad \mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{i} \rightarrow \mathrm{gg}$	Prompt photons:	$144 \quad \mathrm{f}_{\mathrm{i}} \mathrm{f}_{j} \rightarrow \mathrm{R}$	$299 \quad \mathrm{f}_{i} \bar{f}_{i} \rightarrow \mathrm{~A}^{0} \mathrm{~h}^{\circ}$
$28 \quad \mathrm{f}_{\mathrm{i}} \mathrm{g} \rightarrow \mathrm{f}_{\mathrm{i}} \mathrm{g}$	$14 \quad \mathrm{f}_{\mathrm{f}} \mathrm{f}_{\mathrm{i}} \rightarrow \mathrm{g} \gamma$	Heavy SM Higgs:	$300 \quad \mathrm{f}_{i} \bar{f}_{i} \rightarrow \mathrm{~A}^{0} \mathrm{H}^{0}$
$53 \mathrm{gg} \rightarrow \mathrm{f}_{k} \mathrm{f}_{k}$	$18 \quad \mathrm{f}_{\mathrm{f}} \mathrm{f}_{\mathrm{i}} \rightarrow \gamma \gamma$	$5 Z^{0} Z^{0} \rightarrow \mathrm{~h}^{0}$	$301 \quad \mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{i} \rightarrow \mathrm{H}^{+} \mathrm{H}^{-}$
$68 \mathrm{gg} \rightarrow \mathrm{gg}$	29	$8 \quad W^{+} W^{-} \rightarrow h^{0}$	Leptoquarks:
Soft QCD processes:	$114 \mathrm{gg} \rightarrow \gamma \gamma$	$71 \quad \mathbf{Z}_{\mathrm{L}}^{0} \mathbf{Z}_{\mathrm{L}}^{0} \rightarrow \mathbf{Z}_{\mathrm{L}}^{0} \mathbf{Z}_{\mathrm{L}}^{0}$	$145 \quad \mathrm{q}_{1} \ell_{j} \rightarrow \mathrm{LQ}$
91 elastic scattering	$115 \mathrm{gg} \rightarrow \mathrm{gy}$	$72 \quad \mathrm{Z}_{\mathrm{L}}^{0} \mathrm{Z}_{\mathrm{L}}^{0} \rightarrow \mathrm{~W}_{\mathrm{L}}^{+} \mathrm{W}_{\mathrm{L}}^{-}$	$162 \mathrm{qg} \rightarrow \ell \mathrm{L}_{\mathrm{Q}}$
92 single diffraction (XB)	Deeply Inel. Scatt.:	$73 \quad \mathrm{Z}_{\mathrm{L}}^{0} \mathrm{~W}_{\mathrm{L}}^{ \pm} \rightarrow \mathrm{Z}_{\mathrm{L}}^{0} \mathrm{~W}_{\mathrm{L}}^{ \pm}$	$163 \mathrm{gg} \rightarrow \mathrm{L}_{\mathrm{Q}} \overline{\mathrm{L}}_{\mathrm{Q}}$
93 single diffraction (AX)	$10 \quad \mathrm{f}_{1} \mathrm{f}_{j} \rightarrow \mathrm{f}_{k} \mathrm{f}_{4}$	$76 \quad \mathrm{~W}_{\mathrm{L}}^{+} \mathrm{W}_{\mathrm{L}}^{-} \rightarrow \mathrm{Z}_{\mathrm{L}}^{0} \mathrm{Z}_{\mathrm{L}}^{-}$	$164 \mathrm{q}_{i} \overline{\mathrm{q}}_{i} \rightarrow \mathrm{~L}_{\mathrm{Q}} \overline{\mathrm{L}}_{\mathrm{Q}}$
94 double diffraction	$99 \quad \gamma^{*} \mathrm{q} \rightarrow \mathrm{q}$	$77 \quad \mathrm{~W}_{\mathrm{L}}^{ \pm} \mathrm{W}_{\mathrm{L}}^{4} \rightarrow \mathrm{~W}_{\mathrm{L}}^{ \pm} \mathrm{W}_{\mathrm{L}}^{ \pm}$	Technicolor:
95 low- p_{\perp} production	Photon-induced:	BSM Neutral Higgs:	$149 \mathrm{gg} \rightarrow 7_{\text {tc }}$
Open heavy flavour:	$33 \quad f_{i} \gamma \rightarrow f_{i} g$	$151 \quad \mathrm{f}_{i} \mathrm{f}_{\mathrm{i}} \rightarrow \mathrm{H}^{\circ}$	$191 \mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{i} \rightarrow \rho_{i c}^{0}$
(also fourth generation)	$34 \quad \mathrm{fi}_{\mathrm{i}} \gamma \rightarrow \mathrm{f}_{\mathrm{i}} \gamma$	$152 \mathrm{gB} \rightarrow \mathrm{H}^{0}$	$192 \mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{j} \rightarrow \rho_{c c}^{+}$
$81 \quad \mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{i} \rightarrow \mathrm{Q}_{k} \overline{\mathrm{Q}}_{k}$	$54 \quad \mathrm{~g} \gamma \rightarrow \mathrm{f}_{\mathrm{k}} \mathrm{f}_{k}$	$153 \quad \gamma \gamma \rightarrow \mathrm{H}^{0}$	$193 \quad \mathrm{fif}_{i} \rightarrow \omega_{\text {ic }}^{0}$
$82 \mathrm{gg} \rightarrow \mathrm{Q}_{k} \overline{\mathrm{Q}}_{k}$	$58 \quad \gamma \gamma \rightarrow \mathrm{f}_{k} \mathrm{f}_{k}$	$171 \quad \mathrm{f}_{i} \bar{f}_{i} \rightarrow \mathrm{Z}^{0} \mathrm{H}^{0}$	$194 \quad \mathrm{f}_{\mathrm{f}} \mathrm{f}_{i} \rightarrow \mathrm{f}_{k} \mathrm{f}_{k}$
$83 \quad \mathrm{q}_{1} \mathrm{f}_{j} \rightarrow \mathrm{Q}_{k} \mathrm{f}_{2}$	$131 \quad \mathrm{f}_{\mathrm{i}} \gamma_{\mathrm{T}}^{*} \rightarrow \mathrm{f}_{\mathrm{i}} \mathrm{g}$	$172 \quad \mathrm{f}_{i} \bar{f}_{j} \rightarrow \mathrm{~W}^{ \pm} \mathrm{H}^{0}$	$195 \quad \mathrm{f}_{i} \overline{\mathrm{f}}_{j} \rightarrow \mathrm{f}_{k} \overline{\mathrm{f}}_{1}$
$84 \mathrm{~g} \gamma \rightarrow \mathrm{Q}_{k} \overline{\mathrm{Q}}_{k}$	$132 \quad \mathrm{f}_{\mathrm{i}} \gamma_{\mathrm{L}}^{*} \rightarrow \mathrm{fig}^{\text {g }}$	$173 \quad \mathrm{f}_{\mathrm{i}} \mathrm{f}_{j} \rightarrow \mathrm{f}_{\mathrm{i}} \mathrm{f}_{j} \mathrm{H}^{0}$	$361 \quad f_{i} \bar{f}_{i} \rightarrow W_{L}^{+} W_{L}^{-}$
$85 \quad \gamma \gamma \rightarrow \mathrm{~F}_{k} \overline{\mathrm{~F}}_{k}$	$133-f_{i} \gamma_{\mathrm{T}}^{*} \rightarrow \mathrm{f}_{\mathrm{i}} \gamma$	$174 \quad \mathrm{f}_{\mathrm{i}} \mathrm{f}_{j} \rightarrow \mathrm{f}_{\mathrm{k}} \mathrm{f}_{\mathrm{l}} \mathrm{H}^{0}$	$362 \quad \mathrm{f}_{\mathrm{f}} \overline{\mathrm{f}}_{i} \rightarrow \mathrm{~W}_{\mathrm{L}}^{ \pm} \pi_{\mathrm{tc}}^{\mp}$
Closed heavy flavour:	$134 \quad \mathrm{f}_{\mathrm{i}} \gamma^{*} \rightarrow \mathrm{f}_{\mathrm{i}} \gamma \underline{\chi}$	$181 \mathrm{gg} \rightarrow \mathrm{Q}_{k} \overline{\mathrm{Q}}_{k} \mathrm{H}^{\circ}$	$363 \quad \mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{i} \rightarrow \pi_{t c}^{+} \pi_{v c}^{-}$
$86 \mathrm{Eg} \rightarrow \mathrm{J} / \mathrm{\psi g}$	135 g $\gamma_{\mathrm{T}}^{*} \rightarrow \mathrm{fif}_{i}$	$182 \mathrm{q}_{1} \bar{q}_{i} \rightarrow \mathrm{Q}_{k} \overline{\mathrm{Q}}_{k} \mathrm{H}^{0}$	$364 \quad f_{i} \bar{f}_{i} \rightarrow \gamma \pi_{\mathrm{ic}}^{0}$
$87 \mathrm{gg} \rightarrow \chi_{0 \mathrm{cg}}$	$136 \mathrm{~g} \gamma_{\mathrm{L}}^{*} \rightarrow \mathrm{f}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}$	$183 \mathrm{f}_{\mathrm{f}} \overline{\mathrm{f}}_{\mathrm{i}} \rightarrow \mathrm{gH}^{0}$	$365 \quad f_{i} f_{i} \rightarrow \gamma \pi^{\prime 0}$
$88 \mathrm{gg} \rightarrow \chi_{1 \mathrm{cg}}$	$137 \quad \gamma_{\mathrm{T}} \gamma_{\mathrm{T}}^{*} \rightarrow \mathrm{f}_{i} \mathrm{f}_{i}$	$184 \quad \mathrm{f}_{\mathrm{g}} \mathrm{g} \rightarrow \mathrm{f}_{\mathrm{i}} \mathrm{H}^{0}$	$\begin{array}{ll} 365 & f_{i} f_{i} \rightarrow \gamma \pi_{\text {te }} \\ 366 & \mathrm{f}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}} \rightarrow \mathrm{Z}^{0} \pi_{\mathrm{tc}}^{0} \end{array}$
$89 \mathrm{gF} \rightarrow \chi_{22 \mathrm{c}}$		$185 \mathrm{gg} \rightarrow \mathrm{gH}^{0}$	$\begin{array}{ll} 366 & \mathrm{f}_{\mathrm{i}} \mathrm{f}_{i} \rightarrow Z^{\circ} \pi_{\mathrm{tc}}^{\prime} \\ 367 & \mathrm{f}_{\mathrm{i}} \mathrm{f}_{i} \rightarrow Z^{0} \pi^{\prime 0} \end{array}$
$104 \mathrm{gg} \rightarrow \chi_{0 c}$		$156 \quad \mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{\mathrm{i}} \rightarrow \mathrm{A}^{0}$	$368 \quad f_{i} \bar{f}_{i} \rightarrow \mathrm{~W}^{ \pm} \pi_{\imath c}^{\mp}$
105 gg $\rightarrow \chi$ ¢c	$140 \quad \gamma_{\mathrm{L}}^{*} \gamma_{\mathrm{L}}^{*} \rightarrow \mathrm{f}_{i} \overline{\mathrm{f}}_{\mathrm{i}}$	$157 \quad \mathrm{gg} \rightarrow \mathrm{~A}^{0}$	$\begin{array}{ll} 368 & f_{i} f_{i} \rightarrow W^{ \pm} \pi_{\mathrm{ic}}^{+} \\ 370 & f_{i} \mathrm{f}_{j} \rightarrow \mathbf{W}_{\mathrm{L}}^{ \pm} \mathbf{Z}_{\mathrm{L}}^{0} \end{array}$
$106 \quad \mathrm{gg} \rightarrow \mathrm{J} / \psi \gamma$	$80 \quad \mathrm{q}_{1} \gamma \rightarrow \mathrm{q}_{k} \pi^{ \pm}$	$158 \quad \gamma \gamma \rightarrow A^{0}$	
$\begin{array}{ll}107 & \mathrm{~g} \gamma \\ 108 & \gamma \mathrm{~J} / \psi \mathrm{g} \\ & \gamma \gamma \rightarrow \mathrm{J} / \psi \gamma\end{array}$	Light SM Higgs:	$176 \quad \mathrm{f}_{i} \bar{f}_{i} \rightarrow \mathrm{Z}^{0} \mathrm{~A}^{0}$	
W/Z production:	$\mathrm{f}_{\mathrm{f}} \mathrm{f}_{i} \rightarrow \mathrm{~h}^{0}$	$\begin{array}{ll}177 & \mathrm{f}_{\mathrm{i}} \mathrm{f}_{j} \rightarrow \mathrm{~W}^{ \pm} \mathrm{A}^{0} \\ 178 & \mathrm{ff}_{j} \rightarrow \mathrm{ff} \mathrm{A}^{0}\end{array}$	$373 \quad \mathrm{f}_{1} \mathrm{f}_{j} \rightarrow \pi_{\text {te }}^{+} \pi_{\text {te }}^{0}$
$1 \mathrm{f}_{\mathrm{f}} \overline{\mathrm{f}}_{i} \rightarrow \gamma^{*} / \mathbf{Z}^{0}$	$26 \quad \mathrm{f}_{\mathrm{i}} \mathrm{f}_{j} \rightarrow \mathrm{~W}^{ \pm} \mathrm{h}^{0}$	$179 \quad \mathrm{f}_{1} \mathrm{f}_{j} \rightarrow \mathrm{f}_{k} \mathrm{f}_{\mathrm{L}} \mathrm{A}^{0}$	$374 \quad \mathrm{f}_{\mathrm{f}} \mathrm{f}_{j} \rightarrow \gamma \pi_{\text {tc }}^{ \pm}$
$2 \mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{j} \rightarrow \mathrm{~W}^{ \pm}$	$32 \quad \begin{aligned} & \text { fig }\end{aligned} \mathrm{f}_{\mathrm{i}} \mathrm{h}^{0}{ }^{\text {a }}$	$186 \quad \mathrm{gg} \rightarrow \mathrm{Q}_{k} \overline{\mathrm{Q}}_{k} \mathrm{~A}^{\circ}$	$375 \quad \mathrm{f}_{i} \overline{\mathrm{f}}_{j} \rightarrow \mathrm{Z}^{0} \pi_{\text {tc }}^{ \pm}$
$22 \quad \mathrm{f}_{\mathrm{i}} \mathrm{f}_{i} \rightarrow \mathrm{Z}^{0} \mathrm{Z}^{0}$	$102 \mathrm{gg} \rightarrow \mathrm{h}^{0}$	$187 \quad \mathrm{q}_{i} \overline{\mathrm{q}}_{i} \rightarrow \mathrm{Q}_{k} \overline{\mathrm{Q}}_{k} \mathrm{~A}^{0}$	$376 \quad \mathrm{f}_{i} \overline{\mathrm{f}}_{j} \rightarrow \mathrm{~W}^{ \pm} \pi_{c c}^{0}$
$23 \quad \mathrm{f}_{1} \bar{f}_{j} \rightarrow \mathrm{Z}^{0} \mathrm{~W}^{ \pm}$	$103 \quad \gamma \gamma \rightarrow h^{0}$	$188 \quad \mathrm{f}_{i} \mathrm{f}_{i} \rightarrow g A^{\circ}$	$377 \mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{j} \rightarrow \mathrm{~W}^{ \pm} \pi^{\prime \prime}{ }_{\text {te }}$
$25 \quad \mathrm{f}_{\mathrm{f}} \overline{\mathrm{f}}_{i} \rightarrow \mathrm{~W}^{+} \mathrm{W}^{-}$	$110 \quad \mathrm{f}_{\mathrm{f}} \overline{\mathrm{f}}_{i} \rightarrow \gamma \mathrm{~h}^{0}$	$189 \quad \mathrm{f}_{\mathrm{i}} \mathrm{g} \rightarrow \mathrm{f}_{i} \mathrm{~A}^{0}$	$381 \quad \mathrm{q}_{i} \mathrm{q}_{j} \rightarrow \mathrm{q}_{i} \mathrm{q}_{j}$
$15 \quad \mathrm{f}_{1} \overline{\mathrm{f}}_{i} \rightarrow \mathrm{~g} Z^{0}$	$111 \quad \mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{\mathrm{i}} \rightarrow \mathrm{gh}^{0}$	190 gg $\rightarrow \mathrm{gA}^{\circ}$	$382 \quad \mathrm{q}_{1} \overline{\mathrm{q}}_{i} \rightarrow \mathrm{q} k \overline{\mathrm{q}}_{k}$
$16 \quad \mathrm{f}_{1} \overline{\mathrm{f}}_{j} \rightarrow \mathrm{gW}^{ \pm}$	$112 \mathrm{f}, \mathrm{g} \rightarrow{\mathrm{f}, \mathrm{h}^{\circ} \mathrm{O}}^{1}$	Charged Higgs:	$383 \quad \mathrm{q}_{i} \overline{\mathrm{q}}_{i} \rightarrow \mathrm{gg}$
$30 \quad f_{i} \mathrm{~g} \rightarrow \mathrm{f}_{\mathrm{i}} \mathrm{Z}^{0}$	$113 \mathrm{gg} \rightarrow \mathrm{gh}^{0}$	$143 \quad \mathrm{f}_{\mathrm{f}} \mathrm{f}_{j} \rightarrow \mathrm{H}^{+}$	$384 \quad f_{i} g \rightarrow f_{i} g$
$31 \quad \mathrm{f}_{\mathrm{i}} \mathrm{g} \rightarrow \mathrm{f}_{k} \mathrm{~W}^{ \pm}$	$121 \mathrm{gg} \rightarrow \mathrm{Q}_{k} \overline{\mathrm{Q}}_{k} \mathrm{~h}^{0}$	$161 \quad \mathrm{f}_{\mathrm{i}} \mathrm{g} \rightarrow \mathrm{f}_{k} \mathrm{H}^{+}$	$\begin{array}{ll} 385 & \mathrm{gg} \rightarrow \mathrm{q}_{k} \overline{\mathrm{q}}_{k} \\ 386 & \mathrm{gg} \rightarrow \mathrm{gg} \end{array}$
$19 \quad \mathrm{f}_{1} \mathrm{f}_{i} \rightarrow \gamma \mathrm{Z}^{0}$	$122 \quad \mathrm{q}_{i} \overline{\mathrm{q}}_{i} \rightarrow \mathrm{Q}_{k} \overline{\mathrm{Q}}_{k} \mathrm{~h}^{0}$	$401 \mathrm{gg} \rightarrow \overline{\mathrm{tb}} \mathrm{H}^{+}$	$\begin{array}{ll} 386 & \mathrm{gg} \rightarrow \mathrm{gg} \\ 387 & \mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{i} \rightarrow \mathrm{Q}_{k} \bar{Q}_{k} \end{array}$
$\begin{array}{ll}20 & f_{1} \bar{f}_{j} \rightarrow \gamma \mathrm{~W}^{ \pm} \\ 35 & \mathrm{f}_{\chi} \gamma \rightarrow \mathrm{f}_{\mathrm{Z}}{ }^{0}\end{array}$	$123 \quad f_{1} \mathrm{f}_{j} \rightarrow f_{i} \mathrm{f}_{j} \mathrm{~h}^{\circ}$	$402 \mathrm{q} \overline{\mathrm{q}} \rightarrow \overline{\mathrm{t}} \mathrm{BH}^{+}$	$\begin{array}{ll} 387 & f_{i} \bar{f}_{i} \rightarrow \mathrm{Q}_{k} \bar{Q}_{k} \\ 388 & \mathrm{gg} \rightarrow \mathrm{Q}_{k} \bar{Q}_{k} \end{array}$

No. Subprocess	No.	Subprocess	No.	Subprocess
Compositeness:	210	$\mathrm{f}_{1} \mathrm{f}_{j} \rightarrow \bar{\ell}_{L} \tilde{\nu}_{\ell}^{*}+$	250	$\mathrm{f}_{\mathrm{ig}} \rightarrow \tilde{q}_{1} L \tilde{\chi}^{3}$
146 e $\gamma \rightarrow \mathrm{e}^{*}$	211	$\mathrm{f}_{\mathrm{i}} \mathrm{f}_{j} \rightarrow \tilde{\tau}_{1} \tilde{\nu}_{\tau}^{*}+$	251	$\mathrm{f}_{i} \mathrm{~g} \rightarrow \tilde{\mathrm{q}}_{i R} \tilde{\chi}_{3}$
$147 \mathrm{dg} \rightarrow \mathrm{d}^{*}$	212	$\mathrm{f}_{i} \mathrm{f}_{j} \rightarrow \tilde{\tau}_{2} \tilde{\nu}_{\tau}^{*}+$	252	$\mathrm{f}_{\mathrm{i}} \mathrm{g} \rightarrow \tilde{\mathrm{q}}_{i L} \tilde{\chi}_{4}$
$148 \mathrm{ug} \rightarrow \mathrm{u}^{*}$	213	$\mathrm{f}_{i} \tilde{\mathrm{f}}_{i} \rightarrow \tilde{\nu}_{2} \tilde{\nu}_{e}^{*}$	253	$\mathrm{f}_{\mathrm{i}} \mathrm{g} \rightarrow \tilde{\mathrm{q}}_{\mathrm{i}} \mathrm{R} \tilde{\chi}_{4}$
$167 \quad \mathrm{q}_{1} \mathrm{q}_{j} \rightarrow \mathrm{~d}^{*} \mathrm{q}_{k}$	214	$\mathrm{f}_{i} \overline{\mathrm{f}}_{i} \rightarrow \bar{\nu}_{+} \bar{\nu}_{*}^{*}$	254	$\mathrm{ffig}^{\mathrm{g}} \rightarrow \tilde{\mathrm{q}}_{j L} \tilde{\chi}_{1}^{ \pm}$
$168 \quad \mathrm{q}_{1} \mathrm{q}_{j} \rightarrow \mathrm{u}^{*} \mathrm{q}_{k}$	216	$\mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{i} \rightarrow \tilde{\chi}_{1} \tilde{\chi}_{1}$	256	$\mathrm{f}_{\mathrm{i}} \mathrm{g} \rightarrow \tilde{\mathrm{q}}_{j L} \tilde{\chi}_{2}^{ \pm}$
$169 \quad \mathrm{q}_{1} \overline{\mathrm{G}}_{i} \rightarrow \mathrm{e}^{ \pm} \mathrm{e}^{* F}$	217	$\mathrm{f}_{i} \overline{\mathrm{f}}_{i} \rightarrow \tilde{\chi}_{2} \tilde{\chi}_{2}$	258	$\mathrm{f}_{\mathrm{i}} \mathrm{g} \rightarrow \tilde{\mathrm{a}}_{i} L \underline{\mathrm{~g}}$
$165 \quad \mathrm{f}_{1} \overline{\mathrm{f}}_{1}\left(\rightarrow \gamma^{*} / Z^{0}\right) \rightarrow \underline{f}_{2} \bar{f}_{k}$	218	$\mathrm{f}_{i} \bar{f}_{i} \rightarrow \tilde{\chi}_{3} \tilde{\chi}_{3}$	259	$\mathrm{f}_{\mathrm{ig}} \rightarrow \tilde{\mathrm{q}}_{1} R \mathrm{R}$
$166 \quad \mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{j}\left(\rightarrow \mathrm{~W}^{ \pm}\right) \rightarrow \mathrm{f}_{\mathrm{k}} \overline{\mathrm{f}}_{l}$	219	$\mathrm{f}_{i} \overline{\mathrm{f}}_{i} \rightarrow \tilde{\chi}_{4} \tilde{\chi}_{4}$	261	$\mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{\mathrm{i}} \rightarrow \mathrm{t}_{\mathrm{t}} \tilde{\mathrm{t}}_{\mathrm{i}}$
Extra Dimensions:	220	$\mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{i} \rightarrow \tilde{\chi}_{1} \tilde{\chi}_{2}$	262	$\mathrm{f}_{\mathrm{i}} \mathrm{f}_{i} \rightarrow \overline{\mathrm{t}}_{2} \overline{\mathrm{t}}_{2}$
$391 \mathrm{ff} \rightarrow \mathrm{G}^{*}$.	221	$\mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{i} \rightarrow \tilde{\chi}_{1} \tilde{\chi}^{3}$	263	$\mathrm{f}_{1} \bar{f}_{i} \rightarrow \tilde{\mathrm{t}}_{1} \tilde{\mathrm{t}}_{2}+$
$392 \mathrm{gg} \rightarrow \mathrm{G}^{*}$.	222	$\mathrm{f}_{i} \mathrm{f}_{i} \rightarrow \tilde{\chi}_{1} \tilde{\chi}_{4}$	264	$\mathrm{gg} \rightarrow \tilde{\mathrm{t}}_{1} \mathrm{n}_{0}$
$393 \mathrm{q} \overline{\mathrm{q}} \rightarrow \mathrm{g} \mathrm{G}^{*}$	223	$\mathrm{f}_{6} \mathrm{f}_{i} \rightarrow \tilde{\chi}_{2} \tilde{\chi}_{3}$	265	$\mathrm{gg} \rightarrow \mathrm{t}_{2} \mathrm{t}_{2}^{*}$
394 qg $\rightarrow \mathrm{qG}^{*}$	224	$\mathrm{f}_{i} \overline{\mathrm{f}}_{i} \rightarrow \tilde{\chi}_{2} \tilde{\chi}_{4}$	271	$\mathrm{f}_{i} \mathrm{f}_{j} \rightarrow \overline{\mathrm{a}}_{\mathrm{i}} / 2 \tilde{\mathrm{a}}_{\mathrm{j}} /$
395 gg $\rightarrow \mathrm{gG}^{*}$	225	$\mathrm{f}_{i} \mathrm{f}_{i} \rightarrow \bar{\chi}_{2} \chi_{4}$ $\mathrm{f}_{i} \mathrm{f}_{i} \rightarrow \tilde{\chi}_{3} \tilde{\chi}_{4}$	272	
Left-right symmetry:	225 226		273	$\mathrm{f}_{\mathrm{i}} \mathrm{f}_{j} \rightarrow \tilde{\mathrm{q}}_{i} / L \tilde{\mathrm{q}}_{j} \mathrm{l}^{+}$
$341 \quad \ell_{i} \ell_{j} \rightarrow \mathrm{H}_{L_{+}^{+ \pm}}^{ \pm+}$	226 227		274	$\mathrm{f}_{i} \overline{\mathrm{f}}_{j} \rightarrow \overline{\mathrm{q}}_{i L} \overline{\mathrm{q}}_{j}^{*}{ }_{L}$
$342 \quad \ell_{1} \ell_{j} \rightarrow \mathrm{H}_{\square}^{+ \pm}$	227 228	$\mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{i} \rightarrow \chi_{2}^{\prime} \tilde{\chi}_{2}^{+}$ $\mathrm{f}_{\mathrm{f}} \bar{\chi}_{i} \rightarrow \tilde{\chi}^{ \pm} \tilde{\chi}^{\mp}$	275	
$343 \quad \ell_{i}^{ \pm} \gamma \rightarrow \mathrm{H}_{2}^{ \pm \pm} \mathrm{e}^{\mp}$	228	$\mathrm{f}_{\mathrm{i}_{\mathrm{i}} \mathrm{f}_{i}} \rightarrow \chi_{1}^{+} \chi_{2}^{+}$	276	$\mathrm{f}_{\mathrm{i}} \mathrm{f}_{j} \rightarrow \overline{\mathrm{q}}_{i L} \tilde{\mathrm{q}}_{j}^{*}{ }^{\text {a }}$
$344 \quad \ell_{i}^{-} \gamma \rightarrow \mathrm{H}_{R}^{+} \mathrm{e}^{\mp}$	229	$\mathrm{f}_{1} \mathrm{f}_{j} \rightarrow \tilde{\chi}_{1} \tilde{\chi}_{1}{ }_{1}$	277	$\mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{i} \rightarrow \tilde{\mathrm{q}}_{j L} \tilde{\mathrm{q}}_{j}^{*}$
$345 \quad \ell_{i}^{+} \gamma \rightarrow \mathrm{H}_{L}^{ \pm} \pm \mu^{\mp}$	230	$\mathrm{f}_{1} \mathrm{f}_{j} \rightarrow \tilde{\chi}_{2} \tilde{\chi}_{1}^{ \pm}$	278	$\mathrm{f}_{i} \mathrm{f}_{i} \rightarrow \overline{\mathrm{q}}_{j R} \tilde{\mathrm{q}}_{j}^{*}{ }^{\text {a }}$
$346 \quad \ell_{5}^{ \pm} \gamma \rightarrow \mathrm{H}_{R}^{ \pm} \mu^{\mp}$	231	$\mathrm{f}_{\mathrm{i}} \mathrm{f}_{j} \rightarrow \tilde{\chi} \tilde{\chi}^{\chi_{1}^{1}}$	279	$\mathrm{gg} \rightarrow \tilde{q}_{i L} \tilde{\mathrm{q}}_{i L}$
$347 \quad \ell_{i}^{+} \gamma \rightarrow \mathrm{H}_{2}^{+ \pm} \tau^{\mp}$	232	$\mathrm{f}_{i} \mathrm{f}_{j} \rightarrow \tilde{\chi}_{4} \tilde{\chi}_{1}^{ \pm}$	280	$\mathrm{gg} \rightarrow \tilde{\mathrm{q}}_{i R} \tilde{\mathrm{q}}_{i R}$
$348 \quad \ell_{i}^{ \pm} \gamma \rightarrow \mathrm{H}_{R}^{ \pm} \pm \tau^{\mp}$	233	$\chi_{i} \bar{f}_{j} \rightarrow \tilde{\chi}_{1} \tilde{\chi}_{2}^{+}$	281	$\mathrm{bq}_{i} \rightarrow \tilde{\mathrm{~b}}_{1} \tilde{q}_{i L}$
$349 \quad \mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{\mathrm{i}} \rightarrow \mathrm{H}_{L}^{-+} \mathrm{H}_{L}^{--}$	234	$\mathrm{f}_{1} \overline{\mathrm{f}}_{j} \rightarrow \tilde{\chi}_{2} \tilde{\chi}_{2}^{+}$	282	$\mathrm{bq}_{i} \rightarrow \tilde{\mathrm{~b}}_{2} \tilde{q}_{i R}$
$350 \quad \mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{\mathrm{i}} \rightarrow \mathrm{H}_{R}^{++} \mathrm{H}_{R}^{--}$	235	$\mathrm{f}_{6} \overline{\mathrm{f}}_{j} \rightarrow \tilde{\chi}_{3} \tilde{\chi}_{2}{ }^{ \pm}$	283	$\mathrm{bq}_{i} \rightarrow \tilde{\mathrm{~b}}_{1} \tilde{q}_{i R}+$
$351 \quad \mathrm{f}_{i} \mathrm{f}_{j} \rightarrow \mathrm{f}_{\mathrm{k}} \mathrm{f}_{\mathrm{l}} \mathrm{H}_{L}^{+1}$	236	$\mathrm{f}_{i} \overline{\mathrm{f}}_{j} \rightarrow \tilde{\chi}_{4} \tilde{\chi}^{ \pm}$	284	$\mathrm{b} \overline{\mathrm{q}}_{i} \rightarrow \tilde{\mathrm{~b}}_{1} \tilde{\mathrm{q}}_{\mathrm{i} L}^{*}$
$352 \quad \mathrm{f}_{\mathrm{i}} \mathrm{f}_{j} \rightarrow \mathrm{f}_{\mathrm{k}} \mathrm{fi}_{\mathrm{i}} \mathrm{H}_{R}^{ \pm}$	237	$\mathrm{f}_{1} \bar{f}_{i} \rightarrow \overline{\mathrm{~g}} \tilde{\chi}_{1}$	285	$\mathrm{b} \overline{\mathrm{q}}_{i} \rightarrow \tilde{\mathrm{~b}}_{2} \tilde{\mathrm{q}}_{i}{ }^{*} R$
$353 \quad \mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{\mathrm{i}} \rightarrow \mathrm{Z}_{R}^{0}$	238	$\mathrm{f}_{\mathrm{i}} \bar{f}_{i} \rightarrow \tilde{\mathrm{~g}} \tilde{\chi}_{2}$	286	$\mathrm{b} \overline{\mathrm{q}}_{i} \rightarrow \tilde{\mathrm{~b}}_{1} \tilde{g}_{i}{ }_{R+}$
$354 \quad \mathrm{f}_{i} \mathrm{f}_{j} \rightarrow \mathrm{~W}_{\vec{R}}^{ \pm}$	239	$\mathrm{f}_{\mathrm{i}} \mathrm{f}_{i} \rightarrow \overline{\mathrm{~g}} \tilde{\chi}_{3}$	287	$\mathrm{f}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}} \rightarrow \tilde{\mathrm{b}}_{1} \mathrm{~b}^{*}$
SUSY:	240	$\mathrm{f}_{\mathrm{f}} \overline{\mathrm{f}}_{i} \rightarrow \overline{\mathrm{~g}}_{\mathrm{g}} \tilde{\chi}_{4}$	288	$\mathrm{f}_{i} \overline{\mathrm{f}}_{i} \rightarrow \tilde{\mathrm{~b}}_{2} \hat{\mathrm{~b}}_{2}^{*}$
$201 \quad f_{i} \bar{f}_{i} \rightarrow \tilde{c}_{L} \tilde{\mathrm{c}}_{L}^{*}$	241	$\mathrm{f}_{1} \overline{\mathrm{f}}_{j} \rightarrow \overline{\mathrm{~g}} \tilde{\chi}_{1}^{ \pm}$	289	$\mathrm{gg} \rightarrow \tilde{\mathrm{b}}_{1} \tilde{\mathrm{~b}}_{1}$
$202 \quad \mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{\mathrm{i}} \rightarrow \tilde{\mathrm{e}}_{R} \tilde{\mathrm{e}}_{R}^{*}$	242	$\mathrm{f}_{\mathrm{f}} \mathrm{f}_{j} \rightarrow \tilde{\mathrm{~g}} \tilde{\chi}_{2}{ }^{ \pm}$	290	$\mathrm{gg} \rightarrow \tilde{\mathrm{b}}_{2} \tilde{\mathrm{~b}}_{2}^{*}$
$203 \quad \mathrm{f}_{i} \mathrm{f}_{i} \rightarrow \tilde{\mathrm{e}}_{L} \tilde{\mathrm{e}}_{R}+$	243	$\mathrm{f}_{\mathrm{f}} \mathrm{f}_{i} \rightarrow \mathrm{~g} \mathrm{~g}_{\mathrm{g}}$	290 291	$\begin{aligned} & \mathrm{gg} \rightarrow \mathrm{~b}_{2} \mathrm{~b}_{2} \\ & \mathrm{bb} \rightarrow \tilde{\mathrm{~b}}_{1} \mathrm{~b}_{1} \end{aligned}$
$204 \quad \mathrm{f}_{\mathrm{i}} \overline{\bar{i}}_{i} \rightarrow \tilde{\mu}_{L} \tilde{\mu}_{L}^{*}$	244 246	$\mathrm{gg} \rightarrow \mathrm{g}$ है	292	$\mathrm{bb} \rightarrow \tilde{\mathrm{~b}}_{2} \tilde{\mathrm{~b}}_{2}$
$2050 \mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{i} \rightarrow \tilde{\mu}_{R} \tilde{\mu}_{R}{ }^{2}$	246 247	$\mathrm{f}_{i g} \rightarrow \tilde{\mathrm{q}}_{i L} \tilde{\chi}_{1}$ $\mathrm{f}_{\mathrm{i}} \mathrm{g} \rightarrow \tilde{\mathrm{q}}_{i R} \tilde{\chi}_{1}$	293	$\mathrm{bb} \rightarrow \mathrm{E}_{1} \mathrm{E}_{2}$
$\begin{array}{ll}206 & \mathrm{f}_{i} \overline{\mathrm{f}}_{i} \rightarrow \tilde{\mu}_{L} \tilde{\mu}_{R}^{*}+ \\ 207 & \mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{i} \rightarrow \tilde{\tau}_{1} \tilde{\tau}_{i}\end{array}$	247 248	$\mathrm{f}_{\mathrm{i}} \mathrm{g} \rightarrow \mathrm{q}_{i R} \tilde{\chi}_{1}$ $\mathrm{f}_{\mathrm{i}} \mathrm{g} \rightarrow \tilde{\mathrm{c}}_{i L} L \tilde{\chi}_{2}$	294	$\mathrm{bg} \rightarrow \tilde{\mathrm{b}}_{1} \mathrm{~g}$
$\begin{array}{ll} 207 & f_{i} \bar{f}_{i} \rightarrow \tilde{\tau}_{1} \tilde{\tau}_{i}^{*} \\ 208 & \mathrm{f}_{1} \bar{f}_{i} \rightarrow \tilde{\tau}_{2} \tau_{2}^{*} \end{array}$	248 249	$\begin{aligned} & \mathrm{f}_{\mathrm{ig}} \rightarrow \tilde{\mathrm{q}}_{i} L \tilde{\chi}_{2} \\ & \mathrm{f}_{\mathrm{i}} \mathrm{~g} \rightarrow \tilde{\mathrm{q}}_{i R} \tilde{\chi}_{2} \end{aligned}$	295	$\mathrm{bg} \rightarrow \tilde{\mathrm{b}}_{2} \tilde{\mathrm{~g}}$
$\begin{array}{ll} 208 & f_{i} f_{i} \rightarrow \tau_{2} \tau_{2}^{*} \\ 209 & f_{i} f_{i} \rightarrow \tau_{1} \tau_{2}^{*}+ \\ \hline \end{array}$			296	$\mathrm{b} \overline{\mathrm{b}}^{\mathrm{b}} \stackrel{\rightharpoonup}{\mathrm{b}}_{1} \stackrel{\mathrm{~b}}{2}_{*}^{*}+$

Process simulation

Many specialized processes already available in Pythia8/Herwig++

but, processes usually only implemented in lowest non-trivial order ...
Need external programs that ...

1. include higher order loop corrections or, alternatively, do kinematic dependent rescaling
2. allow matching of higher order ME generators [otherwise need to trust parton shower description ...]
3. provide correct spin correlations often absent in PS ...[e.g. top produced unpolarized, while $t \rightarrow$ bW \rightarrow blv decay correct]
4. simulate newly available physics scenarios ...[appear quickly; need for many specialised generators]

Les Houches Accord ...

Specifies how parton-level information about the hard process and sequential decays can be encoded and passed on to a general-purpose generator.

Les Houches: regular annual meeting between theoreticians and experimentalists on MC generator developments.

Specialised Generators [some examples]

AcerMC	ttbb, .sinlr top
ALPGEN	$\begin{aligned} & W / Z+\leq 6 j, \\ & n W+m Z+k H+\leq 3 j, \ldots \end{aligned}$
AMEGIC++	generic LO
CompHEP	generic LO
GRACE [+Bases/Sprin	$\begin{aligned} & \text { : generic LO } \\ & \text { ring] } \\ & \text { [+ some NLO loops] } \end{aligned}$
GR@PPA	bbbb
MadCUP	W/Z $+\leq 3 \mathrm{j}$, ttbb
HELAS \& MadGraph	generic LO
MCFM	NLO W/Z+ $\leq 2 \mathrm{j}$, WZ, WH, $\mathrm{H}+\leq 1 \mathrm{j}$
O'Mega \& WHIZARD	generic LO
VECBOS	W/Z + ¢ 4
HRES :	Higgs boson production @NNLO
DYNNLO :	: W/Z production @NNLO

Type I: Leading order matrix element \& leading log parton shower

Type I: Leading order matrix element \& leading log parton shower

LO ME for hard processes

$[2 \rightarrow 1$ or $2 \rightarrow 2$]

- Parton Shower: attaches gluons at each leg.
- only in soft-collinear approxmation
- typically underestimate large angle/hard emission

- 1) or 2) at ME (different generations, different accuracy: cannot be combined

Type 2 : Leading order matrix element \& leading log parton shower + merging

LO ME for hard processes
[$2 \rightarrow 1$ or $2 \rightarrow 2$]

ME+PS
Herwig++/ Pythia6/8
SingleTop, TopRex
Phantom
AcerMC
GRAPPA
CompHEP
ME+PS+merging
Alpgen
MadGraph
Sherpa
NLO+PS
MC@NLO POWHEG

Merging @LO

MLM matching (simplified)

1) define matching cuts:
for example $\mathrm{PT}^{\mathrm{J}}>20 \mathrm{GeV}, \Delta \mathrm{R}=0.4$

Merging @LO

MLM matching (simplified)

1 parton
2 partons

1) define matching cuts:
for example $\mathrm{PT}^{\mathrm{J}}>20 \mathrm{GeV}, \Delta \mathrm{R}=0.4$
2) generate ME with 1, 2, ...n jets

Merging @LO

MLM matching (simplified)

1) define matching cuts:
for example $\mathrm{p}^{\mathrm{J}}>20 \mathrm{GeV}, \Delta \mathrm{R}=0.4$
2) generate ME with 1, 2, ..n jets

1 parton
2 partons
3) shower all events

Merging @LO

MLM matching (simplified)

1) define matching cuts:
for example $\mathrm{p}^{\mathrm{J}}>20 \mathrm{GeV}, \Delta \mathrm{R}=0.4$
2) generate ME with 1, 2, ..n jets

2 partons

Merging @LO

MLM matching (simplified)

1) define matching cuts:
for example $\mathrm{p}^{\mathrm{J}}>20 \mathrm{GeV}, \Delta \mathrm{R}=0.4$
2) generate ME with 1, 2, ...n jets

1 parton

3) shower all events
4) select only events where jets above the p_{t} threshold match with final partons

Consequences:
all jets with $\mathrm{p}_{\mathrm{T}}>20 \mathrm{GeV}$ and $\Delta \mathrm{R}>0.4$ to other jets come from ME collinear and soft jets come from PS Use each of them where they are best.

W+jets distributions

Type III : Next-to-leading order ME \& leading-log parton shower

hard processes simulated at NLO accuracy including real \& virtual corrections ...
improved description of cross sections \& kinematic distributions

Type III : Next-to-leading order ME \& leading-log parton shower

hard processes simulated at NLO accuracy including real \& virtual corrections ...
improved description of cross sections \& kinematic distributions 2 Matching methods:

Truncated showers:

1. Powheg	1) first emission produced by the ME;
	2) don't allow the PS to produce patrons harder than the first emission;
	3) not exact at NLO (containes unbalanced
2. MC@NLO:	higher order terms)
$\|\mathrm{ME}\|^{2}=\mid \mathrm{ME}+$	(up to as^{2}) $\left.\right\|^{2}$
	act at NLO...
	me negative weights, need retuning for each PS

Merging @NLO (quite new, going to be used at 13 TeV)

JHEP12 (2012) 061

FxFx (Frederix-Frixione) merging

1) define a matching scale μ_{Q};
2) don't allow \mathbb{S} events with $\mathrm{p}_{\mathrm{T}}>\mu_{\mathrm{Q}}$ (those will be provided by \mathbb{H} events of n-1 partons NLO real emission); the restriction is imposed both at ME and on the shower starting scale $\mu<\mu_{Q}$
3) treat the obtained events as LO ones and apply an LO-style merging (this allow to produce smoother distributions)

Let's recap

From partons to color neutral hadrons

Fragmentation:

Parton splitting into other partons [QCD: re-summation of leading-logs] ["Parton shower"]

Hadronization:
Parton shower forms hadrons [non-perturbative, only models]

Decay of unstable hadrons [perturbative QCD, electroweak theory]

Non-perturbative transition from partons to hadrons ...

[Modelling relies on phenomenological models available]
Models based on MC simulations
very successful:
Generation of complete final states ...
[Needed by experimentalists in detector simulation]
Caveat: tunable ad-hoc parameters
Most popular MC models:
Pythia/8: Lund string model Herwig/++ : Cluster model

Independent fragmentation of each parton

Simplest approach:
[Field, Feynman, Nucl. Phys. B136 (1978) 11
Start with original quark
Generate quark-antiquark pairs from vacuum
\rightarrow form "primary meson" with energy fraction z
Continue with leftover quark with energy fraction $1-z$
Stop at low energies (cut-off) Include flavour non-perturbative fragmentation functions $D(z)$
$D(z)$: probability to find a meson/hadror with energy fraction z in jet ...

Lund String Model

[Andersson et al., Phys. Rep. 97 (1983) 31]
QCD potential:

After: Ellis et al.,
QCD and Collider Physics

- At low energy: hadron formation
- Very widely used ... [default in Pythia 6/8]

Lund String Model

Repeated string breaks for large system with pure $V(r)=k \cdot r$, i.e. neglect Coulomb part

$$
\left|\frac{\mathrm{d} E}{\mathrm{~d} z}\right|=\left|\frac{\mathrm{d} p_{z}}{\mathrm{~d} z}\right|=\left|\frac{\mathrm{d} E}{\mathrm{~d} t}\right|=\left|\frac{\mathrm{d} p_{z}}{\mathrm{~d} t}\right|=\kappa
$$

Energy-momentum quantities can be read from space-time quantities ...

Scientific American 1979 Kenneth A. Johnson

Simple but powerful picture of hadron production
[with extensions to massive quarks, baryons, ...]

$$
\begin{aligned}
\mathcal{P} \propto & \exp \left(-\frac{\pi m_{\perp q}^{2}}{\kappa}\right) \\
& \propto \exp \left(-\frac{\pi p_{\perp q}^{2}}{\kappa}\right) \exp \left(-\frac{\pi m_{q}^{2}}{\kappa}\right)
\end{aligned}
$$

Yields: Common Gaussian $\mathrm{p} \perp$ spectrum Heavy quark suppression

Lund String Model

Repeated string breaks for large system with pure $\mathrm{V}(\mathrm{r})=\mathrm{K} \cdot \mathrm{r}$, i.e. neglect Coulomb part

$$
\left|\frac{\mathrm{d} E}{\mathrm{~d} z}\right|=\left|\frac{\mathrm{d} p_{z}}{\mathrm{~d} z}\right|=\left|\frac{\mathrm{d} E}{\mathrm{~d} t}\right|=\left|\frac{\mathrm{d} p_{z}}{\mathrm{~d} t}\right|=\kappa
$$

Energy-momentum quantities can be read from space-time quantities ...

Kenneth A. Johnson

Simple but powerful picture of hadron production
[with extensions to massive quarks, baryons, ...]

$$
\begin{aligned}
\mathcal{P} \propto & \exp \left(-\frac{\pi m_{\perp q}^{2}}{\kappa}\right) \\
& \propto \exp \left(-\frac{\pi p_{\perp q}^{2}}{\kappa}\right) \exp \left(-\frac{\pi m_{q}^{2}}{\kappa}\right)
\end{aligned}
$$

Yields: Common Gaussian $\mathrm{p} \perp$ spectrum
Heavy quark suppression

Cluster Model

[Webber, Nucl. Phys. B238 (1984) 492]
Color flow confined during hadronisation process
\rightarrow Formation of color-neutral parton clusters

Gluons (color-anticolor) split to quark-antiquark pairs

Clusters decay into 2 hadrons according to phase-space, i.e. isotropically
\rightarrow no free tuning parameters parton clusters
Very widely used ... [default in Herwig/Herwig++]

Hadronisation models summary

Model	Pythia6/8 (string)	Herwig/Herwig++ / Sherpa(cluster)
Energy-mom. picture	powerful	simple
predictive	unpredictive	
Parameters	few	many
Flavour composition	messy	simple
	unpredictive	in-between
Parameters	many	few

Structure of basic generator process [by order of consideration]

From the 'simple' to the 'complex' or from 'calculable' at large scales to 'modelled; at small

Matrix elements (ME)

1. Hard subprocess:
$|M|^{2}$, Breit Wigners, PDFs

2. Resonance decays: Includes particle correlations

Parton Shower (PS)
3. Final-state parton showers:

$g \rightarrow g g$
$g \rightarrow q q$
4. Final-state parton
$q \rightarrow q \gamma$ showers:

Conclusions: Structure of basic generator process

From the 'simple' to the 'complex' or from 'calculable' at large scales to 'modelled; at small

Underlying Event (UE)

5. Multi-parton interaction:

6. Beam remnants:

Stable Particle State

7. Hadronisation:
8. Decays:

The DGLAP evolution equation is said to resum large collinear logarithms. Se where are these logarithsm, and where is the resummation?

Let's perform the integration of the DGLAP equation and expand the result:

$$
\begin{aligned}
f(x, t)= & f_{0}(x)+\int_{0_{0}}^{t} \frac{d t^{\prime}}{t^{\prime}} \frac{\alpha_{s}\left(t^{\prime}\right)}{2 \pi} \int_{x}^{1} \frac{d z}{z} P(z) d\left(\frac{x}{z}, t^{\prime}\right) \\
= & f_{0}(x)+\int_{t_{0}}^{t} \frac{d t^{\prime}}{t^{\prime}} \frac{\alpha_{x}}{2 \pi} \int_{x}^{1} \frac{d z}{z} P(z)\left\{f_{0}\left(\frac{x}{z}\right)+\right. \\
& \left.+\int_{t_{0}}^{z^{\prime}} \frac{d t^{\prime \prime}}{t^{\prime \prime}} \frac{\alpha_{x}}{2 \pi} \int_{x / z}^{1} \frac{d z^{\prime}}{z^{\prime}} P\left(z^{\prime}\right)\left[f_{0}\left(\frac{x}{z z^{\prime}}\right)+\ldots\right]\right\} \\
= & f_{0}(x)+\frac{\alpha_{s}}{2 \pi} \ln \left(\frac{t}{t_{0}}\right) \int_{x}^{1} \frac{d z}{z} P(z) f_{0}\left(\frac{x}{z}\right)+ \\
& +\frac{1}{2!}\left[\frac{\alpha_{s}}{2 \pi} \ln \left(\frac{t}{t_{0}}\right)\right]^{2} \int_{x}^{1} \frac{d z}{z} P(z) \int_{x / z}^{1} \frac{d z^{\prime}}{z^{\prime}} P\left(z^{\prime}\right) G_{0}\left(\frac{x}{z z^{\prime}}\right)+\ldots
\end{aligned}
$$

As suggested by the last step, it is indeed a resummation of all terms proportional to $\left[\frac{a_{s}}{2 \pi} \ln \left(\frac{t}{1_{2}}\right)\right]^{n}$.

