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FIG. 17. Event displays of H !WW ⇤ ! e⌫µ⌫ candidates in the nj =0 (top) and nj � 2 VBF-enriched (bottom) categories.
The neutrinos are represented by missing transverse momentum (met, dotted line) that points away from the eµ system.
The properties of the first event are pet=33GeV, pµt=24GeV, m`` =48GeV, ��`` =1.7, pmiss

t =37GeV, and mt=98GeV.
The properties of the second event are pet=51GeV, pµt=15GeV, m`` =21GeV, ��`` =0.1, p j1

t =67GeV, p j2
t =41GeV,

mjj =1.4TeV, �yjj =6.6, pmiss
t =59GeV, and mt=127GeV. Both events have a small value of ��``, which is character-

istic of the signal. The second event shows two well-separated jets that are characteristic of VBF production.
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Top discovery  
and mass determination

Why MC simulation?

Electron identification is based on a likelihood technique
[23] that improves background rejection. An improved
definition of missing transverse momentum, pmiss

T based on
tracks, is introduced in the analysis since it is robust against
pile-up and provides improved resolution with respect to
the true value of missing transverse momentum.
Signal acceptance is increased by 75% (50%) in the

nj ¼ 0 (1) category. This is achieved by lowering the pl2
T

threshold to 10 GeV. Dilepton triggers are included in
addition to single lepton triggers, which allows reduction of
the pl1

T threshold to 22 GeV. The signal kinematic region in
the nj ≤ 1 categories is extended from 50 to 55 GeV. The
total signal efficiency, including all signal categories and
production modes, at 8 TeVand for a Higgs boson mass of
125.36 GeV increased from 5.3% to 10.2%.

Themethods used to estimate nearly all of the background
contributions in the signal region are improved. These
improvements lead to a better understanding of the normal-
izations and thus the systematic uncertainties. The rejection
of the top-quark background is improved by applying a veto
on b-jets with pT > 20 GeV, which is below the nominal
25 GeV threshold in the analysis. A new method of
estimating the jet b-tagging efficiency is used. It results
in the cancellation of theb-tagging uncertainties between the
top-quark control region and signal regions in the nj ¼ 1
categories. The Z=γ" → ττ background process is normal-
ized to the data in a dedicated high-statistics control region in
the nj ≤ 1 and nj ≥ 2 ggF-enriched categories. The VV
backgrounds are normalized to the data using a new control
region, based on a sample with two same-charge leptons.
Introducing this new control region results in the cancella-
tion of most of the theoretical uncertainties on the VV
backgrounds. The multijet background is now explicitly
estimated with an extrapolation factor method using a
sample with two anti-identified leptons. Its contribution is
negligible in the nj ≤ 1 category, but it is at the same level as
W þ jets background in the nj ≥ 2 ggF-enriched category.
A large number of improvements are applied to the estima-
tion of the W þ jets background, one of them being an
estimation of the extrapolation factor using Z þ jets instead
of dijet data events.
Signal yield uncertainties are smaller than in the previous

analysis. The uncertainties on the jet multiplicity distribu-
tion in the ggF signal sample, previously estimated with the
Stewart-Tackmann technique [80], are now estimated with
the jet-veto-efficiency method [79]. This method yields
more precise estimates of the signal rates in the exclusive
jet bins in which the analysis is performed.
The nj ≥ 2 sample is divided into VBF- and ggF-

enriched categories. The BDT technique, rather than a
selection-based approach, is used for the VBF category.
This improves the sensitivity of the expected VBF results
by 60% relative to the previously published analysis. The
ggF-enriched category is a new subcategory that targets
ggF signal production in this sample.
In summary, the analysis presented in this paper brings

a gain of 50% in the expected significance relative to the
previous published analysis [5].

IX. RESULTS AND INTERPRETATIONS

Combining the 2011 and 2012 data in all categories, a
clear excess of signal over the background is seen in
Fig. 35. The profile likelihood fit described in Sec. VII B is
used to search for a signal and characterize the production
rate in the ggF and VBF modes. Observation of the
inclusive Higgs boson signal, and evidence for the VBF
production mode, are established first. Following that, the
excess in data is characterized using the SM Higgs boson
as the signal hypothesis, up to linear rescalings of the
production cross sections and decay modes. Results include
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FIG. 35 (color online). Postfit combined transverse mass
distributions for nj ≤ 1 and for all lepton-flavor samples in the
7 and 8 TeV data analyses. The plot in (b) shows the residuals of
the data with respect to the estimated background compared
to the expected distribution for an SM Higgs boson with
mH ¼ 125 GeV; the error bars on the data are statistical
(

ffiffiffiffiffiffiffiffiffi
Nobs

p
). The uncertainty on the background (shown as the

shaded band around 0) is at most about 25 events per mT bin
and partially correlated between bins. Background processes are
scaled by postfit normalization factors and the signal processes by
the observed signal strength μ from the likelihood fit to all
regions. Their normalizations also include effects from the pulls
of the nuisance parameters.
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1) to extract an interesting signal we need to subtract the 
expectation from known processes; 

2) signal needs also to be modelled in order to compute 
detection efficiency and estimate production cross 
sections and couplings

The global likelihood can be evaluated as a function of
the ratio μVBF=μggF, with both signal strengths varied
independently. The result is illustrated in Fig. 39, which
has a best-fit value for the ratio of

μVBF
μggF

¼ 1.26þ0.61
−0.45ðstatÞ

þ0.50
−0.26ðsystÞ ¼ 1.26þ0.79

−0.53 : ð14Þ

The value of the likelihood at μVBF=μggF ¼ 0 can be
interpreted as the observed significance of the VBF
production process for mH ¼ 125.36 GeV, and corre-
sponds to 3.2 standard deviations; the expected significance
is 2.7 standard deviations. This establishes the evidence for
the VBF production mode in the H → WW% → lνlν final
state. The significance derived from testing the ratio
μVBF=μggF ¼ 0 is equivalent to the significance of testing
μVBF ¼ 0, though testing the ratio is conceptually advanta-
geous since the branching fraction cancels in this param-
eter, while it is implicit in μVBF.
This result was verified with the cross-check analysis

described in Sec. IV C, in which the multivariate discrimi-
nant is replaced with a series of event selection require-
ments motivated by the VBF topology. The expected and
observed significances at mH ¼ 125.36 GeV are 2.1 and
3.0 standard deviations, respectively. The compatibility of
the 8 TeV results from the cross-check and OBDT analyses

was checked with pseudoexperiments, considering the
statistical uncertainties only and fixing μggF to 1.0. With
those caveats, the probability that the difference in Z0

values is larger than the one observed is 79%, reflecting
good agreement.

C. Signal strength μ
The parameter μ is used to characterize the inclusive

Higgs boson signal strength as well as subsets of the signal
regions or individual production modes. First, the ggF and
VBF processes can be distinguished by using the normali-
zation parameter μggF for the signal predicted for the ggF
signal process, and μVBF for the signal predicted for the
VBF signal process. This can be done for a fit to any set of
the signal regions in the various categories. In addition, to
check that the measured value is consistent among catego-
ries, different subsets of the signal regions can be fit. For
example, the nj ¼ 0 and nj ¼ 1 categories can be com-
pared, or the eμ and ee=μμ categories. To derive these
results, only the signal regions are separated; the control
region definitions do not change. In particular, the control
regions defined using only eμ events are used, even when
only ee=μμ signal regions are considered.
The combined Higgs signal strength μ, including 7 and

8 TeV data and all signal region categories, is

μ ¼ 1.09 þ0.16
−0.15 ðstatÞ

þ0.08
−0.07 ð

expt
systÞ

þ0.15
−0.12 ð

theo
systÞ & 0.03ðlumi

systÞ

¼ 1.09 þ0.16
−0.15 ðstatÞ

þ0.17
−0.14 ðsystÞ

¼ 1.09 þ0.23
−0.21 : ð15Þ
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FIG. 38 (color online). Observed signal strength μ as a function
of mH as evaluated by the likelihood fit. The shaded areas
represent the one, two, and three standard deviation contours with
respect to the best-fit values m̂H and μ̂.
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FIG. 39 (color online). Likelihood scan as a function of
μVBF=μggF for mH ¼ 125.36 GeV. The value of the likelihood
at μVBF=μggF ¼ 0 gives the significance of the VBF signal at 3.2
standard deviations. The inner (middle) [outer] band shaded
darker (lighter) [darker] represents the one (two) [three] standard
deviation uncertainty around the central value represented by the
vertical line.
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Proton

Proton

PDFs

Hadronisation 
[phenomenological]

Parton  
Shower

Hadron-Jets 
Leptons
...

Hard Process 
[calculable]

The simulation chain
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MC simulations  in particle physics

Event Generator 
simulate physics process  

(quantum mechanics: probabilities!)

Detector Simulation 
simulate interaction with  

detector material

Digitisation 
translate interactions with  

detector into realistic signals 

Reconstruction/Analysis 
as for real data

How Monte Carlo simulation works  

•  Numerical process generation based on 
random numbers 

• Method very powerful 	in particle physics 

Event generation programs: 
 

Pythia6, Pythia8, Herwig, Herwig++,   
Sherpa ... 

   Hard partonic subprocess + 
                  fragmentation and hadronisation ...

Detector simulation: 
 
  Geant4  
  Fluka low energy hadron interactions...  

interaction & response  
of all produced particles ...
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Baseline of the simulation process

Typically, we need to generate a continuous variable following some distribution 
       i.e. energy loss of a particle in a given material segment; 
             angle of a photon in the h reference frame for the h →γγ decay

12 32. Passage of particles through matter

where ξ = (K/2) ⟨Z/A⟩ z2(x/β2) MeV for a detector with a thickness x in g cm−2, and
j = 0.200 [26]. ‡ While dE/dx is independent of thickness, ∆p/x scales as a lnx + b. The
density correction δ(βγ) was not included in Landau’s or Vavilov’s work, but it was later
included by Bichsel [26]. The high-energy behavior of δ(βγ) (Eq. (32.6)) is such that

∆p −→
βγ>∼100

ξ

[

ln
2mc2ξ

(!ωp)2
+ j

]

. (32.12)

Thus the Landau-Vavilov most probable energy loss, like the restricted energy loss,
reaches a Fermi plateau. The Bethe dE/dx and Landau-Vavilov-Bichsel ∆p/x in silicon
are shown as a function of muon energy in Fig. 32.6. The energy deposit in the 1600 µm
case is roughly the same as in a 3 mm thick plastic scintillator.
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Figure 32.7: Electronic energy deposit distribution for a 10 GeV muon traversing
1.7 mm of silicon, the stopping power equivalent of about 0.3 cm of PVC
scintillator [1,13,28]. The Landau-Vavilov function (dot-dashed) uses a Rutherford
cross section without atomic binding corrections but with a kinetic energy transfer
limit of Wmax. The solid curve was calculated using Bethe-Fano theory. M0(∆)
and M1(∆) are the cumulative 0th moment (mean number of collisions) and 1st
moment (mean energy loss) in crossing the silicon. (See Sec. 32.2.1. The fwhm of
the Landau-Vavilov function is about 4ξ for detectors of moderate thickness. ∆p
is the most probable energy loss, and ⟨∆⟩ divided by the thickness is the Bethe
⟨dE/dx⟩.

The distribution function for the energy deposit by a 10 GeV muon going through a
detector of about this thickness is shown in Fig. 32.7. In this case the most probable
energy loss is 62% of the mean (M1(⟨∆⟩)/M1(∞)). Folding in experimental resolution

‡ Rossi [2], Talman [27], and others give somewhat different values for j. The most
probable loss is not sensitive to its value.
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dP = f(x, ..)dx
distribution formula

probability to get an x0 value between x and x+dx

h
z

y

x

γ

θ

φ

dP = f(✓,�)d✓d� = sen✓d✓d�

flat distribution in φ 
      non flat in θγ
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Distribution function transformation properties

dP

x

= f(x)dx y = g(x)
x 2 [xa, xb]

How “y” distributes in [g(xa), g(xb)]? 

Because y is a monotonic function of x the probability 
to have y between g(x) and g(x+dx) is equal to the 
probability to have x between x and x+dx

dPy = h(y)dy = h(y)g0(x)dx

h(y)g0(x) = f(x) ) h(y) =
f(x)

g

0(x)
=

f(g�1(y))

g

0(g�1(y))
Ex.: range map 

[0, 1] ! [a, b] y = (b� a)x+ a

f(x) = 1
g

0(x) = b� a h(y) =
1

b� a
y is uniformly distributed in [a,b]

1) software libraries provide basic functions to produce flat distributed random numbers in the interval [0,1] (ex. root TRandom3 
class), they are typically  fast and accurate uniform random numbers generators; 

2) starting from uniform distributed random numbers, it is possible to generate numbers following any distribution using different 
techniques

uniform
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Distribution function transformation properties
Ex. 2: integration method: 

g(x) =
1

R
b

a

f(x0)dx0

Z
x

a

f(x0)dx0
g

0(x) =
f(x)

R b
a f(x0)dx0

y is uniformly distributed: 

   1) generate y flat in [fmin, fmax]; 
   2) compute x = g-1(y), x will be distributed in g-1(fmin), g-1(fmax)

Finding g-1(y) is equivalent to solve the equation:

1
R
b

a

f(x0)dx0

Z
x

a

f(x0)dx0 = y

h(y) =
f(x)

g

0(x)
=

f [g�1(y)]

f [g�1(y)]
·
Z b

a
f(x0)dx0 =

Z b

a
f(x0)dx0
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Hit or miss method.
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f(
x)

xmin xmax
fmax

1) generate x flat in xmin, xmax 
2) generate y flat in 0, fmax 
3) if y < f(x) accept the event, otherwise ignore it 

for a given x in x, x+dx the fraction of accepted events 
is proportional to f(x)dx -> dPx = f(x)dx

1) advantages:    

• can be used for all functions, even non continuous …  
• can be extended to N-dimension (generate x1,x2,…, xn), y accept if y < f(x1, x2, .., xn) 

2)disadvantages      

• can be extremely slow
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points generated uniformly in the square
points accepted only below the curve 

MC generators implement “smart” generation 
techniques to increase efficiencies
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[after T.Sjöstrand]

LHC collisions 
Events

Detector, DAQ 
ATLAS,CMS, LHCb, ALICE

Event Generator 
Pythia8, Pythia, Herwig++

Detector Simulation 
Geant4, ...

Event Reconstruction 
 Athena (ATLAS), …

Physics Analysis 
Root based analysis packages

Produce 
events

Observe/store 
events

Compare 
data & simulation

"Real" "Virtual"

"Quick & Inaccurate"

Comparison between real and simulated events
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Use 
specialised  
programs 

Now fully automatised in 
programs like 
Madgraph5_aMC@NLO  
(from the lagrangian to 
the full simulation)

Process Selection

Resonance Decays

Parton Showers

Multiple Interactions

Beam Remnants

Hadronization

Ordinary Decays

Detector Simulation

ME Generator

ME Expression

SUSY/. . .
spectrum
calculation

Phase Space
Generation

PDF Library

τ Decays

B Decays

Fig. 1: Example how different programs can be combined in the event-generation chain.

information and form factors require special encoding. Even after the event has been handed on to the
detector-simulation program some parts of the generator may be used in the simulation of secondary
interactions and decays.

Several standards have been developed to further this interoperability. The Les Houches Accord
(LHA) for user processes [10] specifies how parton-level information about the hard process and sequen-
tial decays can be encoded and passed on to a general-purpose generator. Originally it was defined in
terms of two Fortran commonblocks, but more recently a standard Les Houches Event File format [11]
offfers a language-independent alternative approach. The Les Houches Accord Parton Density Functions
(LHAPDF) library [12] makes different PDF sets available in a uniform framework. The SUSY Les
Houches Accord (SLHA) [13] allows a standardized transfer of masses, mixings, couplings and branch-
ing ratios from spectrum calculators to other programs. Finally, the HepMC C++ event record [14]
succeeds the HEPEVT Fortran one [15] as a standard way to transfer information from a generator on to
the detector-simulation stage. One of the key building blocks for several of these standards is the PDG
codes for all the most common particles [16], also in some scenarios for physics beyond the Standard
Model.

The 2 → 2 processes we started out with above are about the simplest one can imagine at a hadron
collider. In reality one needs to go on to higher orders. InO(α3

s ) two new kind of graphs enter. One kind
is where one additional parton is present in the final state, i.e. 2 → 3 processes. The cross section for
such processes is almost always divergent when one of the parton energies vanish (soft singularities) or
two partons become collinear (collinear singularities). The other kind is loop graphs, with an additional
intermediate parton not present in the final state, i.e. a correction to the 2 → 2 processes. Strictly
speaking, atO(α3

s ) one picks up the interference between the lowest-order graph and the loop graph, and
this interference has negative divergences that exactly cancel the positive ones above, with only finite
terms surviving. For inclusive event properties such next-to-leading order (NLO) calculations lead to
an improved accuracy of predictions, but for more exclusive studies the mathematical cancellation of
singularities has to be supplemented by more physical techniques, which is far from trivial.

The tricky part of the calculations is the virtual corrections. NLO is now state-of-the-art, with
NNLO still in its infancy. If one is content with Born-level diagrams only, i.e. without any loops, it
is possible to go to quite high orders, with up to something like eight partons in the final state. These

5

Simulation elements
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Process Selection

Resonance Decays

Parton Showers

Multiple Interactions

Beam Remnants

Hadronization

Ordinary Decays

Detector Simulation

ME Generator

ME Expression

SUSY/. . .
spectrum
calculation

Phase Space
Generation

PDF Library

τ Decays

B Decays

Fig. 1: Example how different programs can be combined in the event-generation chain.

information and form factors require special encoding. Even after the event has been handed on to the
detector-simulation program some parts of the generator may be used in the simulation of secondary
interactions and decays.

Several standards have been developed to further this interoperability. The Les Houches Accord
(LHA) for user processes [10] specifies how parton-level information about the hard process and sequen-
tial decays can be encoded and passed on to a general-purpose generator. Originally it was defined in
terms of two Fortran commonblocks, but more recently a standard Les Houches Event File format [11]
offfers a language-independent alternative approach. The Les Houches Accord Parton Density Functions
(LHAPDF) library [12] makes different PDF sets available in a uniform framework. The SUSY Les
Houches Accord (SLHA) [13] allows a standardized transfer of masses, mixings, couplings and branch-
ing ratios from spectrum calculators to other programs. Finally, the HepMC C++ event record [14]
succeeds the HEPEVT Fortran one [15] as a standard way to transfer information from a generator on to
the detector-simulation stage. One of the key building blocks for several of these standards is the PDG
codes for all the most common particles [16], also in some scenarios for physics beyond the Standard
Model.

The 2 → 2 processes we started out with above are about the simplest one can imagine at a hadron
collider. In reality one needs to go on to higher orders. InO(α3

s ) two new kind of graphs enter. One kind
is where one additional parton is present in the final state, i.e. 2 → 3 processes. The cross section for
such processes is almost always divergent when one of the parton energies vanish (soft singularities) or
two partons become collinear (collinear singularities). The other kind is loop graphs, with an additional
intermediate parton not present in the final state, i.e. a correction to the 2 → 2 processes. Strictly
speaking, atO(α3

s ) one picks up the interference between the lowest-order graph and the loop graph, and
this interference has negative divergences that exactly cancel the positive ones above, with only finite
terms surviving. For inclusive event properties such next-to-leading order (NLO) calculations lead to
an improved accuracy of predictions, but for more exclusive studies the mathematical cancellation of
singularities has to be supplemented by more physical techniques, which is far from trivial.

The tricky part of the calculations is the virtual corrections. NLO is now state-of-the-art, with
NNLO still in its infancy. If one is content with Born-level diagrams only, i.e. without any loops, it
is possible to go to quite high orders, with up to something like eight partons in the final state. These

5

[Sjöstrand, arXiv:hep-ph/0611247v1]

Use 
specialised  
programs

Simulation elements
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Geant4: ATLAS Geometry 
[cut-away view]

[geant4.kek.jp/~tanaka/GEANT4/ATLAS_G4_GIFFIG/]

Detailed description of  
detector geometry  
[sensitive & insensitive volumes] 

Tracking of all particles through 
detector material ...

Developed at CERN since 1974 (FORTRAN) 
[Today: Geant4; programmed in C++]

➛ Detector response

GEANT Geometry And Tracking

http://geant4.kek.jp/~tanaka/GEANT4/ATLAS_G4_GIFFIG/
http://geant4.web.cern.ch/geant4/
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Fig. 1: Example how different programs can be combined in the event-generation chain.

information and form factors require special encoding. Even after the event has been handed on to the
detector-simulation program some parts of the generator may be used in the simulation of secondary
interactions and decays.

Several standards have been developed to further this interoperability. The Les Houches Accord
(LHA) for user processes [10] specifies how parton-level information about the hard process and sequen-
tial decays can be encoded and passed on to a general-purpose generator. Originally it was defined in
terms of two Fortran commonblocks, but more recently a standard Les Houches Event File format [11]
offfers a language-independent alternative approach. The Les Houches Accord Parton Density Functions
(LHAPDF) library [12] makes different PDF sets available in a uniform framework. The SUSY Les
Houches Accord (SLHA) [13] allows a standardized transfer of masses, mixings, couplings and branch-
ing ratios from spectrum calculators to other programs. Finally, the HepMC C++ event record [14]
succeeds the HEPEVT Fortran one [15] as a standard way to transfer information from a generator on to
the detector-simulation stage. One of the key building blocks for several of these standards is the PDG
codes for all the most common particles [16], also in some scenarios for physics beyond the Standard
Model.

The 2 → 2 processes we started out with above are about the simplest one can imagine at a hadron
collider. In reality one needs to go on to higher orders. InO(α3

s ) two new kind of graphs enter. One kind
is where one additional parton is present in the final state, i.e. 2 → 3 processes. The cross section for
such processes is almost always divergent when one of the parton energies vanish (soft singularities) or
two partons become collinear (collinear singularities). The other kind is loop graphs, with an additional
intermediate parton not present in the final state, i.e. a correction to the 2 → 2 processes. Strictly
speaking, atO(α3

s ) one picks up the interference between the lowest-order graph and the loop graph, and
this interference has negative divergences that exactly cancel the positive ones above, with only finite
terms surviving. For inclusive event properties such next-to-leading order (NLO) calculations lead to
an improved accuracy of predictions, but for more exclusive studies the mathematical cancellation of
singularities has to be supplemented by more physical techniques, which is far from trivial.

The tricky part of the calculations is the virtual corrections. NLO is now state-of-the-art, with
NNLO still in its infancy. If one is content with Born-level diagrams only, i.e. without any loops, it
is possible to go to quite high orders, with up to something like eight partons in the final state. These

5

[Sjöstrand, arXiv:hep-ph/0611247v1]

Use 
specialised  
programs
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An event with 4 jets @ LHC 

Strong interactions:  

	 No free Quarks 
	 Expect jets 
	 i.e. bundles of particles at high energies 
	 [hadron pT range limited w.r.t. initial parton] 

First observation of jets  
in e+e– collisions @ ECMS > 6 GeV  
[SPEAR, SLAC, 1975] 

Later also observed in  
hadron-hadron collisions  
[e.g. @ CERN ISR]

Goal: Infer parton properties from jet properties  
[need to calculate and/or model fragmentation & hadronisation process]
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Incoming Proton

Incoming  
Proton

[T. Gleisberg et al., JHEP02 (2004) 056]

Hadronisation & 
Decay

Parton Shower

Hard Process

Underlying 
Event
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Pure matrix element (ME) simulation: 
	 MC integration of cross section & PDFs, no hadronisation  
	 (recall: cross section = |matrix element|2 ⊗ phase space) 

	 Useful for theoretical studies, no exclusive events generated 
	 [Example: MCFM (http://mcfm.fnal.gov); many LHC processes up to NLO,  
        HNNLO (http://theory.fi.infn.it/grazzini/codes.html) Higgs production at NNLO] 

Event generators: 
	 Combination of ME and parton showers ... 

	 Typical: generator for leading order ME  
	 combined with leading log (LL) parton shower MC  (see later) 

	 Exclusive events ➛ useful for experimentalists ...

http://mcfm.fnal.gov
http://theory.fi.infn.it/grazzini/codes.html
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(2 ➛ n) = ... 
... = (2 ➛ 2) ⊕ ISR ⊕ FSR

FSR: Final state radiation 
Q2 ~ m2 > 0 decreasing 
[time-like shower]

ISR: Initial state radiation 
Q2 ~ –m2 > 0 increasing 
[space-like shower]

quark

quark

quark

quark

ISR

FSR

2 ➛ 2

Hard process [2 ➛ 2]:

Shower evolution:  

Viewed as probabilistic process, which occurs with unit total probability;  
cross section not directly affected; only indirectly via changed event shape.

Calculable

[Sjöstrand, arXiv:hep-ph/0611247v1]
Parton showers

A realistic simulation needs many particles in the final state, it is quite difficult (sometimes impossible) to 
compute a pp (2) → many particles process
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0

1

2

3

1

2

3

e+e– ➛ qqg

Cross Section:

Rewrite for x2 ➛ 1:  
[qg collinear limit]

[mq = 0; see e.g. Halzen/Martin]

Splitting Function  
Pq➛qg

q
q

g

Q2  = m132

Q2 = m232

from pT  
balance

[Sjöstrand, arXiv:hep-ph/0611247v1]
Parton showers

0

γ γ

Cross section has large contributions for x1, x2 → 1

m

2
13 ⇠ 2E1E2(1� cos✓) collinear limit

dx2 = �dQ

2

E

2
cm

x2 ! 1 ) m

2
13 ! 0 ) ✓ ! 0

b

Eg = E3 = (1� z)EbEq = E1 = zEb

z ! 1 ) Eg ! 0 soft divergence
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Splitting probability determined by splitting functions Pq➛qg

Analogous splitting functions used in PDF evolution 

z	 : fractional momentum of radiated parton 
nf	 : number of quark flavours

Iteration yields 
parton shower ...

Need soft/collinear cut-offs to 
avoid non-perturbative regions ... 
[divergencies!] 

Details model-dependent
e.g.	 Q > m0 = min(mij) ≈ 1 GeV, 
	 	 zmin(E,Q) < z < zmax(E,Q) or 
	 	 p⊥ > p⊥min ≈ 0.5 GeV

[Sjöstrand, arXiv:hep-ph/0611247v1]

In NLO calculations soft and 
collinear divergencies cancelled 
by virtual contributions: they 
persist in LO calculations. 

real
virtual
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➛

Conservation of total probability:

Time evolution:

e–x ≈ 1– x 

[Taylor]

[Sjöstrand, arXiv:hep-ph/0611247v1]

Fig. 4: A cascade of successive branchings.

configurations, however. A further study of the γ∗/Z0 → qqg example shows that the simple sum of
the q → qg and q → qg branchings reproduce the full matrix elements, with interference included, to
better than a factor of 2 over the full phase space. This is one of the simpler cases, and of course one
should expect the accuracy to be worse for more complicated final states. Nevertheless, it is meaningful
to use the shower over the whole strictly-ordered, but not necessarily strongly-ordered, region Q2

1 >
Q2

2 > Q2
3 . . . to obtain an approximate answer for multiparton topologies for which the complete matrix

elements would be too lengthy.
With the parton-shower approach, the big probability for one branching q → qg turns into a big

probability for several successive branchings. Nevertheless we did not tame the fact that probabilities
blow up in the soft and collinear regions. For sure, perturbation theory will cease to be meaningful at
so small Q2 scales that αs(Q2) diverges; there confimenent effects and hadronization phenomena take
over. Typically therefore some lower cutoff at around 1 GeV is used to regulate both soft and collinear
divergences: below such a scale no further branchings are simulated. Whatever perturbative effects may
remain are effectively pushed into the parameters of the nonperturbative framework. That way we avoid
the singularities, but we can still have “probabilities” well above unity, which does not seem to make
sense.

This brings us to the second big concept of this section, the Sudakov (form) factor [18]. In the
context of particle physics it has a specific meaning related to the properties of the loop diagrams, but
more generally we can just see it as a consequence of the conservation of total probability

P(nothing happens) = 1 − P(something happens) , (14)

where the former is multiplicative in a time-evolution sense:

Pnothing(0 < t ≤ T ) = Pnothing(0 < t ≤ T1) Pnothing(T1 < t ≤ T ) . (15)

Now subdivide further, with Ti = (i/n)T , 0 ≤ i ≤ n:

Pnothing(0 < t ≤ T ) = lim
n→∞

n−1
∏

i=0

Pnothing(Ti < t ≤ Ti+1)

= lim
n→∞

n−1
∏

i=0

(1 − Psomething(Ti < t ≤ Ti+1))

= exp

(

− lim
n→∞

n−1
∑

i=0

Psomething(Ti < t ≤ Ti+1)

)

9

Parton shower evolution 1

Fig. 4: A cascade of successive branchings.

configurations, however. A further study of the γ∗/Z0 → qqg example shows that the simple sum of
the q → qg and q → qg branchings reproduce the full matrix elements, with interference included, to
better than a factor of 2 over the full phase space. This is one of the simpler cases, and of course one
should expect the accuracy to be worse for more complicated final states. Nevertheless, it is meaningful
to use the shower over the whole strictly-ordered, but not necessarily strongly-ordered, region Q2

1 >
Q2

2 > Q2
3 . . . to obtain an approximate answer for multiparton topologies for which the complete matrix

elements would be too lengthy.
With the parton-shower approach, the big probability for one branching q → qg turns into a big

probability for several successive branchings. Nevertheless we did not tame the fact that probabilities
blow up in the soft and collinear regions. For sure, perturbation theory will cease to be meaningful at
so small Q2 scales that αs(Q2) diverges; there confimenent effects and hadronization phenomena take
over. Typically therefore some lower cutoff at around 1 GeV is used to regulate both soft and collinear
divergences: below such a scale no further branchings are simulated. Whatever perturbative effects may
remain are effectively pushed into the parameters of the nonperturbative framework. That way we avoid
the singularities, but we can still have “probabilities” well above unity, which does not seem to make
sense.

This brings us to the second big concept of this section, the Sudakov (form) factor [18]. In the
context of particle physics it has a specific meaning related to the properties of the loop diagrams, but
more generally we can just see it as a consequence of the conservation of total probability

P(nothing happens) = 1 − P(something happens) , (14)

where the former is multiplicative in a time-evolution sense:

Pnothing(0 < t ≤ T ) = Pnothing(0 < t ≤ T1) Pnothing(T1 < t ≤ T ) . (15)

Now subdivide further, with Ti = (i/n)T , 0 ≤ i ≤ n:

Pnothing(0 < t ≤ T ) = lim
n→∞

n−1
∏

i=0

Pnothing(Ti < t ≤ Ti+1)

= lim
n→∞

n−1
∏

i=0

(1 − Psomething(Ti < t ≤ Ti+1))

= exp

(

− lim
n→∞

n−1
∑

i=0

Psomething(Ti < t ≤ Ti+1)

)

9

Fig. 4: A cascade of successive branchings.

configurations, however. A further study of the γ∗/Z0 → qqg example shows that the simple sum of
the q → qg and q → qg branchings reproduce the full matrix elements, with interference included, to
better than a factor of 2 over the full phase space. This is one of the simpler cases, and of course one
should expect the accuracy to be worse for more complicated final states. Nevertheless, it is meaningful
to use the shower over the whole strictly-ordered, but not necessarily strongly-ordered, region Q2

1 >
Q2

2 > Q2
3 . . . to obtain an approximate answer for multiparton topologies for which the complete matrix

elements would be too lengthy.
With the parton-shower approach, the big probability for one branching q → qg turns into a big

probability for several successive branchings. Nevertheless we did not tame the fact that probabilities
blow up in the soft and collinear regions. For sure, perturbation theory will cease to be meaningful at
so small Q2 scales that αs(Q2) diverges; there confimenent effects and hadronization phenomena take
over. Typically therefore some lower cutoff at around 1 GeV is used to regulate both soft and collinear
divergences: below such a scale no further branchings are simulated. Whatever perturbative effects may
remain are effectively pushed into the parameters of the nonperturbative framework. That way we avoid
the singularities, but we can still have “probabilities” well above unity, which does not seem to make
sense.

This brings us to the second big concept of this section, the Sudakov (form) factor [18]. In the
context of particle physics it has a specific meaning related to the properties of the loop diagrams, but
more generally we can just see it as a consequence of the conservation of total probability

P(nothing happens) = 1 − P(something happens) , (14)

where the former is multiplicative in a time-evolution sense:

Pnothing(0 < t ≤ T ) = Pnothing(0 < t ≤ T1) Pnothing(T1 < t ≤ T ) . (15)

Now subdivide further, with Ti = (i/n)T , 0 ≤ i ≤ n:

Pnothing(0 < t ≤ T ) = lim
n→∞

n−1
∏

i=0

Pnothing(Ti < t ≤ Ti+1)

= lim
n→∞

n−1
∏

i=0

(1 − Psomething(Ti < t ≤ Ti+1))

= exp

(

− lim
n→∞

n−1
∑

i=0

Psomething(Ti < t ≤ Ti+1)

)

9= exp

(

−
∫ T

0

dPsomething(t)

dt
dt

)

=⇒ dPfirst(T ) = dPsomething(T ) exp

(

−
∫ T

0

dPsomething(t)

dt
dt

)

. (16)

That is, the probability for something to happen for the first time at time T is the naive probability
for this to happen, times the probability that this did not yet happen. As such it applies to a host of
situations. Take the example of football (relevant at the time of the school). Assume that players are
equally energetic and skillful from the first minute of the match to the last. Then the chances of scoring a
goal is uniform in time, but the probability of scoring the first goal of the match is bigger at the beginning,
because later on any goal could well be the second or third.

In physics a common example is that of radioactive decay. If the number of undecayed radioactive
nuclei at time t is N (t), with initial number N0 at time t = 0, then a naive ansatz would be dN/dt =
−cN0, where c parametrizes the decay likelihood per unit of time. This equation has the solutionN (t) =
N0(1 − ct), which becomes negative for t > 1/c, because by then the probability for having had a
decay exceeds unity. So what we made wrong was not to take into account that only an undecayed
nucleus can decay, i.e. that the equation ought to have been dN/dt = −cN (t) with the solution N (t) =
N0 exp(−ct). This is a nicely well-behaved expression, where the total probability for decays goes to
unity only for t → ∞. If c had not been a constant but varied in time, c = c(t), it is simple to show that
the solution instead would have become

N (t) = N0 exp

(

−
∫ t

0
c(t′) dt

)

=⇒ dN
dt

= −c(t)N0 exp

(

−
∫ t

0
c(t′) dt

)

. (17)

For a shower the relevant “time” scale is something like 1/Q, by the Heisenberg uncertainty
principle. That is, instead of evolving to later and later times we evolve to smaller and smaller Q2.
Thereby the DGLAP eq. (10) becomes

dPa→bc =
αs

2π

dQ2

Q2
Pa→bc(z) dz exp

⎛

⎝−
∑

b,c

∫ Q2
max

Q2

dQ′2

Q′2

∫

αs

2π
Pa→bc(z

′) dz′

⎞

⎠ , (18)

where the exponent (or simple variants thereof) is the Sudakov factor. As for the radioactive-decay
example above, the inclusion of a Sudakov ensures that the total probability for a parton to branch never
exceeds unity. Then you may have sequential radioactive decay chains, and you may have sequential
parton branchings, but that is another story.

It is a bit deeper than that, however. Just as the standard branching expressions can be viewed
as approximations to the complete matrix elements for real emission, the Sudakov is an approximation
to the complete virtual corrections from loop graphs. The divergences in real and virtual emissions, so
strange-looking in the matrix-element language, here naturally combine to provide a physical answer
everywhere. What is not described in the shower, of course, is the non-universal finite parts of the real
and virtual matrix elements.

The implementation of a cascade evolution now makes sense. Starting from a simple qq system
the q and q are individually evolved downwards from some initialQ2

max until they branch. At a branching
the mother parton disappears and is replaced by two daughter partons, which in their turn are evolved
downwards inQ2 and may branch. Thereby the number of partons increases, until the lower cutoff scale
is reached.

This does not mean that everything is uniquely specified. In particular, the choice of evolving in
Q2 = m2 is by no means obvious. Any alternative variable P 2 = f(z)Q2 would work equally well,
since dP 2/P 2 = dQ2/Q2. Alternative evolution variables therefore include the transverse momentum,
p2
⊥ ≈ z(1 − z)m2, and the energy-weighted emission angle E2θ2 ≈ m2/(z(1 − z)).
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Instead of evolving to later and later times  
need to evolve to smaller and smaller Q2 ... 
[Heisenberg: Q ~ 1/t]

Probability to radiated 
with virtuality Q2

No radiation for higher 
virtualities i.e. for Q2 ... Q2max

Sudakov 
Form Factor

Note that ∑b,c ∫∫ dPa→bc ≡ 1...  
[Convenient for Monte Carlo]

Sudakov form factor ...  
...	provides “time” ordering of shower ... 
	 [lower Q2 ⇔ longer times]

...	regulates singularity for first emission ... 
	 But in the limit of repeated soft emissions q → qg (but no g → gg)  
	 one obtains the same inclusive Q emission spectrum as for ME,  
	 i.e. divergent ME spectrum ⇔ infinite number of PS emissions

[Sjöstrand, arXiv:hep-ph/0611247v1]
Parton shower evolution 2
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where the exponent (or simple variants thereof) is the Sudakov factor. As for the radioactive-decay
example above, the inclusion of a Sudakov ensures that the total probability for a parton to branch never
exceeds unity. Then you may have sequential radioactive decay chains, and you may have sequential
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the mother parton disappears and is replaced by two daughter partons, which in their turn are evolved
downwards inQ2 and may branch. Thereby the number of partons increases, until the lower cutoff scale
is reached.

This does not mean that everything is uniquely specified. In particular, the choice of evolving in
Q2 = m2 is by no means obvious. Any alternative variable P 2 = f(z)Q2 would work equally well,
since dP 2/P 2 = dQ2/Q2. Alternative evolution variables therefore include the transverse momentum,
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⊥ ≈ z(1 − z)m2, and the energy-weighted emission angle E2θ2 ≈ m2/(z(1 − z)).

10



B. Di Micco Università degli Studi di Roma Tre

Sudakov picture of parton showers

Basic algorithm: Markov chain 
[each step requires only knowledge only of previous step]

  (i) 	 Start with virtuality Q1 and momentum fraction x1

 (ii) 	 Generate target virtuality Q2 with random number RT uniform distributed in [0,1]

using:

  	 [probability to evolve from t1 to t2 without radiation]

 (iv) 	 Generate random azimuthal angle Φ flat distributed

Probability to not have Qx > Q2

solve the equation for Q2

0

1

2

3
Q2  = m132

γ

b

(iii) Q2 known (x2 known), need to compute x1~z

Rz =

R z
0 P (z0)dz0
R 1
0 P (z0)dz0 Rz 2 [0, 1]

flat distributed

Process ends when partons are below threshold (pT,Q)
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Parton shower and logarithmic resummation 

real

↵s(Q1)

Q1 Q1

Q2↵s(Q1)

↵s(Q2)

Q1 Q2

↵s(Q1)

↵s(Q2)

↵s(Qn)

Qn↵s ↵2
s

↵n
sIf αs is small higher contributions are power suppressed, but…

9. Quantum chromodynamics 39

reasonably stable world average value of αs(M2
Z), as well as a clear signature and proof of

the energy dependence of αs, in full agreement with the QCD prediction of Asymptotic
Freedom. This is demonstrated in Fig. 9.3, where results of αs(Q2) obtained at discrete
energy scales Q, now also including those based just on NLO QCD, are summarized.
Thanks to the results from the Tevatron and from the LHC, the energy scales at which
αs is determined now extend up to more than 1 TeV♦.

QCD αs(Mz) = 0.1181 ± 0.0013

pp –> jets
e.w. precision fits (NNLO)  

0.1

0.2

0.3

αs (Q
2)

1 10 100
Q [GeV]

Heavy Quarkonia (NLO)

e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

October 2015

τ decays (N3LO)

1000

 (NLO

pp –> tt (NNLO)

)
(–)

Figure 9.3: Summary of measurements of αs as a function of the energy scale Q.
The respective degree of QCD perturbation theory used in the extraction of αs is
indicated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to leading
order; res. NNLO: NNLO matched with resummed next-to-leading logs; N3LO:
next-to-NNLO).
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♦ We note, however, that in many such studies, like those based on exclusive states of
jet multiplicities, the relevant energy scale of the measurement is not uniquely defined.
For instance, in studies of the ratio of 3- to 2-jet cross sections at the LHC, the relevant
scale was taken to be the average of the transverse momenta of the two leading jets [379],
but could alternatively have been chosen to be the transverse momentum of the 3rd jet.
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αs increases at small Q2

↵s(Q1) + ↵s(Q1)↵s(Q2) + ...+ ↵s(Q1) · ... · ↵s(Qn)

↵s(Qn) ⇠ ↵s(Q1)ln(Q1/Qn)

⇠ [↵s(Q1)ln(Q1)]
2 ⇠ [↵s(Q1)ln(Q1)]

n

if ↵s(Q1)ln(Q1)
is large, the expansion is broken, 
PS allow to sum up all the  
large contribution [Leading Log 
resummation]
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Three main approaches to showering in use:

Two are based on the standard shower language  
of a ➛ bc successive branchings:

HERWIG, HERWIG++	 : Q2 ≈ E2(1 − cosθ) ≈ E2θ2/2  
PYTHIA, 8 (basic) 	 : Q2 = m2 (timelike) or = −m2 (spacelike) 
PYTHIA6, 8 (pT oredered) : mixture: collinear splitting but di-pole kinematic

One is based on a picture of  
dipole emission:

Ariadne	 : Q2 = p2
⊥; FSR mainly, ISR is primitive ...

[from G.Herten]

Parton shower ordering

= exp

(

−
∫ T

0

dPsomething(t)

dt
dt

)

=⇒ dPfirst(T ) = dPsomething(T ) exp

(

−
∫ T

0

dPsomething(t)

dt
dt

)

. (16)

That is, the probability for something to happen for the first time at time T is the naive probability
for this to happen, times the probability that this did not yet happen. As such it applies to a host of
situations. Take the example of football (relevant at the time of the school). Assume that players are
equally energetic and skillful from the first minute of the match to the last. Then the chances of scoring a
goal is uniform in time, but the probability of scoring the first goal of the match is bigger at the beginning,
because later on any goal could well be the second or third.

In physics a common example is that of radioactive decay. If the number of undecayed radioactive
nuclei at time t is N (t), with initial number N0 at time t = 0, then a naive ansatz would be dN/dt =
−cN0, where c parametrizes the decay likelihood per unit of time. This equation has the solutionN (t) =
N0(1 − ct), which becomes negative for t > 1/c, because by then the probability for having had a
decay exceeds unity. So what we made wrong was not to take into account that only an undecayed
nucleus can decay, i.e. that the equation ought to have been dN/dt = −cN (t) with the solution N (t) =
N0 exp(−ct). This is a nicely well-behaved expression, where the total probability for decays goes to
unity only for t → ∞. If c had not been a constant but varied in time, c = c(t), it is simple to show that
the solution instead would have become

N (t) = N0 exp

(

−
∫ t

0
c(t′) dt

)

=⇒ dN
dt

= −c(t)N0 exp

(

−
∫ t

0
c(t′) dt

)

. (17)

For a shower the relevant “time” scale is something like 1/Q, by the Heisenberg uncertainty
principle. That is, instead of evolving to later and later times we evolve to smaller and smaller Q2.
Thereby the DGLAP eq. (10) becomes

dPa→bc =
αs

2π

dQ2

Q2
Pa→bc(z) dz exp

⎛

⎝−
∑

b,c

∫ Q2
max

Q2

dQ′2

Q′2

∫

αs

2π
Pa→bc(z

′) dz′

⎞

⎠ , (18)

where the exponent (or simple variants thereof) is the Sudakov factor. As for the radioactive-decay
example above, the inclusion of a Sudakov ensures that the total probability for a parton to branch never
exceeds unity. Then you may have sequential radioactive decay chains, and you may have sequential
parton branchings, but that is another story.

It is a bit deeper than that, however. Just as the standard branching expressions can be viewed
as approximations to the complete matrix elements for real emission, the Sudakov is an approximation
to the complete virtual corrections from loop graphs. The divergences in real and virtual emissions, so
strange-looking in the matrix-element language, here naturally combine to provide a physical answer
everywhere. What is not described in the shower, of course, is the non-universal finite parts of the real
and virtual matrix elements.

The implementation of a cascade evolution now makes sense. Starting from a simple qq system
the q and q are individually evolved downwards from some initialQ2

max until they branch. At a branching
the mother parton disappears and is replaced by two daughter partons, which in their turn are evolved
downwards inQ2 and may branch. Thereby the number of partons increases, until the lower cutoff scale
is reached.

This does not mean that everything is uniquely specified. In particular, the choice of evolving in
Q2 = m2 is by no means obvious. Any alternative variable P 2 = f(z)Q2 would work equally well,
since dP 2/P 2 = dQ2/Q2. Alternative evolution variables therefore include the transverse momentum,
p2
⊥ ≈ z(1 − z)m2, and the energy-weighted emission angle E2θ2 ≈ m2/(z(1 − z)).
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where the exponent (or simple variants thereof) is the Sudakov factor. As for the radioactive-decay
example above, the inclusion of a Sudakov ensures that the total probability for a parton to branch never
exceeds unity. Then you may have sequential radioactive decay chains, and you may have sequential
parton branchings, but that is another story.

It is a bit deeper than that, however. Just as the standard branching expressions can be viewed
as approximations to the complete matrix elements for real emission, the Sudakov is an approximation
to the complete virtual corrections from loop graphs. The divergences in real and virtual emissions, so
strange-looking in the matrix-element language, here naturally combine to provide a physical answer
everywhere. What is not described in the shower, of course, is the non-universal finite parts of the real
and virtual matrix elements.

The implementation of a cascade evolution now makes sense. Starting from a simple qq system
the q and q are individually evolved downwards from some initialQ2

max until they branch. At a branching
the mother parton disappears and is replaced by two daughter partons, which in their turn are evolved
downwards inQ2 and may branch. Thereby the number of partons increases, until the lower cutoff scale
is reached.

This does not mean that everything is uniquely specified. In particular, the choice of evolving in
Q2 = m2 is by no means obvious. Any alternative variable P 2 = f(z)Q2 would work equally well,
since dP 2/P 2 = dQ2/Q2. Alternative evolution variables therefore include the transverse momentum,
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⊥ ≈ z(1 − z)m2, and the energy-weighted emission angle E2θ2 ≈ m2/(z(1 − z)).
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pT ordered showers angular ordered showers

consider the full recoil and not only the branching
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HERWIG/++: Q2 ∼ E2θ2

	PYTHIA: Q2 = m2 ARIADNE/Pythia8: Q2 = p2
⊥

Large mass first 
[“hardness” ordered] 

 Covers phase space  
ME merging simple  

g ➛ qq simple  
not Lorentz invariant  

no stop/restart 

ISR: m2 ➛ −m2

Large angle first 
[not “hardness” ordered] 

 Gaps in coverage  
ME merging messy  

g ➛ qq simple  
not Lorentz invariant  

no stop/restart 

ISR: θ ➛ θ

Large p⊥ first 
[“hardness” ordered] 

 Covers phase space  
ME merging simple  

g ➛ qq messy  
Lorentz invariant  
can stop/restart 

ISR: complicated

[from G.Herten]
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[from G.Herten]

Color coherenceCoherence

QED: Chudakov e↵ect (mid-fifties)

QCD: colour coherence for soft gluon emission

solved by • requiring emission angles to be decreasing
or • requiring transverse momenta to be decreasing

Torbjörn Sjöstrand Monte Carlo 1 slide 39/1

1. soft gluons see the pair of split 
gluons as a whole, color 
screening reduce their emission 

2. angular ordered and pT ordered 
PS reproduce the correct color 
coherence 

3. Pythia Q2 needs aposteriori 
corrections

g1→g2g3 

gs
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Figure 4. The four-jet differential cross section as a function of leading jet pT (p(1)T ), compared
to different theoretical predictions: Pythia, Herwig++ and MadGraph+Pythia (top), and
HEJ, NJet/Sherpa and BlackHat/Sherpa (bottom). For better comparison, the predictions
are multiplied by the factors indicated in the legend. In each figure, the top panel shows the
full spectra and the bottom panel the ratios of the different predictions to the data. The solid
band represents the total experimental systematic uncertainty centred at one. The patterned band
represents the NLO scale and PDF uncertainties calculated from NJet/Sherpa centred at the
nominal NJet/Sherpa values. The scale uncertainties for HEJ (not drawn) are typically +50%

−30%.
The ratio curves are formed by the central values with vertical uncertainty lines resulting from
the propagation of the statistical uncertainties of the predictions and those of the unfolded data
spectrum.
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4jets cross section: pT(1) > pT(2) > pT(3)  > pT(4) 
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Figure 7. Unfolded four-jet differential cross section as a function of p(4)T , compared to different
theoretical predictions. The other details are as for figure 4.
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Figure 9. Unfolded four-jet differential cross section as a function of m4j, compared to different
theoretical predictions. The other details are as for figure 4. Some points in the ratio curves for
NJet/Sherpa fall outside the y-axis range, and thus the NLO uncertainty is shown partially, or
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theoretical predictions. The other details are as for figure 4.
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Example of processes implemented in Pythia6
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Many specialized processes already available in Pythia8/Herwig++ 
but, processes usually only implemented in lowest non-trivial order ...

Need external programs that ...

1. include higher order loop corrections or, alternatively, do kinematic dependent rescaling 

3. allow matching of higher order ME generators [otherwise need to trust parton shower description …] 

5. provide correct spin correlations often absent in PS ...[e.g. top produced unpolarized, while t ➛ bW ➛ 
blv decay correct] 

7. simulate newly available physics scenarios …[appear quickly; need for many specialised generators] 

Les Houches Accord ...
Specifies how parton-level information about the hard process and 
sequential decays can be encoded and passed on to a general-purpose 
generator. 

Les Houches: regular annual meeting between theoreticians and 
experimentalists on MC generator developments.

Process simulation
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	 AcerMC	:	 	 ttbb, .sinlr top 
	 ALPGEN	 : 	W/Z + ≤ 6j,  
	 	 	 	 	   	nW + mZ + kH + ≤ 3j, ...  
	 AMEGIC++	 : 	generic LO  
	 CompHEP	 : 	generic LO  
	 GRACE	 	 : 	generic LO 
	 [+Bases/Spring] 	 [+ some NLO loops] 
	 GR@PPA	 : 	bbbb  
	 MadCUP	 : 	W/Z+ ≤ 3j, ttbb  
	 HELAS &	 : 	generic LO  
	 MadGraph 	   
	 MCFM	 	 : 	NLO W/Z+ ≤ 2j, 
	 	 	 	 	 	 	 WZ, WH, H+ ≤ 1j  
	 O’Mega &	 : 	generic LO  
	 WHIZARD 
	 VECBOS	 : 	W/Z+ ≤ 4j 
    HRES          : Higgs boson production 
                         @NNLO 
   DYNNLO      : W/Z production @NNLO

Specialized Generator 
[➛ Hard Process]

Les Houches Interface

Herwig, Pythia, Herwig++/7, 
Pythia8

[Resonance Decays] 
Parton Showers 
Underlying Event 
Hadronization 
Ordinary Decays

Specialised Generators [some examples] 
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LO ME for hard processes  
[2→1 or 2→2]

[F. Maltoni]

Herwig++/
Pythia6/8

1) 2)

Type I	: 	Leading order matrix element & leading log parton shower  
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LO ME for hard processes  
[2→1 or 2→2]

[F. Maltoni]

• Parton Shower:  attaches gluons at each leg. 

•  only in soft-collinear approxmation  

• typically underestimate large angle/hard emission 

• 1) or 2) at ME (different generations, different accuracy: cannot be combined

Herwig++/
Pythia6/8

1) 2)

Type I	: 	Leading order matrix element & leading log parton shower  
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LO ME for hard processes  
[2→1 or 2→2]

[F. Maltoni]

• Type 1 can be improved using 1) + 2) 

• use ME calculation for hard/large angle jets 

• but needs to remove double-counting: merging (CKKW, MLM) 

• very good description of high jet multiplicity kinematics

Herwig++/
Pythia6/8

1) 2)from PS
from ME

Type 2	 : 	Leading order matrix element & leading log parton shower 
+ merging
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Merging @LO

MLM matching (simplified)

1) define matching cuts: 
for example pTJ > 20 GeV, ΔR=0.4 
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Merging @LO

MLM matching (simplified)
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for example pTJ > 20 GeV, ΔR=0.4 

2) generate ME with 1, 2, …n jets 

1 parton 2 partons
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Merging @LO

MLM matching (simplified)

1) define matching cuts: 
for example pTJ > 20 GeV, ΔR=0.4 

2) generate ME with 1, 2, …n jets 

3) shower all events  

1 parton 2 partons
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Merging @LO

MLM matching (simplified)

1) define matching cuts: 
for example pTJ > 20 GeV, ΔR=0.4 

2) generate ME with 1, 2, …n jets 

3) shower all events  

4) select only events where jets above 
the pT threshold  match with final 
partons

1 parton 2 partons
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Merging @LO

MLM matching (simplified)

1) define matching cuts: 
for example pTJ > 20 GeV, ΔR=0.4 

2) generate ME with 1, 2, …n jets 

3) shower all events  

4) select only events where jets above 
the pT threshold  match with final 
partons

1 parton 2 partons

Consequences: 
  all jets with pT > 20 GeV and ΔR>0.4 to other jets come from ME 
  collinear and soft jets come from PS 
  Use each of them where they are best.
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Fig. 6 Cross section for the production of W + jets as a function of
the exclusive jet multiplicity. For the data, the statistical uncertainties
are shown by the vertical bars, and the combined statistical and system-
atic uncertainties are shown by the black-hashed regions. The data are
compared to predictions from BlackHat+SHERPA, HEJ, ALPGEN,

SHERPA and MEPS@NLO. The left-hand plot shows the differential
cross sections and the right-hand plot shows the ratios of the predic-
tions to the data. The theoretical uncertainties on the predictions are
described in Sect. 7

Table 5 Cross section σ (W → ℓν + ≥ Njets) as a function of inclusive
jet multiplicity in the phase space defined in the text

Njets σ (W → ℓν + ≥ Njets) [pb]

≥0 [ 4.849 ± 0.001 (stat.) ±0.05 (syst.) ±0.092 (lumi.) ] × 103

≥1 [ 4.938 ± 0.005 (stat.) ±0.43 (syst.) ±0.097 (lumi.) ] × 102

≥2 [ 1.117 ± 0.002 (stat.) ±0.12 (syst.) ±0.023 (lumi.) ] × 102

≥3 [ 2.182 ± 0.010 (stat.) ±0.31 (syst.) ±0.047 (lumi.) ] × 101

≥4 [ 4.241 ± 0.056 (stat.) ±0.88 (syst.) ±0.095 (lumi.) ] × 100

≥5 [ 0.877 ± 0.032 (stat.) ±0.30 (syst.) ±0.020 (lumi.) ] × 100

≥6 [ 0.199 ± 0.019 (stat.) ±0.11 (syst.) ±0.004 (lumi.) ] × 100

≥7 [ 0.410 ± 0.068 (stat.) ±0.31 (syst.) ±0.009 (lumi.) ] × 10−1

shown for the combined fiducial phase space listed in Table 2.
The data are in good agreement with the predictions from
BlackHat+SHERPA for all jet multiplicities up to five jets;
above this the experimental uncertainties become large. The
MEPS@NLO and HEJ predictions also describe the jet mul-
tiplicity cross sections with a similar level of agreement. The
ALPGEN and SHERPA predictions show different trends for
jet multiplicities greater than four jets; however, both are in
agreement with the data within the experimental systematic
uncertainties.

In the following figures, the differential cross sections for
the theoretical predictions have been scaled to the measured
W + jets cross section in the corresponding jet multiplicity

Table 6 Cross section σ (W → ℓν + Njets) as a function of exclusive
jet multiplicity in the phase space defined in the text

Njets σ (W → ℓν + Njets) [pb]

= 0 [ 4.343 ± 0.001 (stat.) ±0.06 (syst.) ±0.081 (lumi.) ] × 103

= 1 [ 3.807 ± 0.005 (stat.) ±0.32 (syst.) ±0.073 (lumi.) ] × 102

= 2 [ 8.963 ± 0.016 (stat.) ±0.87 (syst.) ±0.179 (lumi.) ] × 101

= 3 [ 1.755 ± 0.009 (stat.) ±0.23 (syst.) ±0.037 (lumi.) ] × 101

= 4 [ 3.374 ± 0.048 (stat.) ±0.61 (syst.) ±0.075 (lumi.) ] × 100

= 5 [ 0.685 ± 0.027 (stat.) ±0.20 (syst.) ±0.016 (lumi.) ] × 100

= 6 [ 0.160 ± 0.018 (stat.) ±0.09 (syst.) ±0.004 (lumi.) ] × 100

= 7 [ 0.286 ± 0.056 (stat.) ±0.24 (syst.) ±0.006 (lumi.) ] × 10−1

bin shown in Figs. 5 and 6 for inclusive and exclusive cross
sections respectively, so that the shapes of the distributions
can be compared. The factors applied to the theory predic-
tions are summarised in Appendix A. The cross sections for
all distributions shown in the paper are available in HepData.4

8.2 Jet transverse momenta and rapidities

The differential cross sections as a function of the leading-
jet transverse momentum are shown in Fig. 7 for the case

4 http://hepdata.cedar.ac.uk/.
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the exclusive jet multiplicity. For the data, the statistical uncertainties
are shown by the vertical bars, and the combined statistical and system-
atic uncertainties are shown by the black-hashed regions. The data are
compared to predictions from BlackHat+SHERPA, HEJ, ALPGEN,

SHERPA and MEPS@NLO. The left-hand plot shows the differential
cross sections and the right-hand plot shows the ratios of the predic-
tions to the data. The theoretical uncertainties on the predictions are
described in Sect. 7

Table 5 Cross section σ (W → ℓν + ≥ Njets) as a function of inclusive
jet multiplicity in the phase space defined in the text

Njets σ (W → ℓν + ≥ Njets) [pb]

≥0 [ 4.849 ± 0.001 (stat.) ±0.05 (syst.) ±0.092 (lumi.) ] × 103

≥1 [ 4.938 ± 0.005 (stat.) ±0.43 (syst.) ±0.097 (lumi.) ] × 102

≥2 [ 1.117 ± 0.002 (stat.) ±0.12 (syst.) ±0.023 (lumi.) ] × 102

≥3 [ 2.182 ± 0.010 (stat.) ±0.31 (syst.) ±0.047 (lumi.) ] × 101

≥4 [ 4.241 ± 0.056 (stat.) ±0.88 (syst.) ±0.095 (lumi.) ] × 100

≥5 [ 0.877 ± 0.032 (stat.) ±0.30 (syst.) ±0.020 (lumi.) ] × 100

≥6 [ 0.199 ± 0.019 (stat.) ±0.11 (syst.) ±0.004 (lumi.) ] × 100

≥7 [ 0.410 ± 0.068 (stat.) ±0.31 (syst.) ±0.009 (lumi.) ] × 10−1

shown for the combined fiducial phase space listed in Table 2.
The data are in good agreement with the predictions from
BlackHat+SHERPA for all jet multiplicities up to five jets;
above this the experimental uncertainties become large. The
MEPS@NLO and HEJ predictions also describe the jet mul-
tiplicity cross sections with a similar level of agreement. The
ALPGEN and SHERPA predictions show different trends for
jet multiplicities greater than four jets; however, both are in
agreement with the data within the experimental systematic
uncertainties.

In the following figures, the differential cross sections for
the theoretical predictions have been scaled to the measured
W + jets cross section in the corresponding jet multiplicity

Table 6 Cross section σ (W → ℓν + Njets) as a function of exclusive
jet multiplicity in the phase space defined in the text

Njets σ (W → ℓν + Njets) [pb]

= 0 [ 4.343 ± 0.001 (stat.) ±0.06 (syst.) ±0.081 (lumi.) ] × 103

= 1 [ 3.807 ± 0.005 (stat.) ±0.32 (syst.) ±0.073 (lumi.) ] × 102

= 2 [ 8.963 ± 0.016 (stat.) ±0.87 (syst.) ±0.179 (lumi.) ] × 101

= 3 [ 1.755 ± 0.009 (stat.) ±0.23 (syst.) ±0.037 (lumi.) ] × 101

= 4 [ 3.374 ± 0.048 (stat.) ±0.61 (syst.) ±0.075 (lumi.) ] × 100

= 5 [ 0.685 ± 0.027 (stat.) ±0.20 (syst.) ±0.016 (lumi.) ] × 100

= 6 [ 0.160 ± 0.018 (stat.) ±0.09 (syst.) ±0.004 (lumi.) ] × 100

= 7 [ 0.286 ± 0.056 (stat.) ±0.24 (syst.) ±0.006 (lumi.) ] × 10−1

bin shown in Figs. 5 and 6 for inclusive and exclusive cross
sections respectively, so that the shapes of the distributions
can be compared. The factors applied to the theory predic-
tions are summarised in Appendix A. The cross sections for
all distributions shown in the paper are available in HepData.4

8.2 Jet transverse momenta and rapidities

The differential cross sections as a function of the leading-
jet transverse momentum are shown in Fig. 7 for the case

4 http://hepdata.cedar.ac.uk/.
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W+jets distributions
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hard processes simulated at NLO accuracy including real & virtual 
corrections ... 
improved description of cross sections & kinematic distributions 

	

Herwig++/
Pythia6/8

PS

virtual

Type III	 : 	Next-to-leading order ME & leading-log parton shower 

need to remove double-counting

S events H events
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hard processes simulated at NLO accuracy including real & virtual 
corrections ... 
improved description of cross sections & kinematic distributions 

	

Herwig++/
Pythia6/8

PS

virtual
need to remove double-counting

2 Matching methods: 

    1. Powheg

2. MC@NLO:  

 |ME|2 = |ME + PS - PS(up to αs2)|2
+ Result is exact at NLO… 
- produce some negative weights, need retuning for each PS

Truncated showers: 
1) first emission produced by the ME; 
2) don’t allow the PS to produce patrons harder 

than the first emission; 
3) not exact at NLO (containes unbalanced 

higher order terms)

Type III	 : 	Next-to-leading order ME & leading-log parton shower 

S events H events
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Merging @NLO (quite new, going to be used at 13 TeV)

FxFx (Frederix-Frixione)  merging

PS

S H
1) define a matching scale μQ; 

2) don’t allow S events with pT > μQ 

(those will be provided by H events of 
n-1 partons NLO real emission); 
the restriction is imposed both at ME 
and on the shower starting scale  

3) treat the obtained events as LO ones 
and apply an LO-style merging (this 
allow to produce smoother 
distributions) 

2p

3p
PS

pT > µQ

pT < µQ
µ < µQ

JHEP12(2012)061
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Incoming Proton

Incoming  
Proton

[T. Gleisberg et al., JHEP02 (2004) 056]

Hadronization & 
Decay

Parton Shower

Hard Process

Underlying 
Event

Let’s recap
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Fragmentation or 
Parton Shower

Hadronization &  
Decays

From partons to color neutral hadrons

Fragmentation:  
Parton splitting into other partons  
[QCD: re-summation of leading-logs] 
[“Parton shower”]  

Hadronization:  
Parton shower forms hadrons  
[non-perturbative, only models] 

Decay of unstable hadrons  
[perturbative QCD, electroweak theory]
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[Modelling relies on phenomenological models available] 

Models based on MC simulations  
very successful:  

	 Generation of complete final states ...  
	 [Needed by experimentalists in detector simulation] 

	 Caveat: tunable ad-hoc parameters 

Most popular MC models: 

	 Pythia/8	:       Lund string model  
	 Herwig/++	 :   Cluster model

Non-perturbative transition from partons to hadrons ... 
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Simplest approach:  
[Field, Feynman, Nucl. Phys. B136 (1978) 1] 
	 Start with original quark 
	 Generate quark-antiquark pairs  
	 from vacuum  
 
	 ➛ 	form “primary meson” 	  
	 	 with energy fraction z 
	 Continue with leftover quark  
	 with energy fraction 1–z 
	 Stop at low energies (cut-off) 
	 Include flavour non-perturbative  
	 fragmentation functions D(z) 
	 D(z): probability to find a meson/hadron  
	 with energy fraction z in jet ...

4 R.D. Field, R.P. Feynman/A parameterization o f  the properties ofquark]ets 

"HIERARCHY" OF FINAL MESONS 

:5 3 
(af) (rc) 

V 
3 

(ac) 

2 I I = RANK 
(cb) (Be) (~'G) 

l V SOME "PRIMARY" MESONS DECAY 

2 I = RANK 
(~b) (Bo) 

"PRIMARY" MESONS 

ORIGINAL QUARK 
OF FLAVOR "o" 

Fig. 1. Illustration of the "hierarchy" structure of the final mesons produced when a quark of 
type "a" fragments into hadrons. New quark pairs bl~, cc-, etc., are produced and "primary" 
mesons are formed. The "primary" meson ba that contains the original quark is said to have 
"rank" one and primary meson c'b rank two, etc. Finally, some of the primary mesons decay 
and we assign all the decay products to have the rank of the parent. The order in "hierarchy" 
is not the same as order in momentum or rapidity. 

The "chain decay" ansatz * assumes that,  if  the rank-1 primary meson carries 
away a momentum ~1 (from a quark jet  of  type "a"  and momentum I¢o) the remain- 
ing cascade starts with a quark of  type " b "  with momentum Ig I = W o - ~1 and the 
remaining hadrons are distributed in exactly the same way as the hadrons which 
come from a je t  originated by  a quark of  type " b "  with momentum lg I . It is further 
assumed that for very high momenta,  all d is t r~ut ions  scale so that they depend only 
on ratios o f  the hadron momenta  to the quark momenta.  Given these assumptions, 
complete knowledge of  the structure of  a quark jet  is determined by  one unknown 
function f(r / )  and three parameters describing flavor, primary meson spin, and 
transverse momentum to be discussed later. The function f07) is defined by 

f(r/)  d , /=  the probabil i ty that  the first hierarchy ( rank- l )  primary meson 
leaves the fraction of  momentum 77 to the remaining cascade, (2.1) 

* We believe this recursive principle was first suggested by Krywicki and Petersson [6] and by 
Finkelstein and Peccei [7] in an analysis of  proton-proton collisions. 

Independent fragmentation of each parton  
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 String formation between initial quark-antiquark pair 
• 	 String breaks up if potential energy  
	 large enough to produce a new quark-antiquark 
pair 

• 	 Gluons = 'kinks' in string 
• 	 At low energy: hadron formation 
• 	 Very widely used ...  
	 [default in Pythia 6/8]

After: Ellis et al.,  
QCD and Collider Physics

Lund String Model 
[Andersson et al., Phys. Rep. 97 (1983) 31] 
	 QCD potential: 

neglected
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Motion of quarks and  
antiquarks in qq system

Simple but powerful picture  
of hadron production  
 
[with extensions to massive quarks, baryons, ...]

Yields:	Common Gaussian p⊥ spectrum  
	 	 Heavy quark suppression

Scientific American 1979 
Kenneth A. Johnson

Lund String Model 

Repeated string breaks for large system  
with pure V(r) = κ⋅r, i.e. neglect Coulomb part

Energy-momentum quantities can be  
read from space-time quantities ...
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Motion of quarks and  
antiquarks in qq system
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[Webber, Nucl. Phys. B238 (1984) 492] 

	 Color flow confined during  
	 hadronisation process 
	 ➛	Formation of color-neutral  
	 	 parton clusters 
	 Gluons (color-anticolor) split  
	 to quark-antiquark pairs 
	 Clusters decay into 2 hadrons according  
	 to phase-space, i.e. isotropically 
	 ➛	no free tuning parameters  
	 	 parton clusters 
	 Very widely used ...  
	 [default in Herwig/Herwig++]

After: Ellis et al.,  
QCD and Collider Physics

Cluster Model
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Model Pythia6/8 (string) Herwig/Herwig++ /
Sherpa(cluster)

Energy-mom. picture powerful simple
predictive unpredictive

Parameters few many
Flavour composition messy simple

unpredictive in-between
Parameters many few

Cluster

String

[from G.Herten,T.Sjöstrand]

Hadronisation models summary
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From the 'simple' to the 'complex' or  
from 'calculable' at large scales to 'modelled; at small

Matrix elements (ME)
1.	Hard subprocess:  
	 |M|2, Breit Wigners, PDFs

2.	Resonance decays:  
	 Includes particle correlations

Parton Shower (PS)
3.	Final-state parton  
	 showers: 

4.	Final-state parton  
	 showers: 

q ➛ qg

g ➛ gg

g ➛ qq

q ➛ qγ

qq-state

quark

gluon

γ,Z0

[from G.Herten]

Structure of basic generator process [by order of 
consideration] 
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From the 'simple' to the 'complex' or  
from 'calculable' at large scales to 'modelled; at small

5.	Multi-parton interaction: 

6.	Beam remnants:

Stable Particle State
7.	Hadronisation: 

8.	Decays: 

Underlying Event (UE)

[from G.Herten]

Conclusions: Structure of basic generator process



B. Di Micco Università degli Studi di Roma Tre
[from J.Alwall]
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