Monte Carlo Generators at colliders

High energy physics simulation

Acknowledgements

These slides have been prepared using heavily the material prepared by Christian Schultz Coulon and clarifying few points plus updating to recent developments in proton-proton physics.

Why MC simulation?

1) to extract an interesting signal we need to subtract the expectation from known processes;
2) signal needs also to be modelled in order to compute detection efficiency and estimate production cross sections and couplings

The simulation chain

MC simulations in particle physics

How Monte Carlo simulation works

- Numerical process generation based on random numbers
- Method very powerful in particle physics

Event generation programs:

Pythia6, Pythia8, Herwig, Herwig++, Sherpa ...

Hard partonic subprocess + fragmentation and hadronisation.

Detector simulation:
Geant4
Fluka low energy hadron interactions...

Event Generator
simulate physics process
(quantum mechanics: probabilities!)

Detector Simulation

 simulate interaction with detector material
Digitisation

translate interactions with detector into realistic signals

Reconstruction/Analysis as for real data interaction \& response of all produced particles ...

Baseline of the simulation process

Typically, we need to generate a continuous variable following some distribution i.e. energy loss of a particle in a given material segment; angle of a photon in the h reference frame for the $h \rightarrow \gamma \gamma$ decay

$$
\begin{aligned}
& d P=f(x, . .) d x \\
& \hookrightarrow \\
& \hookrightarrow
\end{aligned} \text { distribution formula }
$$

probability to get an x_{0} value between x and $x+d x$

$$
d P=f(\theta, \phi) d \theta d \phi=\operatorname{sen} \theta d \theta d \phi
$$

flat distribution in Φ
non flat in θ

Distribution function transformation properties

1) software libraries provide basic functions to produce flat distributed random numbers in the interval $[0,1]$ (ex. root TRandom3 class), they are typically fast and accurate uniform random numbers generators;
2) starting from uniform distributed random numbers, it is possible to generate numbers following any distribution using different techniques

$$
d P_{x}=f(x) d x \quad y=g(x) \quad \text { How "y" distributes in }\left[g\left(x_{\mathrm{a}}\right), g\left(\mathrm{x}_{\mathrm{b}}\right)\right] ?
$$

$$
x \in\left[x_{a}, x_{b}\right]
$$

Because y is a monotonic function of x the probability

$$
d P_{y}=h(y) d y=h(y) g^{\prime}(x) d x
$$ to have y between $g(x)$ and $g(x+d x)$ is equal to the probability to have x between x and $x+d x$

$h(y) g^{\prime}(x)=f(x) \Rightarrow h(y)=\frac{f(x)}{g^{\prime}(x)}=\frac{f\left(g^{-1}(y)\right)}{g^{\prime}\left(g^{-1}(y)\right)}$
Ex.: range map

$$
[0,1] \rightarrow[a, b] \quad y=(b-a) x+a
$$

$f(x)=1 \quad g^{\prime}(x)=b-a \quad h(y)=\frac{1}{b-a} \quad \mathrm{y}$ is uniform \quad undy distributed in [a,b]

Distribution function transformation properties

Ex. 2: integration method:

$$
\begin{gathered}
g(x)=\frac{1}{\int_{a}^{b} f\left(x^{\prime}\right) d x^{\prime}} \int_{a}^{x} f\left(x^{\prime}\right) d x^{\prime} \quad g^{\prime}(x)=\frac{f(x)}{\int_{a}^{b} f\left(x^{\prime}\right) d x^{\prime}} \\
h(y)=\frac{f(x)}{g^{\prime}(x)}=\frac{f\left[g^{-1}(y)\right]}{f\left[g^{-1}(y)\right]} \cdot \int_{a}^{b} f\left(x^{\prime}\right) d x^{\prime}=\int_{a}^{b} f\left(x^{\prime}\right) d x^{\prime}
\end{gathered}
$$

y is uniformly distributed:

1) generate y flat in [f min,$f_{\text {max }}$];
2) compute $x=g^{-1}(y), x$ will be distributed in $g^{-1}\left(f_{\min }\right), g^{-1}\left(f_{\max }\right)$

Finding $\mathrm{g}^{-1}(\mathrm{y})$ is equivalent to solve the equation:

$$
\frac{1}{\int_{a}^{b} f\left(x^{\prime}\right) d x^{\prime}} \int_{a}^{x} f\left(x^{\prime}\right) d x^{\prime}=y
$$

Hit or miss method.

1) generate x flat in $x_{\text {min }}, x_{\text {max }}$
2) generate y flat in $0, f_{\text {max }}$
3) if $y<f(x)$ accept the event, otherwise ignore it
for a given x in $\mathrm{x}, \mathrm{x}+\mathrm{dx}$ the fraction of accepted events is proportional to $f(x) d x->d P x=f(x) d x$
4) advantages:

- can be used for all functions, even non continuous ...

- can be extended to N-dimension (generate $\left.x_{1}, x_{2}, \ldots, x_{n}\right)$, y accept if $y<f\left(x_{1}, x_{2}, . ., x_{n}\right)$

2) disadvantages

- can be extremely slow
points generated uniformly in the square points accepted only below the curve

MC generators implement "smart" generation techniques to increase efficiencies

Comparison between real and simulated events

Simulation elements

Simulation elements

GEANT Geometry And Tracking

Detailed description of detector geometry [sensitive \& insensitive volumes]

Tracking of all particles through detector material ...

\rightarrow Detector response

Developed at CERN since 1974 (FORTRAN)
[Today: Geant4; programmed in C^{++}]

Strong interactions:

No free Quarks

Expect jets
i.e. bundles of particles at high energies [hadron p_{T} range limited w.r.t. initial parton]

First observation of jets
in $\mathrm{e}^{+} \mathrm{e}^{-}$collisions @ Ecms $>6 \mathrm{GeV}$ [SPEAR, SLAC, 1975]

Later also observed in hadron-hadron collisions [e.g. @ CERN ISR]

An event with 4 jets @ LHC

Goal: Infer parton properties from jet properties [need to calculate and/or model fragmentation \& hadronisation process]

Pure matrix element (ME) simulation:

MC integration of cross section \& PDFs, no hadronisation (recall: cross section $=\mid$ matrix element $\left.\right|^{2} \otimes$ phase space)

Useful for theoretical studies, no exclusive events generated
[Example: MCFM (http://mcfm.fnal.gov); many LHC processes up to NLO, HNNLO (http://theory.fi.infn.it/grazzini/codes.html) Higgs production at NNLO]

Event generators:

Combination of ME and parton showers ...
Typical: generator for leading order ME combined with leading log (LL) parton shower MC (see later)

Exclusive events \rightarrow useful for experimentalists ...

Parton showers

A realistic simulation needs many particles in the final state, it is quite difficult (sometimes impossible) to compute a pp (2) \rightarrow many particles process
$(2 \rightarrow n)=\ldots$

$$
\ldots=(2 \rightarrow 2) \oplus I S R \oplus F S R
$$

FSR: Final state radiation
$\mathrm{Q}^{2} \sim \mathrm{~m}^{2}>0$ decreasing
[time-like shower]

ISR: Initial state radiation
$Q^{2} \sim-m^{2}>0$ increasing
[space-like shower]

Calculable

Hard process [2 $\rightarrow 2$]:

$$
\sigma=\iiint \mathrm{d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} \hat{t} f_{i}\left(x_{1}, Q^{2}\right) f_{j}\left(x_{2}, Q^{2}\right) \frac{\mathrm{d} \widehat{\sigma}_{i j}}{\mathrm{~d} \hat{t}}
$$

Shower evolution:
Viewed as probabilistic process, which occurs with unit total probability; cross section not directly affected; only indirectly via changed event shape.

Parton showers

$$
\text { Cross Section: } \frac{d \sigma_{\mathrm{qqg}}}{d x_{1} d x_{2}}=\frac{4}{3} \frac{\alpha_{s}}{2 \pi} \cdot \sigma_{0} \cdot \frac{x_{1}^{2}+x_{2}^{2}}{\left(1-x_{1}\right)\left(1-x_{2}\right)}
$$

Cross section has large contributions for $\mathrm{x}_{1}, \mathrm{x}_{2} \rightarrow 1 \quad\left[\mathrm{~m}_{\mathrm{q}}=0\right.$; see e.g. Halzen/Martin $]$

$$
\begin{aligned}
& \text { from } p_{T} \\
& \text { balance } \\
& 1-x_{2}
\end{aligned}=\frac{m_{13}^{2}}{E_{\mathrm{cm}}^{2}}=\frac{Q^{2}}{E_{\mathrm{cm}}^{2}} m_{13}^{2} \sim 2 E_{1} E_{2}(1-\cos \theta) x_{2} \rightarrow 1 \Rightarrow m_{13}^{2} \rightarrow 0 \Rightarrow \theta \rightarrow 0 \text { collinear limit }
$$

$$
\text { Rewrite for } \mathrm{x}_{2} \rightarrow 1 \text { : }
$$

[ag collinear limit]
[qg collinear limit]

$$
d x_{2}=-\frac{d Q^{2}}{E_{\mathrm{cm}}^{2}}
$$

$$
\begin{aligned}
& x_{1} \approx z \quad d x_{1} \approx d z \\
& x_{3} \approx 1-z
\end{aligned}
$$

व

$$
d \mathcal{P}_{a \rightarrow b c}=\frac{\alpha_{s}}{2 \pi} \frac{d Q^{2}}{Q^{2}} P_{a \rightarrow b c}(z) d z \quad \text { Splitting probability determined by splitting functions } \mathrm{P}_{\mathrm{q} \rightarrow \mathrm{qg}}
$$ Analogous splitting functions used in PDF evolution

$$
\begin{aligned}
& P_{\mathrm{q} \rightarrow \mathrm{qg}}=\frac{4}{3} \frac{1+z^{2}}{1-z} \\
& P_{\mathrm{g} \rightarrow \mathrm{gg}}=3 \frac{(1-z(1-z))^{2}}{z(1-z)} \\
& P_{\mathrm{g} \rightarrow \mathrm{q} \overline{\mathrm{q}}}=\frac{n_{f}}{2}\left(z^{2}+(1-z)^{2}\right)
\end{aligned}
$$

z : fractional momentum of radiated parton
n_{f} : number of quark flavours

Need soft/collinear cut-offs to avoid non-perturbative regions ... [divergencies!]

Details model-dependent

$$
\begin{array}{ll}
\text { e.g. } & Q>m_{0}=\min \left(m_{i j}\right) \approx 1 \mathrm{GeV}, \\
& Z_{\min }(E, Q)<z<Z_{\max }(E, Q) \text { or } \\
& P_{\perp}>P_{\perp \min } \approx 0.5 \mathrm{GeV}
\end{array}
$$

Parton shower evolution 1

Conservation of total probability:

$$
\mathcal{P}(\text { nothing happens })=1-\mathcal{P}(\text { something happens })
$$

Time evolution:

$$
\begin{aligned}
\mathcal{P}_{\text {nothing }}(0<t \leq T) & =\mathcal{P}_{\text {nothing }}\left(0<t \leq T_{1}\right) \mathcal{P}_{\text {nothing }}\left(T_{1}<t \leq T\right) \\
\mathcal{P}_{\text {nothing }}(0<t \leq T) & =\lim _{n \rightarrow \infty} \prod_{i=0}^{n-1} \mathcal{P}_{\text {nothing }}\left(T_{i}<t \leq T_{i+1}\right) \\
& =\lim _{n \rightarrow \infty} \prod_{i=0}^{n-1}\left(1-\mathcal{P}_{\text {something }}\left(T_{i}<t \leq T_{i+1}\right)\right) \\
& =\exp \left(-\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} \mathcal{P}_{\text {something }}\left(T_{i}<t \leq T_{i+1}\right)\right) \quad e^{-x} \approx 1-x \\
& =\exp \left(-\int_{0}^{T} \frac{\mathrm{~d} \mathcal{P}_{\text {something }}(t)}{\mathrm{d} t} \mathrm{~d} t\right)
\end{aligned}
$$

$$
\rightarrow \mathrm{d} \mathcal{P}_{\text {first }}(T)=\mathrm{d} \mathcal{P}_{\text {something }}(T) \exp \left(-\int_{0}^{T} \frac{\mathrm{~d} \mathcal{P}_{\text {something }}(t)}{\mathrm{d} t} \mathrm{~d} t\right)
$$

Parton shower evolution 2

Instead of evolving to later and later times need to evolve to smaller and smaller Q^{2}...

$$
\mathrm{d} \mathcal{P}_{a \rightarrow b c}=\frac{\alpha_{\mathrm{S}}}{2 \pi} \frac{\mathrm{~d} Q^{2}}{Q^{2}} P_{a \rightarrow b c}(z) \mathrm{d} z \exp \left(-\sum_{b, c} \int_{Q^{2}}^{Q_{\max }^{2}} \frac{\mathrm{~d} Q^{\prime 2}}{Q^{\prime 2}} \int \frac{\alpha_{\mathrm{s}}}{2 \pi} P_{a \rightarrow b c}\left(z^{\prime}\right) \mathrm{d} z^{\prime}\right)
$$

Probability to radiated with virtuality Q^{2}
Note that $\sum_{\mathrm{b}, \mathrm{c}} \iint_{\mathrm{dPa} \rightarrow \mathrm{bc}} \equiv 1 \ldots$
[Convenient for Monte Carlo]
Sudakov form factor ...
... provides "time" ordering of shower ... [lower $\mathrm{Q}^{2} \Leftrightarrow$ longer times]
... regulates singularity for first emission ...
But in the limit of repeated soft emissions $q \rightarrow q g$ (but no $g \rightarrow g g$) one obtains the same inclusive Q emission spectrum as for $M E$, i.e. divergent ME spectrum \Leftrightarrow infinite number of PS emissions

No radiation for higher virtualities i.e. for $Q^{2} \ldots Q^{2}$ max

Sudakov picture of parton showers

Basic algorithm: Markov chain

[each step requires only knowledge only of previous step]
(i) Start with virtuality Q_{1} and momentum fraction x_{1}
(ii) Generate target virtuality Q_{2} with random number R_{T} uniform distributed in $[0,1]$

Probability to not have $Q_{x}>Q_{2}$

$$
\Delta\left(Q_{i}^{2}\right)=\exp \left(-\sum_{b, c} \int_{Q_{i}^{2}}^{Q_{\max }^{2}} \frac{d Q^{\prime 2}}{Q^{\prime 2}} \int \frac{\alpha_{s}}{2 \pi} P_{a \rightarrow b c}\left(z^{\prime}\right) d z^{\prime}\right) \text { solve the equation for } Q_{2} \quad R_{t}=\frac{\Delta\left(Q_{2}^{2}\right)}{\Delta\left(Q_{1}^{2}\right)}
$$

[probability to evolve from t_{1} to t_{2} without radiation]

(iii) Q_{2} known (x_{2} known), need to compute $\mathrm{x}_{1} \sim \mathrm{z}$

$$
P_{\mathrm{q} \rightarrow \mathrm{qg}}=\frac{4}{3} \frac{1+z^{2}}{1-z} \quad R_{z}=\frac{\int_{0}^{z} P\left(z^{\prime}\right) d z^{\prime}}{\int_{0}^{1} P\left(z^{\prime}\right) d z^{\prime}} \quad \text { flat distributed }
$$

1 (iv) Generate random azimuthal angle Φ flat distributed
Process ends when partons are below threshold ($\mathrm{p}_{\mathrm{T}, \mathrm{Q}}$)

Parton shower and logarithmic resummation

If a_{s} is small higher contributions are power suppressed, but...
 a_{s} increases at small Q^{2}

$$
\begin{gathered}
\alpha_{s}\left(Q_{n}\right) \sim \alpha_{s}\left(Q_{1}\right) \ln \left(Q_{1} / Q_{n}\right) \\
\alpha_{s}\left(Q_{1}\right)+\alpha_{s}\left(Q_{1}\right) \alpha_{s}\left(Q_{2}\right)+\ldots+\alpha_{s}\left(Q_{1}\right) \cdot \ldots \cdot \alpha_{s}\left(Q_{n}\right) \\
\sim\left[\alpha_{s}\left(Q_{1}\right) \ln \left(Q_{1}\right)\right]^{2} \sim\left[\alpha_{s}\left(Q_{1}\right) \ln \left(Q_{1}\right)\right]^{n}
\end{gathered}
$$

$$
\text { if } \quad \alpha_{s}\left(Q_{1}\right) \ln \left(Q_{1}\right)
$$

is large, the expansion is broken, PS allow to sum up all the large contribution [Leading Log resummation]

Parton shower ordering

$$
\mathrm{d} \mathcal{P}_{a \rightarrow b c}=\frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{\mathrm{~d} Q^{2}}{Q^{2}} P_{a \rightarrow b c}(z) \mathrm{d} z \exp \left(-\sum_{b, c} \int_{Q^{2}}^{Q_{\max }^{2}} \frac{\mathrm{~d}{Q^{\prime}}^{2}}{{Q^{\prime 2}}^{2}} \int \frac{\alpha_{\mathrm{s}}}{2 \pi} P_{a \rightarrow b c}\left(z^{\prime}\right) \mathrm{d} z^{\prime}\right)
$$

In the splitting function appears only d^{2} / Q^{2}, therefore if $P=f(z) Q^{2} d P / P=d Q^{2} / Q^{2}$
Three main approaches to showering in use: $p_{\perp}^{2} \approx z(1-z) m^{2}$ рт ordered showers $\quad E^{2} \theta^{2} \approx m^{2} /(z(1-z))$ angular ordered showers
Two are based on the standard shower language of $a \rightarrow$ bc successive branchings:

PYTHIA, 8 (basic) : $\mathrm{Q}^{2}=\mathrm{m}^{2}$ (timelike) or $=-\mathrm{m}^{2}$ (spacelike)
PYTHIA6, 8 ($\mathrm{p}_{\text {T }}$ oredered) : mixture: collinear splitting but di-pole kinematic
One is based on a picture of dipole emission:

Ariadne : $Q^{2}=p^{2} _; F S R$ mainly, ISR is primitive ...
consider the full recoil and not only the branching

Color coherence

QED: Chudakov effect (mid-fifties)

emulsion plate
reduced
ionization
normal
ionization

1. soft gluons see the pair of split gluons as a whole, color screening reduce their emission
2. angular ordered and p_{T} ordered PS reproduce the correct color coherence
3. Pythia Q^{2} needs aposteriori corrections

QCD: colour coherence for soft gluon emission

solved by - requiring emission angles to be decreasing
or - requiring transverse momenta to be decreasing

Compariosn to LHC data

Example of processes implemented in Pythia6

No. Subprocess	No. Subprocess	No. Subprocess	No. Subprocess
Hard QCD processes:	$36 \quad \mathrm{f}_{\wedge} \gamma \rightarrow \mathrm{f}_{k} \mathrm{~W}^{ \pm}$	New gauge bosons:	Higgs pairs:
$11 \quad \mathrm{f}_{\mathrm{i}} \mathrm{f}_{j} \rightarrow \mathrm{f}_{\mathrm{i}} \mathrm{f}_{j}$	$69 \quad \gamma \gamma \rightarrow \mathrm{~W}^{+} \mathrm{W}^{-}$	$141 \quad \mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{i} \rightarrow \gamma / \mathrm{Z}^{0} / Z^{\prime 0}$	$297 \mathrm{f}_{\mathrm{f}} \mathrm{f}_{\mathrm{f}} \rightarrow \mathrm{H}^{ \pm} \mathrm{h}^{0}$
$12 \quad \mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{i} \rightarrow \mathrm{f}_{k} \overline{\mathrm{f}}_{k}$	$70 \quad \gamma \mathrm{~W}^{ \pm} \rightarrow \mathrm{Z}^{0} \mathrm{~W}^{ \pm}$	$142 \quad \mathrm{f}_{1} \overline{\mathrm{f}}_{j} \rightarrow \mathrm{~W}^{\prime+}$	$298 \mathrm{f}_{\mathrm{f}} \mathrm{f}_{j} \rightarrow \mathrm{H}^{ \pm} \mathrm{H}^{\text {b }}$
$13 \quad \mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{i} \rightarrow \mathrm{gg}$	Prompt photons:	$144 \quad \mathrm{f}_{\mathrm{i}} \mathrm{f}_{j} \rightarrow \mathrm{R}$	$299 \quad \mathrm{f}_{i} \bar{f}_{i} \rightarrow \mathrm{~A}^{0} \mathrm{~h}^{\circ}$
$28 \quad \mathrm{f}_{\mathrm{i}} \mathrm{g} \rightarrow \mathrm{f}_{\mathrm{i}} \mathrm{g}$	$14 \quad \mathrm{f}_{\mathrm{f}} \mathrm{f}_{\mathrm{i}} \rightarrow \mathrm{g} \gamma$	Heavy SM Higgs:	$300 \quad \mathrm{f}_{i} \bar{f}_{i} \rightarrow \mathrm{~A}^{0} \mathrm{H}^{0}$
$53 \mathrm{gg} \rightarrow \mathrm{f}_{k} \mathrm{f}_{k}$	$18 \quad \mathrm{f}_{\mathrm{f}} \mathrm{f}_{\mathrm{i}} \rightarrow \gamma \gamma$	$5 Z^{0} Z^{0} \rightarrow \mathrm{~h}^{0}$	$301 \quad \mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{i} \rightarrow \mathrm{H}^{+} \mathrm{H}^{-}$
$68 \mathrm{gg} \rightarrow \mathrm{gg}$	$\begin{array}{rl}29 & \mathrm{f}_{\mathrm{i}} \mathrm{g} \rightarrow \mathrm{f}_{1} \gamma \\ 114 & \mathrm{gg} \rightarrow \gamma \gamma\end{array}$	$\begin{aligned} 8 & W^{+} W^{-} \rightarrow h^{0} \\ 71 & Z_{1}^{0} \mathbf{Z}^{0} \rightarrow Z_{1}^{0} \mathbf{Z}^{0} \end{aligned}$	Leptoquarks:
Soft QCD processes:			$145 \quad \mathrm{q}_{1} \ell_{j} \rightarrow \mathrm{LQ}$
91 elastic scattering	$115 \mathrm{gg} \rightarrow \mathrm{gy}$	$72 \quad \mathrm{Z}_{\mathrm{L}}^{0} \mathrm{Z}_{\mathrm{L}}^{0} \rightarrow \mathrm{~W}_{\mathrm{L}}^{+} \mathrm{W}_{\mathrm{L}}^{-}$	$162 \mathrm{qg} \rightarrow \ell \mathrm{L}_{\mathrm{Q}}$
92 single diffraction (XB)	Deeply Inel. Scatt.:	$73 \quad \mathrm{Z}_{\mathrm{L}}^{0} \mathrm{~W}_{\mathrm{L}}^{ \pm} \rightarrow \mathrm{Z}_{\mathrm{L}}^{0} \mathrm{~W}_{\mathrm{L}}^{ \pm}$	$163 \mathrm{gg} \rightarrow \mathrm{L}_{\mathrm{Q}} \overline{\mathrm{L}}_{\mathrm{Q}}$
93 single diffraction (AX)	$10 \quad f_{1} f_{j} \rightarrow f_{k} f_{l}$	$76 \quad \mathrm{~W}_{\mathrm{L}}^{+} \mathrm{W}_{\mathrm{L}}^{-} \rightarrow \mathrm{Z}_{\mathrm{L}}^{0} \mathrm{Z}_{\mathrm{L}}^{-}$	$164 \mathrm{q}_{i} \overline{\mathrm{q}}_{i} \rightarrow \mathrm{~L}_{\mathrm{Q}} \overline{\mathrm{L}}_{\mathrm{Q}}$
94 double diffraction	$99 \quad \gamma^{*} \mathrm{q} \rightarrow \mathrm{q}$	$77 \quad \mathrm{~W}_{\mathrm{L}}^{ \pm} \mathrm{W}_{\mathrm{L}}^{4} \rightarrow \mathrm{~W}_{\mathrm{L}}^{ \pm} \mathrm{W}_{\mathrm{L}}^{ \pm}$	Technicolor:
95 low- p_{\perp} production	Photon-induced:	BSM Neutral Higgs:	$149 \mathrm{gg} \rightarrow 7_{\text {tc }}$
Open heavy flavour:	$33 \quad f_{i} \gamma \rightarrow f_{i} g$	$151 \quad \mathrm{f}_{i} \mathrm{f}_{\mathrm{i}} \rightarrow \mathrm{H}^{\circ}$	$191 \mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{i} \rightarrow \rho_{i c}^{0}$
(also fourth generation)	$34 \quad \mathrm{fi}_{\mathrm{i}} \gamma \rightarrow \mathrm{f}_{\mathrm{i}} \gamma$	$152 \mathrm{gB} \rightarrow \mathrm{H}^{0}$	$192 \mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{j} \rightarrow \rho_{c c}^{+}$
$81 \quad \mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{i} \rightarrow \mathrm{Q}_{k} \overline{\mathrm{Q}}_{k}$	$54 \quad \mathrm{~g} \gamma \rightarrow \mathrm{f}_{\mathrm{k}} \mathrm{f}_{k}$	$153 \quad \gamma \gamma \rightarrow \mathrm{H}^{0}$	$193 \quad \mathrm{fif}_{i} \rightarrow \omega_{\text {ic }}^{0}$
$82 \mathrm{gg} \rightarrow \mathrm{Q}_{k} \overline{\mathrm{Q}}_{k}$	$58 \quad \gamma \gamma \rightarrow \mathrm{f}_{k} \mathrm{f}_{k}$	$171 \quad \mathrm{f}_{i} \bar{f}_{i} \rightarrow \mathrm{Z}^{0} \mathrm{H}^{0}$	$194 \quad \mathrm{f}_{\mathrm{f}} \mathrm{f}_{i} \rightarrow \mathrm{f}_{k} \mathrm{f}_{k}$
$83 \quad \mathrm{q}_{1} \mathrm{f}_{j} \rightarrow \mathrm{Q}_{k} \mathrm{f}_{2}$	$131 \quad \mathrm{f}_{\mathrm{i}} \gamma_{\mathrm{T}}^{*} \rightarrow \mathrm{f}_{\mathrm{i}} \mathrm{g}$	$172 \quad \mathrm{f}_{i} \bar{f}_{j} \rightarrow \mathrm{~W}^{ \pm} \mathrm{H}^{0}$	$195 \quad \mathrm{f}_{i} \overline{\mathrm{f}}_{j} \rightarrow \mathrm{f}_{k} \overline{\mathrm{f}}_{1}$
$84 \mathrm{~g} \gamma \rightarrow \mathrm{Q}_{k} \overline{\mathrm{Q}}_{k}$	$132 \quad \mathrm{f}_{\mathrm{i}} \gamma_{\mathrm{L}}^{*} \rightarrow \mathrm{fig}^{\text {g }}$	$173 \quad \mathrm{f}_{\mathrm{i}} \mathrm{f}_{j} \rightarrow \mathrm{f}_{\mathrm{i}} \mathrm{f}_{j} \mathrm{H}^{0}$	$361 \quad f_{i} \bar{f}_{i} \rightarrow W_{L}^{+} W_{L}^{-}$
$85 \quad \gamma \gamma \rightarrow \mathrm{~F}_{k} \overline{\mathrm{~F}}_{k}$	$133-f_{i} \gamma_{\mathrm{T}}^{*} \rightarrow \mathrm{f}_{\mathrm{i}} \gamma$	$174 \quad \mathrm{f}_{\mathrm{i}} \mathrm{f}_{j} \rightarrow \mathrm{f}_{\mathrm{k}} \mathrm{f}_{\mathrm{l}} \mathrm{H}^{0}$	$362 \quad \mathrm{f}_{\mathrm{f}} \overline{\mathrm{f}}_{i} \rightarrow \mathrm{~W}_{\mathrm{L}}^{ \pm} \pi_{\mathrm{tc}}^{\mp}$
Closed heavy flavour:	$134 \quad \mathrm{f}_{\mathrm{i}} \gamma^{*} \rightarrow \mathrm{f}_{\mathrm{i}} \gamma \underline{\chi}$	$181 \mathrm{gg} \rightarrow \mathrm{Q}_{k} \overline{\mathrm{Q}}_{k} \mathrm{H}^{\circ}$	$363 \quad \mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{i} \rightarrow \pi_{t c}^{+} \pi_{v c}^{-}$
$86 \mathrm{Eg} \rightarrow \mathrm{J} / \mathrm{\psi g}$	135 g $\gamma_{\mathrm{T}}^{*} \rightarrow \mathrm{fif}_{i}$	$182 \mathrm{q}_{1} \bar{q}_{i} \rightarrow \mathrm{Q}_{k} \overline{\mathrm{Q}}_{k} \mathrm{H}^{0}$	$364 \quad f_{i} \overline{\mathrm{f}}_{\mathrm{i}} \rightarrow \gamma \pi_{\mathrm{le}}^{0}$
$87 \mathrm{gg} \rightarrow \chi_{0 \mathrm{cg}}$	$136 \mathrm{~g} \gamma_{\mathrm{L}}^{*} \rightarrow \mathrm{f}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}$	$183 \mathrm{f}_{\mathrm{f}} \overline{\mathrm{f}}_{\mathrm{i}} \rightarrow \mathrm{gH}^{0}$	$365 \quad f_{i} f_{i} \rightarrow \gamma \pi^{\prime 0}$
$88 \mathrm{gg} \rightarrow \chi_{1 \mathrm{cg}}$	$137 \quad \gamma_{\mathrm{T}} \gamma_{\mathrm{T}}^{*} \rightarrow \mathrm{f}_{i} \mathrm{f}_{i}$	$184 \quad \mathrm{f}_{\mathrm{g}} \mathrm{g} \rightarrow \mathrm{f}_{\mathrm{i}} \mathrm{H}^{0}$	$\begin{array}{ll} 365 & f_{i} f_{i} \rightarrow \gamma \pi_{\text {te }} \\ 366 & \mathrm{f}_{\mathrm{i}} \mathrm{f}_{i} \rightarrow \mathrm{Z}^{0} \pi_{\mathrm{tc}}^{0} \end{array}$
$89 \mathrm{gF} \rightarrow \chi_{22 \mathrm{c}}$		$185 \mathrm{gg} \rightarrow \mathrm{gH}^{0}$	$\begin{array}{ll} 366 & \mathrm{f}_{\mathrm{i}} \mathrm{f}_{i} \rightarrow Z^{\circ} \pi_{\mathrm{tc}}^{\prime} \\ 367 & \mathrm{f}_{\mathrm{i}} \mathrm{f}_{i} \rightarrow Z^{0} \pi^{\prime 0} \end{array}$
$104 \mathrm{gg} \rightarrow \chi_{0 c}$		$156 \quad \mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{\mathrm{i}} \rightarrow \mathrm{A}^{0}$	$368 \quad f_{i} \bar{f}_{i} \rightarrow \mathrm{~W}^{ \pm} \pi_{\imath c}^{\mp}$
105 gg $\rightarrow \chi$ ¢c	$140 \quad \gamma_{\mathrm{L}}^{*} \gamma_{\mathrm{L}}^{*} \rightarrow \mathrm{f}_{i} \overline{\mathrm{f}}_{\mathrm{i}}$	$157 \quad \mathrm{gg} \rightarrow \mathrm{~A}^{0}$	$\begin{array}{ll} 368 & f_{i} f_{i} \rightarrow W^{ \pm} \pi_{\mathrm{ic}}^{+} \\ 370 & f_{i} \mathrm{f}_{j} \rightarrow \mathbf{W}_{\mathrm{L}}^{ \pm} \mathbf{Z}_{\mathrm{L}}^{0} \end{array}$
$106 \quad \mathrm{gg} \rightarrow \mathrm{J} / \psi \gamma$	$80 \quad \mathrm{q}_{1} \gamma \rightarrow \mathrm{q}_{k} \pi^{ \pm}$	$158 \quad \gamma \gamma \rightarrow A^{0}$	
$\begin{array}{ll}107 & \mathrm{~g} \gamma \\ 108 & \gamma \mathrm{~J} / \psi \mathrm{g} \\ & \gamma \gamma \rightarrow \mathrm{J} / \psi \gamma\end{array}$	Light SM Higgs:	$176 \quad \mathrm{f}_{i} \bar{f}_{i} \rightarrow \mathrm{Z}^{0} \mathrm{~A}^{0}$	
W/Z production:	$\mathrm{f}_{\mathrm{f}} \mathrm{f}_{i} \rightarrow \mathrm{~h}^{0}$	$\begin{array}{ll}177 & \mathrm{f}_{\mathrm{i}} \mathrm{f}_{j} \rightarrow \mathrm{~W}^{ \pm} \mathrm{A}^{0} \\ 178 & \mathrm{ff}_{j} \rightarrow \mathrm{ff} \mathrm{A}^{0}\end{array}$	$373 \quad \mathrm{f}_{1} \mathrm{f}_{j} \rightarrow \pi_{\text {te }}^{+} \pi_{\text {te }}^{0}$
$1 \mathrm{f}_{\mathrm{f}} \overline{\mathrm{f}}_{i} \rightarrow \gamma^{*} / \mathbf{Z}^{0}$	$26 \quad \mathrm{f}_{\mathrm{i}} \mathrm{f}_{j} \rightarrow \mathrm{~W}^{ \pm} \mathrm{h}^{0}$	$179 \quad \mathrm{f}_{1} \mathrm{f}_{j} \rightarrow \mathrm{f}_{k} \mathrm{f}_{\mathrm{L}} \mathrm{A}^{0}$	$374 \quad \mathrm{f}_{\mathrm{f}} \mathrm{f}_{j} \rightarrow \gamma \pi_{\text {tc }}^{ \pm}$
$2 \mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{j} \rightarrow \mathrm{~W}^{ \pm}$	$32 \quad \begin{aligned} & \text { fig }\end{aligned} \mathrm{f}_{\mathrm{i}} \mathrm{h}^{0}{ }^{\text {a }}$	$186 \quad \mathrm{gg} \rightarrow \mathrm{Q}_{k} \overline{\mathrm{Q}}_{k} \mathrm{~A}^{\circ}$	$375 \quad \mathrm{f}_{i} \overline{\mathrm{f}}_{j} \rightarrow \mathrm{Z}^{0} \pi_{\text {tc }}^{ \pm}$
$22 \quad \mathrm{f}_{\mathrm{i}} \mathrm{f}_{i} \rightarrow \mathrm{Z}^{0} \mathrm{Z}^{0}$	$102 \mathrm{gg} \rightarrow \mathrm{h}^{0}$	$187 \quad \mathrm{q}_{i} \overline{\mathrm{q}}_{i} \rightarrow \mathrm{Q}_{k} \overline{\mathrm{Q}}_{k} \mathrm{~A}^{\circ}$	$376 \quad \mathrm{f}_{i} \overline{\mathrm{f}}_{j} \rightarrow \mathrm{~W}^{ \pm} \pi_{c c}^{0}$
$23 \quad \mathrm{f}_{1} \bar{f}_{j} \rightarrow \mathrm{Z}^{0} \mathrm{~W}^{ \pm}$	$103 \quad \gamma \gamma \rightarrow h^{0}$	$188 \quad \mathrm{f}_{i} \mathrm{f}_{i} \rightarrow g A^{\circ}$	$377 \mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{j} \rightarrow \mathrm{~W}^{ \pm} \pi^{\prime \prime}{ }_{\text {te }}$
$25 \quad \mathrm{f}_{\mathrm{f}} \overline{\mathrm{f}}_{i} \rightarrow \mathrm{~W}^{+} \mathrm{W}^{-}$	$110 \quad \mathrm{f}_{\mathrm{f}} \overline{\mathrm{f}}_{i} \rightarrow \gamma \mathrm{~h}^{0}$	$189 \quad \mathrm{f}_{\mathrm{i}} \mathrm{g} \rightarrow \mathrm{f}_{i} \mathrm{~A}^{0}$	$381 \quad \mathrm{q}_{i} \mathrm{q}_{j} \rightarrow \mathrm{q}_{i} \mathrm{q}_{j}$
$15 \quad \mathrm{f}_{1} \overline{\mathrm{f}}_{i} \rightarrow \mathrm{~g} Z^{0}$	$111 \quad \mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{\mathrm{i}} \rightarrow \mathrm{gh}^{0}$	190 gg $\rightarrow \mathrm{gA}^{\circ}$	$382 \quad \mathrm{q}_{1} \overline{\mathrm{q}}_{i} \rightarrow \mathrm{q} k \overline{\mathrm{q}}_{k}$
$16 \quad \mathrm{f}_{1} \overline{\mathrm{f}}_{j} \rightarrow \mathrm{gW}^{ \pm}$	$112 \mathrm{f}, \mathrm{g} \rightarrow \mathrm{f}_{\mathrm{i}} \mathrm{h}^{\circ}$	Charged Higgs:	$383 \quad \mathrm{q}_{1} \mathrm{q}_{i} \rightarrow \mathrm{gg}$
$30 \quad f_{i} \mathrm{~g} \rightarrow \mathrm{f}_{\mathrm{i}} \mathrm{Z}^{0}$	$113 \mathrm{gg} \rightarrow \mathrm{gh}^{0}$	$143 \quad f_{1} f_{j} \rightarrow H^{+}$	$384 \quad f_{i} g \rightarrow f_{i} g$
$31 \quad \mathrm{f}_{\mathrm{i}} \mathrm{g} \rightarrow \mathrm{f}_{k} \mathrm{~W}^{ \pm}$	$121 \mathrm{gg} \rightarrow \mathrm{Q}_{k} \overline{\mathrm{Q}}_{k} \mathrm{~h}^{0}$	$161 \quad \mathrm{f}_{\mathrm{i}} \mathrm{g} \rightarrow \mathrm{f}_{\mathrm{k}} \mathrm{H}^{+}$	$385 \mathrm{gg} \rightarrow \mathrm{q}_{k} \overline{\mathrm{q}}_{k}$
$19 \quad \mathrm{f}_{1} \mathrm{f}_{i} \rightarrow \gamma \mathrm{Z}^{0}$	$122 \mathrm{q}_{i} \overline{\mathrm{q}}_{i} \rightarrow \mathrm{Q}_{k} \overline{\mathrm{Q}}_{k} \mathrm{~h}^{0}$	$401 \mathrm{gg} \rightarrow \overline{\mathrm{tb}}^{+}$	$386 \quad \mathrm{gg} \rightarrow \mathrm{gg}$
$\begin{array}{ll}20 & f_{1} \bar{f}_{j} \rightarrow \gamma \mathrm{~W}^{ \pm} \\ 35 & \mathrm{f}_{\chi} \gamma \rightarrow \mathrm{f}_{\mathrm{Z}}{ }^{0}\end{array}$	$123 \quad f_{1} \mathrm{f}_{j} \rightarrow f_{i} \mathrm{f}_{j} \mathrm{~h}^{\circ}$	$402 \mathrm{q} \overline{\mathrm{q}} \rightarrow \overline{\mathrm{t}} \mathrm{bH}^{+}$	$\begin{array}{ll} 387 & f_{i} \bar{f}_{i} \rightarrow \mathrm{Q}_{k} \bar{Q}_{k} \\ 388 & \mathrm{gg} \rightarrow \mathrm{Q}_{k} \bar{Q}_{k} \end{array}$

No. Subprocess	No.	Subprocess	No.	Subprocess
Compositeness:	210	$\mathrm{f}_{1} \mathrm{f}_{j} \rightarrow \bar{\ell}_{L} \tilde{\nu}_{\ell}^{*}+$	250	$\mathrm{f}_{\mathrm{ig}} \rightarrow \tilde{q}_{1 L} \tilde{\chi}^{3}$
146 e $\gamma \rightarrow \mathrm{e}^{*}$	211	$\mathrm{f}_{\mathrm{i}} \mathrm{f}_{j} \rightarrow \tilde{\tau}_{1} \tilde{\nu}_{\tau}^{*}+$	251	$\mathrm{f}_{i} \mathrm{~g} \rightarrow \tilde{\mathrm{q}}_{i R} \tilde{\chi}_{3}$
$147 \mathrm{dg} \rightarrow \mathrm{d}^{*}$	212	$\mathrm{f}_{i} \mathrm{f}_{j} \rightarrow \tilde{\tau}_{2} \tilde{\nu}_{\tau}^{*}+$	252	$\mathrm{f}_{\mathrm{i}} \mathrm{g} \rightarrow \tilde{\mathrm{q}}_{i L} \tilde{\chi}_{4}$
$148 \mathrm{ug} \rightarrow \mathrm{u}^{*}$	213	$\mathrm{f}_{i} \tilde{\mathrm{f}}_{i} \rightarrow \tilde{\nu}_{2} \tilde{\nu}_{e}^{*}$	253	$\mathrm{f}_{\mathrm{i}} \mathrm{g} \rightarrow \tilde{\mathrm{q}}_{\mathrm{i}} \mathrm{R} \tilde{\chi}_{4}$
$167 \quad \mathrm{q}_{1} \mathrm{q}_{j} \rightarrow \mathrm{~d}^{*} \mathrm{q}_{k}$	214	$\mathrm{f}_{i} \overline{\mathrm{f}}_{i} \rightarrow \bar{\nu}_{+} \bar{\nu}_{*}^{*}$	254	$\mathrm{ffig}^{\mathrm{g}} \rightarrow \tilde{\mathrm{q}}_{j L} \tilde{\chi}_{1}^{ \pm}$
$168 \quad \mathrm{q}_{1} \mathrm{q}_{j} \rightarrow \mathrm{u}^{*} \mathrm{q}_{k}$	216	$\mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{i} \rightarrow \tilde{\chi}_{1} \tilde{\chi}_{1}$	256	$\mathrm{f}_{\mathrm{i}} \mathrm{g} \rightarrow \tilde{\mathrm{q}}_{j L} \tilde{\chi}_{2}^{ \pm}$
$169 \quad \mathrm{q}_{1} \overline{\mathrm{G}}_{i} \rightarrow \mathrm{e}^{ \pm} \mathrm{e}^{* F}$	217	$\mathrm{f}_{i} \overline{\mathrm{f}}_{i} \rightarrow \tilde{\chi}_{2} \tilde{\chi}_{2}$	258	$\mathrm{f}_{\mathrm{i}} \mathrm{g} \rightarrow \tilde{\mathrm{a}}_{i} L \underline{\mathrm{~g}}$
$165 \quad \mathrm{f}_{1} \overline{\mathrm{f}}_{1}\left(\rightarrow \gamma^{*} / Z^{0}\right) \rightarrow \underline{f}_{2} \bar{f}_{k}$	218	$\mathrm{f}_{i} \bar{f}_{i} \rightarrow \tilde{\chi}_{3} \tilde{\chi}_{3}$	259	$\mathrm{f}_{\mathrm{ig}} \rightarrow \tilde{\mathrm{q}}_{1} R \mathrm{R}$
$166 \quad \mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{j}\left(\rightarrow \mathrm{~W}^{ \pm}\right) \rightarrow \mathrm{f}_{\mathrm{k}} \overline{\mathrm{f}}_{l}$	219	$\mathrm{f}_{i} \overline{\mathrm{f}}_{i} \rightarrow \tilde{\chi}_{4} \tilde{\chi}_{4}$	261	$\mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{\mathrm{i}} \rightarrow \mathrm{t}_{\mathrm{t}} \tilde{\mathrm{t}}_{\mathrm{i}}$
Extra Dimensions:	220	$\mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{i} \rightarrow \tilde{\chi}_{1} \tilde{\chi}_{2}$	262	$\mathrm{f}_{\mathrm{i}} \mathrm{f}_{i} \rightarrow \overline{\mathrm{t}}_{2} \overline{\mathrm{t}}_{2}$
$391 \mathrm{ff} \rightarrow \mathrm{G}^{*}$.	221	$\mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{i} \rightarrow \tilde{\chi}_{1} \tilde{\chi}^{3}$	263	$\mathrm{f}_{1} \bar{f}_{i} \rightarrow \tilde{\mathrm{t}}_{1} \tilde{\mathrm{t}}_{2}+$
$392 \mathrm{gg} \rightarrow \mathrm{G}^{*}$.	222	$\mathrm{f}_{i} \mathrm{f}_{i} \rightarrow \tilde{\chi}_{1} \tilde{\chi}_{4}$	264	$\mathrm{gg} \rightarrow \tilde{\mathrm{t}}_{1} \mathrm{n}_{0}$
$393 \mathrm{q} \overline{\mathrm{q}} \rightarrow \mathrm{g} \mathrm{G}^{*}$	223	$\mathrm{f}_{6} \mathrm{f}_{i} \rightarrow \tilde{\chi}_{2} \tilde{\chi}_{3}$	265	$\mathrm{gg} \rightarrow \mathrm{t}_{2} \mathrm{t}_{2}^{*}$
394 qg $\rightarrow \mathrm{qG}^{*}$	224	$\mathrm{f}_{i} \overline{\mathrm{f}}_{i} \rightarrow \tilde{\chi}_{2} \tilde{\chi}_{4}$	271	$\mathrm{f}_{i} \mathrm{f}_{j} \rightarrow \overline{\mathrm{a}}_{\mathrm{i}} / 2 \tilde{\mathrm{a}}_{\mathrm{j}} /$
395 gg $\rightarrow \mathrm{gG}^{*}$	225	$\mathrm{f}_{i} \mathrm{f}_{i} \rightarrow \bar{\chi}_{2} \chi_{4}$ $\mathrm{f}_{i} \mathrm{f}_{i} \rightarrow \tilde{\chi}_{3} \tilde{\chi}_{4}$	272	
Left-right symmetry:	225 226		273	$\mathrm{f}_{\mathrm{i}} \mathrm{f}_{j} \rightarrow \tilde{\mathrm{q}}_{i} / L \tilde{\mathrm{q}}_{j} \mathrm{l}^{+}$
$341 \quad \ell_{i} \ell_{j} \rightarrow \mathrm{H}_{L_{+}^{+ \pm}}^{ \pm+}$	226 227		274	$\mathrm{f}_{i} \overline{\mathrm{f}}_{j} \rightarrow \overline{\mathrm{q}}_{i L} \overline{\mathrm{q}}_{j}^{*}{ }_{L}$
$342 \quad \ell_{1} \ell_{j} \rightarrow \mathrm{H}_{\square}^{+ \pm}$	227 228	$\mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{i} \rightarrow \chi_{2}^{\prime} \tilde{\chi}_{2}^{+}$ $\mathrm{f}_{\mathrm{f}} \bar{\chi}_{i} \rightarrow \tilde{\chi}^{ \pm} \tilde{\chi}^{\mp}$	275	
$343 \quad \ell_{i}^{ \pm} \gamma \rightarrow \mathrm{H}_{2}^{ \pm \pm} \mathrm{e}^{\mp}$	228	$\mathrm{f}_{\mathrm{i}_{\mathrm{i}} \mathrm{f}_{i}} \rightarrow \chi_{1}^{+} \chi_{2}^{+}$	276	$\mathrm{f}_{\mathrm{i}} \mathrm{f}_{j} \rightarrow \overline{\mathrm{q}}_{i L} \tilde{\mathrm{q}}_{j}^{*}{ }^{\text {a }}$
$344 \quad \ell_{i}^{-} \gamma \rightarrow \mathrm{H}_{R}^{+} \mathrm{e}^{\mp}$	229	$\mathrm{f}_{1} \mathrm{f}_{j} \rightarrow \tilde{\chi}_{1} \tilde{\chi}_{1}{ }_{1}$	277	$\mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{i} \rightarrow \tilde{\mathrm{q}}_{j L} \tilde{\mathrm{q}}_{j}^{*}$
$345 \quad \ell_{i}^{+} \gamma \rightarrow \mathrm{H}_{L}^{ \pm} \pm \mu^{\mp}$	230	$\mathrm{f}_{1} \mathrm{f}_{j} \rightarrow \tilde{\chi}_{2} \tilde{\chi}_{1}^{ \pm}$	278	$\mathrm{f}_{i} \mathrm{f}_{i} \rightarrow \overline{\mathrm{q}}_{j R} \tilde{\mathrm{q}}_{j}^{*}{ }^{\text {a }}$
$346 \quad \ell_{5}^{ \pm} \gamma \rightarrow \mathrm{H}_{R}^{ \pm} \mu^{\mp}$	231	$\mathrm{f}_{\mathrm{i}} \mathrm{f}_{j} \rightarrow \tilde{\chi} \tilde{\chi}^{\chi_{1}^{1}}$	279	$\mathrm{gg} \rightarrow \tilde{q}_{i L} \tilde{\mathrm{q}}_{i L}$
$347 \quad \ell_{i}^{+} \gamma \rightarrow \mathrm{H}_{2}^{+ \pm} \tau^{\mp}$	232	$\mathrm{f}_{i} \mathrm{f}_{j} \rightarrow \tilde{\chi}_{4} \tilde{\chi}_{1}^{ \pm}$	280	$\mathrm{gg} \rightarrow \tilde{\mathrm{q}}_{i R} \tilde{\mathrm{q}}_{i R}$
$348 \quad \ell_{i}^{ \pm} \gamma \rightarrow \mathrm{H}_{R}^{ \pm} \pm \tau^{\mp}$	233	$\chi_{i} \bar{f}_{j} \rightarrow \tilde{\chi}_{1} \tilde{\chi}_{2}^{+}$	281	$\mathrm{bq}_{i} \rightarrow \tilde{\mathrm{~b}}_{1} \tilde{q}_{i L}$
$349 \quad \mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{\mathrm{i}} \rightarrow \mathrm{H}_{L}^{-+} \mathrm{H}_{L}^{--}$	234	$\mathrm{f}_{1} \overline{\mathrm{f}}_{j} \rightarrow \tilde{\chi}_{2} \tilde{\chi}_{2}^{+}$	282	$\mathrm{bq}_{i} \rightarrow \tilde{\mathrm{~b}}_{2} \tilde{q}_{i R}$
$350 \quad \mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{\mathrm{i}} \rightarrow \mathrm{H}_{R}^{++} \mathrm{H}_{R}^{--}$	235	$\mathrm{f}_{6} \overline{\mathrm{f}}_{j} \rightarrow \tilde{\chi}_{3} \tilde{\chi}_{2}{ }^{ \pm}$	283	$\mathrm{bq}_{i} \rightarrow \tilde{\mathrm{~b}}_{1} \tilde{q}_{i R}+$
$351 \quad \mathrm{f}_{i} \mathrm{f}_{j} \rightarrow \mathrm{f}_{\mathrm{k}} \mathrm{f}_{\mathrm{l}} \mathrm{H}_{L}^{+1}$	236	$\mathrm{f}_{i} \overline{\mathrm{f}}_{j} \rightarrow \tilde{\chi}_{4} \tilde{\chi}^{ \pm}$	284	$\mathrm{b} \overline{\mathrm{q}}_{i} \rightarrow \tilde{\mathrm{~b}}_{1} \tilde{\mathrm{q}}_{\mathrm{i} L}^{*}$
$352 \quad \mathrm{f}_{\mathrm{i}} \mathrm{f}_{j} \rightarrow \mathrm{f}_{\mathrm{k}} \mathrm{fi}_{\mathrm{i}} \mathrm{H}_{R}^{ \pm}$	237	$\mathrm{f}_{1} \bar{f}_{i} \rightarrow \overline{\mathrm{~g}} \tilde{\chi}_{1}$	285	$\mathrm{b} \overline{\mathrm{q}}_{i} \rightarrow \tilde{\mathrm{~b}}_{2} \tilde{\mathrm{q}}_{i}{ }^{*} R$
$353 \quad \mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{\mathrm{i}} \rightarrow \mathrm{Z}_{R}^{0}$	238	$\mathrm{f}_{\mathrm{i}} \bar{f}_{i} \rightarrow \tilde{\mathrm{~g}} \tilde{\chi}_{2}$	286	$\mathrm{b} \overline{\mathrm{q}}_{i} \rightarrow \tilde{\mathrm{~b}}_{1} \tilde{g}_{i}{ }_{R+}$
$354 \quad \mathrm{f}_{i} \mathrm{f}_{j} \rightarrow \mathrm{~W}_{\vec{R}}^{ \pm}$	239	$\mathrm{f}_{\mathrm{i}} \mathrm{f}_{i} \rightarrow \overline{\mathrm{~g}} \tilde{\chi}_{3}$	287	$\mathrm{f}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}} \rightarrow \tilde{\mathrm{b}}_{1} \mathrm{~b}^{*}$
SUSY:	240	$\mathrm{f}_{\mathrm{f}} \overline{\mathrm{f}}_{i} \rightarrow \overline{\mathrm{~g}}_{\mathrm{g}} \tilde{\chi}_{4}$	288	$\mathrm{f}_{i} \overline{\mathrm{f}}_{i} \rightarrow \tilde{\mathrm{~b}}_{2} \hat{\mathrm{~b}}_{2}^{*}$
$201 \quad f_{i} \bar{f}_{i} \rightarrow \tilde{c}_{L} \tilde{\mathrm{c}}_{L}^{*}$	241	$\mathrm{f}_{1} \overline{\mathrm{f}}_{j} \rightarrow \overline{\mathrm{~g}} \tilde{\chi}_{1}^{ \pm}$	289	$\mathrm{gg} \rightarrow \tilde{\mathrm{b}}_{1} \tilde{\mathrm{~b}}_{1}$
$202 \quad \mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{\mathrm{i}} \rightarrow \tilde{\mathrm{e}}_{R} \tilde{\mathrm{e}}_{R}^{*}$	242	$\mathrm{f}_{\mathrm{f}} \mathrm{f}_{j} \rightarrow \tilde{\mathrm{~g}} \tilde{\chi}_{2}{ }^{ \pm}$	290	$\mathrm{gg} \rightarrow \tilde{\mathrm{b}}_{2} \tilde{\mathrm{~b}}_{2}^{*}$
$203 \quad \mathrm{f}_{i} \mathrm{f}_{i} \rightarrow \tilde{\mathrm{e}}_{L} \tilde{\mathrm{e}}_{R}+$	243	$\mathrm{f}_{\mathrm{f}} \mathrm{f}_{i} \rightarrow \mathrm{~g} \mathrm{~g}_{\mathrm{g}}$	290 291	$\begin{aligned} & \mathrm{gg} \rightarrow \mathrm{~b}_{2} \mathrm{~b}_{2} \\ & \mathrm{bb} \rightarrow \tilde{\mathrm{~b}}_{1} \mathrm{~b}_{1} \end{aligned}$
$204 \quad \mathrm{f}_{\mathrm{i}} \overline{\bar{i}}_{i} \rightarrow \tilde{\mu}_{L} \tilde{\mu}_{L}^{*}$	244 246	$\mathrm{gg} \rightarrow \mathrm{g}$ है	292	$\mathrm{bb} \rightarrow \tilde{\mathrm{~b}}_{2} \tilde{\mathrm{~b}}_{2}$
$2050 \mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{i} \rightarrow \tilde{\mu}_{R} \tilde{\mu}_{R}{ }^{2}$	246 247	$\mathrm{f}_{i g} \rightarrow \tilde{\mathrm{q}}_{i L} \tilde{\chi}_{1}$ $\mathrm{f}_{\mathrm{i}} \mathrm{g} \rightarrow \tilde{\mathrm{q}}_{i R} \tilde{\chi}_{1}$	293	$\mathrm{bb} \rightarrow \mathrm{E}_{1} \mathrm{E}_{2}$
$\begin{array}{ll}206 & \mathrm{f}_{i} \overline{\mathrm{f}}_{i} \rightarrow \tilde{\mu}_{L} \tilde{\mu}_{R}^{*}+ \\ 207 & \mathrm{f}_{\mathrm{i}} \overline{\mathrm{f}}_{i} \rightarrow \tilde{\tau}_{1} \tilde{\tau}_{i}\end{array}$	247 248	$\mathrm{f}_{\mathrm{i}} \mathrm{g} \rightarrow \mathrm{q}_{i R} \tilde{\chi}_{1}$ $\mathrm{f}_{\mathrm{i}} \mathrm{g} \rightarrow \tilde{\mathrm{c}}_{i L} L \tilde{\chi}_{2}$	294	$\mathrm{bg} \rightarrow \tilde{\mathrm{b}}_{1} \mathrm{~g}$
$\begin{array}{ll} 207 & f_{i} \bar{f}_{i} \rightarrow \tilde{\tau}_{1} \tilde{\tau}_{i}^{*} \\ 208 & \mathrm{f}_{1} \bar{f}_{i} \rightarrow \tilde{\tau}_{2} \tau_{2}^{*} \end{array}$	248 249	$\begin{aligned} & \mathrm{f}_{\mathrm{ig}} \rightarrow \tilde{\mathrm{q}}_{i} L \tilde{\chi}_{2} \\ & \mathrm{f}_{\mathrm{i}} \mathrm{~g} \rightarrow \tilde{\mathrm{q}}_{i R} \tilde{\chi}_{2} \end{aligned}$	295	$\mathrm{bg} \rightarrow \tilde{\mathrm{b}}_{2} \tilde{\mathrm{~g}}$
$\begin{array}{ll} 208 & f_{i} f_{i} \rightarrow \tau_{2} \tau_{2}^{*} \\ 209 & f_{i} f_{i} \rightarrow \tau_{1} \tau_{2}^{*}+ \\ \hline \end{array}$			296	$\mathrm{b} \overline{\mathrm{b}}^{\mathrm{b}} \stackrel{\rightharpoonup}{\mathrm{b}}_{1} \stackrel{\mathrm{~b}}{2}_{*}^{*}+$

Process simulation

Many specialized processes already available in Pythia8/Herwig++

but, processes usually only implemented in lowest non-trivial order ...
Need external programs that ...

1. include higher order loop corrections or, alternatively, do kinematic dependent rescaling
2. allow matching of higher order ME generators [otherwise need to trust parton shower description ...]
3. provide correct spin correlations often absent in PS ...[e.g. top produced unpolarized, while $t \rightarrow$ bW \rightarrow blv decay correct]
4. simulate newly available physics scenarios ...[appear quickly; need for many specialised generators]

Les Houches Accord ...

Specifies how parton-level information about the hard process and sequential decays can be encoded and passed on to a general-purpose generator.

Les Houches: regular annual meeting between theoreticians and experimentalists on MC generator developments.

Specialised Generators [some examples]

AcerMC	ttbb, .sinlr top
ALPGEN	$\begin{aligned} & W / Z+\leq 6 j, \\ & n W+m Z+k H+\leq 3 j, \ldots \end{aligned}$
AMEGIC++	generic LO
CompHEP	generic LO
GRACE [+Bases/Sprin	$\begin{aligned} & \text { : generic LO } \\ & \text { ring] } \\ & \text { [+ some NLO loops] } \end{aligned}$
GR@PPA	bbbb
MadCUP	W/Z $+\leq 3 \mathrm{j}$, ttbb
HELAS \& MadGraph	generic LO
MCFM	NLO W/Z+ $\leq 2 \mathrm{j}$, WZ, WH, $\mathrm{H}+\leq 1 \mathrm{j}$
O'Mega \& WHIZARD	generic LO
VECBOS	W/Z + ¢ 4
HRES :	Higgs boson production @NNLO
DYNNLO :	: W/Z production @NNLO

Type I: Leading order matrix element \& leading log parton shower

Type I: Leading order matrix element \& leading log parton shower

LO ME for hard processes

$[2 \rightarrow 1$ or $2 \rightarrow 2$]

- Parton Shower: attaches gluons at each leg.
- only in soft-collinear approxmation
- typically underestimate large angle/hard emission

- 1) or 2) at ME (different generations, different accuracy: cannot be combined

Type 2 : Leading order matrix element \& leading log parton shower + merging

LO ME for hard processes
[$2 \rightarrow 1$ or $2 \rightarrow 2$]

ME+PS
Herwig++/ Pythia6/8
SingleTop, TopRex
Phantom
AcerMC
GRAPPA
CompHEP
ME+PS+merging
Alpgen
MadGraph
Sherpa
NLO+PS
MC@NLO POWHEG

Merging @LO

MLM matching (simplified)

1) define matching cuts:
for example $\mathrm{PT}^{\mathrm{J}}>20 \mathrm{GeV}, \Delta \mathrm{R}=0.4$

Merging @LO

MLM matching (simplified)

1 parton
2 partons

1) define matching cuts:
for example $\mathrm{PT}^{\mathrm{J}}>20 \mathrm{GeV}, \Delta \mathrm{R}=0.4$
2) generate ME with 1, 2, ...n jets

Merging @LO

MLM matching (simplified)

1) define matching cuts:
for example $\mathrm{p}^{\mathrm{J}}>20 \mathrm{GeV}, \Delta \mathrm{R}=0.4$
2) generate ME with 1, 2, ..n jets

1 parton
2 partons
3) shower all events

Merging @LO

MLM matching (simplified)

1) define matching cuts:
for example $\mathrm{p}^{\mathrm{J}}>20 \mathrm{GeV}, \Delta \mathrm{R}=0.4$
2) generate ME with 1, 2, ..n jets

2 partons

Merging @LO

MLM matching (simplified)

1) define matching cuts:
for example $\mathrm{p}^{\mathrm{J}}>20 \mathrm{GeV}, \Delta \mathrm{R}=0.4$
2) generate ME with 1, 2, ...n jets

1 parton

3) shower all events
4) select only events where jets above the p_{t} threshold match with final partons

Consequences:
all jets with $\mathrm{p}_{\mathrm{T}}>20 \mathrm{GeV}$ and $\Delta \mathrm{R}>0.4$ to other jets come from ME collinear and soft jets come from PS Use each of them where they are best.

W+jets distributions

Type III : Next-to-leading order ME \& leading-log parton shower

hard processes simulated at NLO accuracy including real \& virtual corrections ...
improved description of cross sections \& kinematic distributions

Type III : Next-to-leading order ME \& leading-log parton shower

hard processes simulated at NLO accuracy including real \& virtual corrections ...
improved description of cross sections \& kinematic distributions 2 Matching methods:

Truncated showers:

1. Powheg	1) first emission produced by the ME;
	2) don't allow the PS to produce patrons harder than the first emission;
	3) not exact at NLO (containes unbalanced
2. MC@NLO:	higher order terms)
$\|\mathrm{ME}\|^{2}=\mid \mathrm{ME}+$	(up to as^{2}) $\left.\right\|^{2}$
	act at NLO...
	me negative weights, need retuning for each PS

Merging @NLO (quite new, going to be used at 13 TeV)

JHEP12 (2012) 061

FxFx (Frederix-Frixione) merging

1) define a matching scale μ_{Q};
2) don't allow \mathbb{S} events with $\mathrm{p}_{\mathrm{T}}>\mu_{\mathrm{Q}}$ (those will be provided by \mathbb{H} events of n-1 partons NLO real emission); the restriction is imposed both at ME and on the shower starting scale $\mu<\mu_{Q}$
3) treat the obtained events as LO ones and apply an LO-style merging (this allow to produce smoother distributions)

Let's recap

From partons to color neutral hadrons

Fragmentation:

Parton splitting into other partons [QCD: re-summation of leading-logs] ["Parton shower"]

Hadronization:
Parton shower forms hadrons [non-perturbative, only models]

Decay of unstable hadrons [perturbative QCD, electroweak theory]

Non-perturbative transition from partons to hadrons ...

[Modelling relies on phenomenological models available]
Models based on MC simulations
very successful:
Generation of complete final states ...
[Needed by experimentalists in detector simulation]
Caveat: tunable ad-hoc parameters
Most popular MC models:
Pythia/8: Lund string model Herwig/++ : Cluster model

Independent fragmentation of each parton

Simplest approach:
[Field, Feynman, Nucl. Phys. B136 (1978) 11
Start with original quark
Generate quark-antiquark pairs from vacuum
\rightarrow form "primary meson" with energy fraction z
Continue with leftover quark with energy fraction $1-z$
Stop at low energies (cut-off) Include flavour non-perturbative fragmentation functions $D(z)$
$D(z)$: probability to find a meson/hadror with energy fraction z in jet ...

Lund String Model

[Andersson et al., Phys. Rep. 97 (1983) 31]
QCD potential:

After: Ellis et al.,
QCD and Collider Physics

- At low energy: hadron formation
- Very widely used ... [default in Pythia 6/8]

Lund String Model

Repeated string breaks for large system with pure $V(r)=k \cdot r$, i.e. neglect Coulomb part

$$
\left|\frac{\mathrm{d} E}{\mathrm{~d} z}\right|=\left|\frac{\mathrm{d} p_{z}}{\mathrm{~d} z}\right|=\left|\frac{\mathrm{d} E}{\mathrm{~d} t}\right|=\left|\frac{\mathrm{d} p_{z}}{\mathrm{~d} t}\right|=\kappa
$$

Energy-momentum quantities can be read from space-time quantities ...

Scientific American 1979 Kenneth A. Johnson

Simple but powerful picture of hadron production
[with extensions to massive quarks, baryons, ...]

$$
\begin{aligned}
\mathcal{P} \propto & \exp \left(-\frac{\pi m_{\perp q}^{2}}{\kappa}\right) \\
& \propto \exp \left(-\frac{\pi p_{\perp q}^{2}}{\kappa}\right) \exp \left(-\frac{\pi m_{q}^{2}}{\kappa}\right)
\end{aligned}
$$

Yields: Common Gaussian $\mathrm{p} \perp$ spectrum Heavy quark suppression

Lund String Model

Repeated string breaks for large system with pure $\mathrm{V}(\mathrm{r})=\mathrm{K} \cdot \mathrm{r}$, i.e. neglect Coulomb part

$$
\left|\frac{\mathrm{d} E}{\mathrm{~d} z}\right|=\left|\frac{\mathrm{d} p_{z}}{\mathrm{~d} z}\right|=\left|\frac{\mathrm{d} E}{\mathrm{~d} t}\right|=\left|\frac{\mathrm{d} p_{z}}{\mathrm{~d} t}\right|=\kappa
$$

Energy-momentum quantities can be read from space-time quantities ...

Kenneth A. Johnson

Simple but powerful picture of hadron production
[with extensions to massive quarks, baryons, ...]

$$
\begin{aligned}
\mathcal{P} \propto & \exp \left(-\frac{\pi m_{\perp q}^{2}}{\kappa}\right) \\
& \propto \exp \left(-\frac{\pi p_{\perp q}^{2}}{\kappa}\right) \exp \left(-\frac{\pi m_{q}^{2}}{\kappa}\right)
\end{aligned}
$$

Yields: Common Gaussian $\mathrm{p} \perp$ spectrum
Heavy quark suppression

Cluster Model

[Webber, Nucl. Phys. B238 (1984) 492]
Color flow confined during hadronisation process
\rightarrow Formation of color-neutral parton clusters

Gluons (color-anticolor) split to quark-antiquark pairs

Clusters decay into 2 hadrons according to phase-space, i.e. isotropically
\rightarrow no free tuning parameters parton clusters
Very widely used ... [default in Herwig/Herwig++]

Hadronisation models summary

Model	Pythia6/8 (string)	Herwig/Herwig++ / Sherpa(cluster)
Energy-mom. picture	powerful	simple
predictive	unpredictive	
Parameters	few	many
Flavour composition	messy	simple
	unpredictive	in-between
Parameters	many	few

Structure of basic generator process [by order of consideration]

From the 'simple' to the 'complex' or from 'calculable' at large scales to 'modelled; at small

Matrix elements (ME)

1. Hard subprocess:
$|M|^{2}$, Breit Wigners, PDFs

2. Resonance decays: Includes particle correlations

Parton Shower (PS)
3. Final-state parton showers:

$g \rightarrow g g$
$g \rightarrow q q$
4. Final-state parton
$q \rightarrow q \gamma$ showers:

Conclusions: Structure of basic generator process

From the 'simple' to the 'complex' or from 'calculable' at large scales to 'modelled; at small

Underlying Event (UE)

5. Multi-parton interaction:

6. Beam remnants:

Stable Particle State

7. Hadronisation:
8. Decays:

The DGLAP evolution equation is said to resum large collinear logarithms. Se where are these logarithsm, and where is the resummation?

Let's perform the integration of the DGLAP equation and expand the result:

$$
\begin{aligned}
f(x, t)= & f_{0}(x)+\int_{0_{0}}^{t} \frac{d t^{\prime}}{t^{\prime}} \frac{\alpha_{s}\left(t^{\prime}\right)}{2 \pi} \int_{x}^{1} \frac{d z}{z} P(z) d\left(\frac{x}{z}, t^{\prime}\right) \\
= & f_{0}(x)+\int_{t_{0}}^{t} \frac{d t^{\prime}}{t^{\prime}} \frac{\alpha_{x}}{2 \pi} \int_{x}^{1} \frac{d z}{z} P(z)\left\{f_{0}\left(\frac{x}{z}\right)+\right. \\
& \left.+\int_{t_{0}}^{z^{\prime}} \frac{d t^{\prime \prime}}{t^{\prime \prime}} \frac{\alpha_{x}}{2 \pi} \int_{x / z}^{1} \frac{d z^{\prime}}{z^{\prime}} P\left(z^{\prime}\right)\left[f_{0}\left(\frac{x}{z z^{\prime}}\right)+\ldots\right]\right\} \\
= & f_{0}(x)+\frac{\alpha_{s}}{2 \pi} \ln \left(\frac{t}{t_{0}}\right) \int_{x}^{1} \frac{d z}{z} P(z) f_{0}\left(\frac{x}{z}\right)+ \\
& +\frac{1}{2!}\left[\frac{\alpha_{s}}{2 \pi} \ln \left(\frac{t}{t_{0}}\right)\right]^{2} \int_{x}^{1} \frac{d z}{z} P(z) \int_{x / z}^{1} \frac{d z^{\prime}}{z^{\prime}} P\left(z^{\prime}\right) G_{0}\left(\frac{x}{z z^{\prime}}\right)+\ldots
\end{aligned}
$$

As suggested by the last step, it is indeed a resummation of all terms proportional to $\left[\frac{a_{s}}{2 \pi} \ln \left(\frac{t}{1_{2}}\right)\right]^{n}$.

