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Introduction

• The Standard Model of particle physics 
has been extremely successful (including 
prediction of the Higgs boson 
discovered at the Large Hadron Collider)

• However, it does not explain observations of:

- Dark Matter
- The baryon-antibaryon asymmetry
- Light neutrino masses and mixing

• No guaranteed regime where new physics
will emerge

→ Exploration of new territory
motivates ambitious future colliders
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Future of the Large Hadron Collider (LHC)

• Collect 20x more data within 
the next 20 years

This talk: what could be the 
next step?



02/04/2019 Philipp Roloff e+e− collisions at CLIC 4

Hadron and e+e− colliders

• Proton is compound object
→ Initial state unknown
→ Limits achievable precision

• High-energy circular colliders possible

• High rates of QCD backgrounds
→ Complex triggers
→ High levels of radiation

Hadron colliders (e.g. LHC): e+e− colliders:

• e+e− are pointlike
→ Initial state well-defined (√s, polarisation)
→ High-precision measurements

• High energies (√s ≥ 380 GeV) require 
linear colliders

• Clean experimental environment
→ Less / no need for triggers
→ Lower radiation levels
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pp and e+e− collisions

8 orders of
magnitude!

pp collisions:
Interesting events need to be
found in huge number of collisions

e+e− collisions:
More “clean”, all events usable
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Circular vs. linear e+e− colliders

Circular colliders:
• Can accelerate the beam in many turns
• Can use the beam many times
• For electrons synchrotron radiation can be large
(e.g. 2.75 GeV/turn lost at LEP for E = 105 GeV)
→ maximal energy limited

Linear colliders:
• Almost no radiation in a linac
• Have to achieve energy in a single pass
→ high acceleration gradients needed
• Have to achieve luminosity in single pass
→ small beam size and high beam power needed
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Studies of high-energy e+e− colliders

Compact Linear Collider (CLIC): CERN
√s = 380 GeV, 1.5 TeV, 3 TeV
Length: 11 km, 29 km, 50 km 

Future Circular Collider (FCC-ee): CERN
√s = 90 - 365 GeV

Circumference: 97.75 km

International Linear Collider (ILC): 
Japan (Kitakami)

√s = 250 - 500 GeV
Length: 20 km, 31 km 

Circular Electron Positron Collider
(CEPC): China

√s = 90 - 240 GeV
Circumference: 100 km
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Studies of high-energy pp colliders

Future Circular Collider (FCC-hh): CERN
√s ≈ 100 TeV

Circumference: 97.75 km

Super proton proton Collider
(SppC): China
√s > 70 GeV

Circumference: 100 km

High-Energy LHC
(HE-LHC): CERN

√s ≈ 27 TeV
Circumference: 27 km

Tunnels initially used for 
e+e− collisions
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The Compact Linear Collider (CLIC)

Compact Linear Collider (CLIC):
• Based on 2-beam acceleration scheme
• Operated at room temperature
• Gradient: 100 MV/m
• Energy: 380 GeV - 3 TeV
• Length: 50 km (for 3 TeV)
• P(e−) = ±80%
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CLIC acceleration scheme

Drive beam supplies RF power:
• 12 GHz bunch structure
• Low energy:
2.4 GeV - 240 MeV
• High current: 100 A

Main beam for physics:
• High energy: 9 GeV - 1.5 TeV
• Current: 1.2 A
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CLIC layout at 3 TeV
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The CLIC Test Facility (CTF3)
CTF3 successfully demonstrated:
• Drive beam generation
• RF power extraction
• Two-beam acceleration up to a 
gradient of 145 MeV/m

• CTF3 completed its mission in 2016
• A new facility since 2017 
(based on the CTF3 probe beam):
CERN Linear Electron Accelerator for 
Research (CLEAR)
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2-beam acceleration module in CTF3

drive 
beam

main 
beam



02/04/2019 Philipp Roloff e+e− collisions at CLIC 14

CLIC accelerating structures

• 12 GHz (X-band)

• Break down rate (BDR): 
p ≤ 3 ∙ 10-7 m-1pulse-1

• R&D programme established
gradient O(100MV/m)

• Shorter pulses have 
less breakdowns

Double-structure
unit
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CLIC technology applications

Collaboration with many facilities: photon sources, medical applications
→ lots of experience being built up

Example: SwissFEL
• 104 C-band structures (5.7 GHz, 2 m long)
• Beam up to 6 GeV at 100 Hz
• Similar μm-level tolerancesm-level tolerances
• Length similar to 800 CLIC structures
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CLIC staged implementation

CERN-2018-005-M
arXiv:1812.01644

CLIC would be implemented 
in several energy stages

Current baseline scenario:

• The strategy can be adapted to 
possible discoveries at the (HL-)LHC
or the initial CLIC stage(s)

• 1 year = 1.2 x 107 seconds
(based on CERN experience)
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CLIC at 380 GeV
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CLIC at 3 TeV
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Cost and power

380 GeV: 5890+1470
-1270

 MCHF

Upgrade to 1.5 TeV: add ≈5100 MCHF
Upgrade to 3 TeV: add another ≈7300 MCHF

380 GeV: large improvement 
compared to CDR (2012)

1.5 and 3 TeV: power not yet optimised
→ will be done next

CERN-2018-005-M
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Comparison to other e+e− collider options

Linear colliders:
• Can reach the highest energies
• Luminosity rises with energy
• Beam polarisation at all energies
• Potential to benefit from novel 
accelerator techniques

Circular colliders:
• Large luminosity at 
lower energies
• Luminosity decreases 
with energy

NB: Peak luminosity at 
LEP2 (209 GeV) was ≈ 1032 cm−2s−1
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CLIC experimental conditions
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Beam-induced backgrounds

• e+e- pairs
• γγ → hadrons

e+e- pairs:
High occupancies
→ Detector design issue
(small cell sizes)

γγ → hadrons
Main background
in calorimeters and trackers
→ Impact on physics
(needs suppression in the data)
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Principle of a particle physics detector
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CLIC detector concept

• Ultra low-mass
vertex detector
with ≈ 25 x 25 μm-level tolerancesm2

pixels

• Main trackers:
silicon-based
(large pixels / short strips)

• Fine grained (PFA) 
calorimetry, 1+7.5 λ

• Strong solenoid magnet (4 T)

• Complex forward region 
with compact calorimeters

• Instrumented return yoke for muon ID

CLICdp-Note-2017-001
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CLIC silicon vertex/tracker R&D

D. Dannheim, VCI2019
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Calorimetry and PFA
Detector design driven by jet energy resolution and background rejection
→ Fine-grained calorimetry + particle flow analysis (PFA)

What is PFA?
Typical jet composition:
• 60% charged particles
• 30% photons
• 10% neutral hadrons

Always use the best
available measurement:
• charged particles
→ tracking detectors:
• photons → ECAL:
• neutrals → HCAL:

Hardware and software!
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Background suppression
Beam-induced background from γγ → hadrons can be efficiently suppressed by
applying p

T
-dependent timing cuts on individual reconstructed particles (= particle flow objects)

e+e− → tt at 3 TeV with background from γγ → hadrons overlaid
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CLICdet performance in full simulation

Transverse momentum resolution of 
2 x 10−5 GeV−1 achieved for high-energy 
tracks in the central part of the detector

Tracking Hadronic W and Z decays

→ Physics projections are based
on realistic full detector simulations and

include the impact of beam-beam effects 

arXiv:1812.07337
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How to look for new physics?

1.) Direct searches:
Looking for new particles 
and unknown effects

2.) Learning from SM processes:
• Precision study of production and 
decay properties of known SM particles
• Focus on the Higgs boson and top 
quark which have not been studied in 
e+e− collisions so far

→ Both approaches benefit from 
the highest possible energies!
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Higgs and top-quark physics:

• Single Higgs production

• Double Higgs production

• Top-quark mass

• EFT analysis
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Single Higgs production

Higgsstrahlung: e+e− → ZH
• σ ~ 1/s, dominant up to ≈ 450 GeV

WW fusion: e+e− → Hv
e
v

e

• σ ~ log(s), dominant above 450 GeV
• Large statistics at high energy

ttH production: e+e− → ttH
• Accessible ≥ 500 GeV, maximum ≈ 800 GeV
• Direct extraction of the top-Yukawa coupling
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Higgsstrahlung: e+e− → ZH

 Using Z → e+e−, μ+μ−:
• HZ events can be identified from the 
Z recoil mass alone
→ Higgs width and couplings without 
assumptions (requires lepton collider)

• Best precision at 240/250 GeV
(tracking resolution, 
beam energy spectra)

Using Z → qq:
• Almost model-independent measurement 
of g

HZZ
 possible using hadronic Z decays

→ Substantial improvement in precision possible

• Better precision at 350 GeV found than 
at 250 GeV or 420 GeV

CLICdp
350 GeV

ZH→qqH

Eur. Phys. J. C 76, 72 (2016)

mrecoil
2 =(√s−EZ)

2−|⃗pZ|
2

Known at 
lepton collider
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CLIC coupling sensitivity

Based on Eur. Phys. J. C 77, 475 (2017)
CERN-2018-009-M

• Already the first CLIC stage 
significantly better than HL-LHC 
for several couplings: 
κ

W
, κ

Z
, κ

b
 and κ

c

• The full CLIC program enhances 
the precision further

Precision on Higgs coupling strength 
to other SM particles
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Double Higgs production

e+e− → ZHH:
• Cross section maximum ≈ 600 GeV

e+e− → HHv
e
v

e
:

• Benefits from high-energy operation

Projected precision:
• Δ(λ) = ±50% at HL-LHC
• Δ(λ) = -7% +11% at CLIC 
for 1.4 and 3 TeV combined

Phys. Rev. D 88, 055024 (2013)

arXiv:1901.05897
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Top-quark pair production

e+e− → tt:
• Production threshold at √s ≈ 2m

top

• 380 GeV is near the maximum
→ large event samples (for rare decays etc.)

e+e− → ttH:
• Maximum near 800 GeV

e+e− → ttv
e
v

e
 (Vector Boson Fusion):

• Benefits from highest energies
• Potential high-energy probe of the 
top Yukawa coupling
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Threshold scan
• Measurement at different
centre-of-mass energies in the 
tt production threshold region
(data also useful for Higgs physics)

• Expected precision on 1S mass: ≈ 50 MeV
(currently dominated by theory 
NNNLO scale uncertainty)

• Theoretical uncertainty in the order of 
10 MeV when transforming the measured
1S mass to the MS mass scheme

• Other methods: ISR photons, 
direct reconstruction (less precise)

• Precision at the HL-LHC limited to 
several hundred MeV

Phys. Rev. Lett. 114, 142002 (2015)

Optimised CLIC luminosity 
spectrum (90% bunch charge)arXiv:1807.02441
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Global Effective Field Theory fit

CLIC input to fit:
Higgs couplings, top quark observables, 
WW production, two-fermion production

CERN-2018-009-M
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New physics potential



02/04/2019 Philipp Roloff e+e− collisions at CLIC 39

Compositeness at CLIC
Composite Higgs Composite top

m
*
: compositeness scale

g
*
: coupling strength of the composite sector

Discovery of Higgs compositeness scale up to 10 TeV (40 TeV for g
*
 ≈ 8)

Discovery of top compositeness scale up to 8 TeV (20 TeV for small g
*
)

CERN-2018-009-M
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Direct new physics searches

• Direct observation of new 
particles coupling to γ*/Z/W
→ precision measurement of 
new particle masses and couplings

• The sensitivity often extends up to 
the kinematic limit
(e.g. M ≤ √s / 2 for pair production)

• Very rare processes accessible 
due to low backgrounds (no QCD)
→ CLIC especially suitable 
for electroweak states

• Polarised electron beam and threshold 
scans might be useful to 
constrain the underlying theory
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Direct observation of sparticles

Example: Phenomenological MSSM with 11 parameters

arXiv:1710.11091

CLIC 3 TeV

CLIC 1.5 TeV

Blue lines:
best fit values

Orange bands:
68% & 95% 
CL ranges

• Global fit to current experimental data (LHC results, low-energy and 
flavour experiments, CDM measurements)
• In this model, many gaugions and sleptons are accessible at CLIC, 
stop and sbottom are possible
→ Direct discoveries are (still) a main motivation for high-energy CLIC operation
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Higgs plus heavy singlet

CERN-2018-009-M

Heavy singlet mixing 
with Higgs boson:
h = h

0
 cosγ + S sinγ

ɸ = S cosγ - h
0
 sinγ

Direct production:
e+e− → ννɸ, ɸ→hh

Indirect sensitivity from
Higgs couplings

→ Both approaches are 
complementary
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Dark Matter searches...

e+e− → χ+χ−(+γ)
Small mass difference: χ± → χ0π±

Long-lifetime: χ± leaves a short, 
disappearing (“stub”) track in the detector

• CLIC might discover the thermal 
Higgsino at 1.1 TeV

CERN-2018-009-M

Electroweak n-plet states 
with hypercharge Y: (1,n,Y)

… using stub tracks: … in loops:
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Summary and conclusions
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CLIC timeline

• Technology-driven schedule from start of construction

• After go-ahead, at least 5 years are needed before construction can start
→ first beams could be available by 2035

CERN-2018-005-M
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CLIC collaborations

CLIC accelerator collaboration
≈60 institutes from 28 countries

http://clic-study.web.cern.ch

• CLIC accelerator design and development
(construction and operation of CTF3)

CLIC detector & physics (CLICdp) 
Collaboration: 30 institutes from 18 countries

http://clicdp.web.cern.ch

• Physics prospects and simulation studies
• Detector optimisation and R&D for CLIC 

http://clic-study.web.cern.ch/
http://clicdp.web.cern.ch/
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Summary and conclusions

• An e+e− collider is widely considered to be the next large international 
project high-energy particle physics

• CLIC is the only mature option for a multi-TeV e+e− collider

• Very active R&D projects for accelerator and physics/detector

• Energy-staging → optimal for physics:

380 GeV: Optimised for precision SM Higgs and top physics
1.5 TeV, 3 TeV: Best sensitivity for new physics searches,

rare Higgs processes and decays

• 380 GeV CLIC could be ready for physics in 2035 – at “affordable” cost
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