e⁺e⁻ collisions at the Compact Linear Collider

Philipp Roloff (CERN)

02/04/2019 Università degli Studi Roma Tre

Introduction

- The Standard Model of particle physics has been extremely successful (including prediction of the Higgs boson discovered at the Large Hadron Collider)
- However, it does not explain observations of:
 - Dark Matter
 - The baryon-antibaryon asymmetry
 - Light neutrino masses and mixing
- No guaranteed regime where new physics will emerge

Standard Model of Elementary Particles

→ Exploration of new territory motivates ambitious future colliders

Future of the Large Hadron Collider (LHC)

• Collect 20x more data within the next 20 years

This talk: what could be the next step?

Philipp Roloff

Hadron and e⁺e⁻ colliders

Hadron colliders (e.g. LHC):

- Proton is compound object
- \rightarrow Initial state unknown
- \rightarrow Limits achievable precision
- High-energy circular colliders possible
- High rates of QCD backgrounds
- \rightarrow Complex triggers
- \rightarrow High levels of radiation

e⁺e⁻ colliders:

- e⁺e⁻ are pointlike
- \rightarrow Initial state well-defined (\sqrt{s} , polarisation)
- \rightarrow High-precision measurements
- High energies ($\sqrt{s} \ge 380$ GeV) require linear colliders
- Clean experimental environment
- \rightarrow Less / no need for triggers
- \rightarrow Lower radiation levels

pp and e⁺e⁻ collisions

Circular vs. linear e⁺e[−] colliders

accelerating cavities

Circular colliders: • Can accelerate the beam in many turns • Can use the beam many times • For electrons synchrotron radiation can be large (e.g. 2.75 GeV/turn lost at LEP for E = 105 GeV) \rightarrow maximal energy limited

Linear colliders:

- Almost no radiation in a linac
- Have to achieve energy in a single pass
- \rightarrow high acceleration gradients needed
- Have to achieve luminosity in single pass
- \rightarrow small beam size and high beam power needed

Studies of high-energy e⁺e⁻ colliders

02/04/2019

Philipp Roloff

e⁺e⁻ collisions at CLIC

Studies of high-energy pp colliders

Tunnels initially used for e⁺e⁻ collisions

02/04/2019

Philipp Roloff

e⁺e⁻ collisions at CLIC

The Compact Linear Collider (CLIC)

Compact Linear Collider (CLIC):

- Based on 2-beam acceleration scheme
- Operated at room temperature
- Gradient: 100 MV/m
- Energy: 380 GeV 3 TeV
- Length: 50 km (for 3 TeV)
- P(e⁻) = ±80%

CLIC acceleration scheme

Philipp Roloff

CLIC layout at 3 TeV

02/04/2019

Philipp Roloff

The CLIC Test Facility (CTF3)

CTF3 successfully demonstrated:

- Drive beam generation
- RF power extraction
- Two-beam acceleration up to a gradient of 145 MeV/m

- CTF3 completed its mission in 2016
- A new facility since 2017 (based on the CTF3 probe beam): CERN Linear Electron Accelerator for Research (CLEAR)

02/04/2019

Philipp Roloff

e⁺e⁻ collisions at CLIC

2-beam acceleration module in CTF3

02/04/2019

Philipp Roloff

CLIC accelerating structures

02/04/2019

Philipp Roloff

e⁺e⁻ collisions at CLIC

CLIC technology applications

Collaboration with many facilities: photon sources, medical applications \rightarrow lots of experience being built up

Example: SwissFEL

- 104 C-band structures (5.7 GHz, 2 m long)
- Beam up to 6 GeV at 100 Hz
- Similar µm-level tolerances
- Length similar to 800 CLIC structures

Philipp Roloff

CLIC staged implementation

Integrated luminosity [ab⁻¹]

6

С

0

CLIC would be implemented in several energy stages

Current baseline scenario:

			$P(e^{-}) = -80\%$	$P(e^{-}) = +80\%$
Stage	\sqrt{s} [TeV]	$\mathscr{L}_{int} [ab^{-1}]$	$\mathscr{L}_{int} [ab^{-1}]$	$\mathscr{L}_{int} [ab^{-1}]$
1	0.38 (and 0.35)	1.0	0.5	0.5
2	1.5	2.5	2.0	0.5
3	3.0	5.0	4.0	1.0

 The strategy can be adapted to possible discoveries at the (HL-)LHC or the initial CLIC stage(s)

CERN-2018-005-M arXiv:1812.01644

Integrated luminosity

0.38 TeV

5

Total 1% peak

10

1.5 TeV

15

20

25

L=2.2km

L=3.1km

L=3.1km

Year

3 TeV

CLIC at 380 GeV

02/04/2019

Philipp Roloff

e⁺e⁻ collisions at CLIC

CLIC at 3 TeV

02/04/2019

Philipp Roloff

 e^+e^- collisions at CLIC

Cost and power

380 GeV: large improvement compared to CDR (2012)

1.5 and 3 TeV: power not yet optimised \rightarrow will be done next

Collision energy [GeV]	Running [MW]	Standby [MW]	Off [MW]
380	168	25	9
1500	364	38	13
3000	589	46	17

CERN-2018-005-M

02/04/2019

Philipp Roloff

e⁺e⁻ collisions at CLIC

Comparison to other e⁺e⁻ collider options

Linear colliders:

- Can reach the highest energies
- Luminosity rises with energy
- Beam polarisation at all energies
- Potential to benefit from novel accelerator techniques

Circular colliders:

- Large luminosity at lower energies
- Luminosity decreases with energy

NB: Peak luminosity at LEP2 (209 GeV) was $\approx 10^{32}$ cm⁻²s⁻¹

CLIC experimental conditions

Parameter	380 GeV	1.5 TeV	3 TeV		
Luminosity L (10 ³⁴ cm ⁻² sec ⁻¹)	1.5	3.7	5.9		
L above 99% of \sqrt{s} (10 ³⁴ cm ⁻² sec ⁻¹)	0.9	1.4	2.0		Drives timing
Repetition frequency (Hz)	50	50	50	~	requirements
Bunch separation (ns)	0.5	0.5	0.5	~	for CLIC detector
Number of bunches per train	352	312	312		
Beam size at IP σ _x /σ _y (nm)	149/2.9	~60/1.5	~40/1	R	Very small heam
Beam size at IP σ _z (μm)	70	44	44	\leftarrow	

02/04/2019

Philipp Roloff

e⁺e⁻ collisions at CLIC

Beam-induced backgrounds

e⁺e⁻ pairs: High occupancies → Detector design issue (small cell sizes)

 $\gamma\gamma \rightarrow hadrons$ Main background in calorimeters and trackers \rightarrow Impact on physics (needs suppression in the data)

Principle of a particle physics detector

- Particles interact with detector material
 - Charged: Ionisation, exitation of detector atoms ...
 - Neutral: Photo effect, compton effect, pair production
- Particles differ in the way they interact with material
 - Identify particle types

CLIC detector concept

 Ultra low-mass vertex detector with $\approx 25 \times 25 \ \mu m^2$ pixels

 Main trackers: silicon-based (large pixels / short strips)

• Fine grained (PFA)

- Strong solenoid magnet (4 T)
- Complex forward region with compact calorimeters

Instrumented return yoke for muon ID

CLICdp-Note-2017-001

02/04/2019

Philipp Roloff

CLIC silicon vertex/tracker R&D

- Challenging requirements lead to extensive detector R&D program
- ~10 institutes active in vertex/tracker R&D
- Collaboration with ATLAS, ALICE, LHCb, Mu3e, AIDA-2020

D. Dannheim, VCI2019

02/04/2019

Calorimetry and PFA

Detector design driven by jet energy resolution and background rejection \rightarrow Fine-grained calorimetry + particle flow analysis (PFA)

What is PFA?

Typical jet composition:

- 60% charged particles
- 30% photons
- 10% neutral hadrons

Always use the best available measurement:

- charged particles
- \rightarrow tracking detectors: \bigcirc \bigcirc
- photons \rightarrow ECAL: \bigcirc
- neutrals \rightarrow HCAL: $\stackrel{\bullet}{\sim}$

Hardware and software!

Background suppression

Beam-induced background from $\gamma\gamma \rightarrow$ hadrons can be efficiently suppressed by applying p_r-dependent timing cuts on individual reconstructed particles (= particle flow objects)

 $e^+e^- \rightarrow t\bar{t}$ at 3 TeV with background from $\gamma\gamma \rightarrow$ hadrons overlaid

CLICdet performance in full simulation

Tracking

Transverse momentum resolution of $2 \times 10^{-5} \text{ GeV}^{-1}$ achieved for high-energy tracks in the central part of the detector

Hadronic W and Z decays

→ Physics projections are based on realistic full detector simulations and include the impact of beam-beam effects

arXiv:1812.07337

02/04/2019

Philipp Roloff

How to look for new physics?

1.) Direct searches: Looking for new particles

and unknown effects

2.) Learning from SM processes:

Precision study of production and decay properties of known SM particles
Focus on the Higgs boson and top quark which have not been studied in e⁺e⁻ collisions so far

→ Both approaches benefit from the highest possible energies!

Higgs and top-quark physics:

- Single Higgs production
- Double Higgs production
 - Top-quark mass
 - EFT analysis

Single Higgs production

Higgsstrahlung: $e^+e^- \rightarrow ZH$

• $\sigma \sim 1/s$, dominant up to $\approx 450 \text{ GeV}$

WW fusion: $e^+e^- \rightarrow Hv_v v_e$

- $\sigma \sim \log(s)$, dominant above 450 GeV
- Large statistics at high energy

tt H production: $e^+e^- \rightarrow t\bar{t}H$

- Accessible \geq 500 GeV, maximum \approx 800 GeV
- Direct extraction of the top-Yukawa coupling

Η

Higgsstrahlung: $e^+e^- \rightarrow ZH$

02/04/2019

Philipp Roloff

e⁺e⁻ collisions at CLIC

CLIC coupling sensitivity

Precision on Higgs coupling strength to other SM particles

• Already the first CLIC stage significantly better than HL-LHC for several couplings: κ_w , κ_z , κ_b and κ_c

• The full CLIC program enhances the precision further

Based on Eur. Phys. J. C 77, 475 (2017) CERN-2018-009-M

e⁺e⁻ collisions at CLIC

Double Higgs production

 $e^+e^- \rightarrow ZHH$:

Cross section maximum ≈ 600 GeV

$e^+e^- \rightarrow HHv_e^-v_e^-$:

Benefits from high-energy operation

Projected precision:

- $\Delta(\lambda) = \pm 50\%$ at HL-LHC
- $\Delta(\lambda) = -7\% + 11\%$ at CLIC
- for 1.4 and 3 TeV combined

arXiv:1901.05897

Model	$\Delta g_{hhh}/g_{hhh}^{SM}$
Mixed-in Singlet	-18%
Composite Higgs	tens of $\%$
Minimal Supersymmetry	$-2\%^{a}$ $-15\%^{b}$
NMSSM	-25~%

02/04/2019

Philipp Roloff

e⁺e⁻ collisions at CLIC

Top-quark pair production

 $e^+e^- \rightarrow t\bar{t}$:

- Production threshold at $\sqrt{s} \approx 2m_{top}$
- 380 GeV is near the maximum
 → large event samples (for rare decays etc.)

 $e^+e^- \rightarrow t\bar{t}H$:

Maximum near 800 GeV

 $e^+e^- \rightarrow t\bar{t}v_e\bar{v}_e$ (Vector Boson Fusion):

Benefits from highest energies

Potential high-energy probe of the top Yukawa coupling

02/04/2019

Philipp Roloff

Threshold scan

 Measurement at different centre-of-mass energies in the tt production threshold region (data also useful for Higgs physics)

• Expected precision on 1S mass: ≈ 50 MeV (currently dominated by theory NNNLO scale uncertainty)

 Theoretical uncertainty in the order of 10 MeV when transforming the measured 1S mass to the MS mass scheme

Phys. Rev. Lett. 114, 142002 (2015)

- Other methods: ISR photons, direct reconstruction (less precise)
- Precision at the HL-LHC limited to several hundred MeV

arXiv:1807.02441

02/04/2019

Philipp Roloff

e⁺e⁻ collisions at CLIC

Global Effective Field Theory fit

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \left(\frac{c_i}{\Lambda^2} \mathcal{O}_i \right)$$

CERN-2018-009-M

CLIC input to fit: Higgs couplings, top quark observables, WW production, two-fermion production

New physics potential

Compositeness at CLIC

- **m**_{*}: compositeness scale
- **g**_{*}: coupling strength of the composite sector

Discovery of Higgs compositeness scale up to 10 TeV (40 TeV for $g_* \approx 8$) Discovery of top compositeness scale up to 8 TeV (20 TeV for small g_*)

Direct new physics searches

- Direct observation of new particles coupling to γ*/Z/W
 → precision measurement of new particle masses and couplings
- The sensitivity often extends up to the kinematic limit (e.g. $M \le \sqrt{s}$ / 2 for pair production)

 Very rare processes accessible due to low backgrounds (no QCD)
 → CLIC especially suitable for electroweak states

• Polarised electron beam and threshold scans might be useful to constrain the underlying theory

Direct observation of sparticles

Example: Phenomenological MSSM with 11 parameters

- Global fit to current experimental data (LHC results, low-energy and flavour experiments, CDM measurements)
- In this model, many gaugions and sleptons are accessible at CLIC, stop and sbottom are possible
- \rightarrow Direct discoveries are (still) a main motivation for high-energy CLIC operation

Higgs plus heavy singlet

CERN-2018-009-M

Philipp Roloff

Dark Matter searches...

... using stub tracks:

 $e^+e^- \rightarrow \chi^+\chi^-(+\gamma)$ Small mass difference: $\chi^{\pm} \rightarrow \chi^0 \pi^{\pm}$ Long-lifetime: χ^{\pm} leaves a short, disappearing ("stub") track in the detector

• CLIC might discover the thermal Higgsino at 1.1 TeV

... in loops:

CERN-2018-009-M

Summary and conclusions

CLIC timeline

- Technology-driven schedule from start of construction
- After go-ahead, at least 5 years are needed before construction can start
- \rightarrow first beams could be available by 2035

CLIC collaborations

CLIC accelerator collaboration ≈60 institutes from 28 countries

CLIC detector & physics (CLICdp) Collaboration: 30 institutes from 18 countries

http://clic-study.web.cern.ch

• CLIC accelerator design and development (construction and operation of CTF3) http://clicdp.web.cern.ch

- Physics prospects and simulation studies
- Detector optimisation and R&D for CLIC

Summary and conclusions

- An e⁺e⁻ collider is widely considered to be the next large international project high-energy particle physics
- CLIC is the only mature option for a multi-TeV e⁺e⁻ collider
- Very active R&D projects for accelerator and physics/detector
- Energy-staging \rightarrow optimal for physics:

380 GeV:	Optimised for precision SM Higgs and top physics	
1.5 TeV, 3 TeV:	Best sensitivity for new physics searches,	
	rare Higgs processes and decays	

• 380 GeV CLIC could be ready for physics in 2035 – at "affordable" cost