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1 Many Questions and Some
Answers

A usual feature in the life of a ma-
thematician is:
Someone, it may be a layman or a
colleague, is asking a
(simple) question.
And very often, the embarrassing re-
sult is that one cannot give an ans-
wer.

Questions about diophantine pro-
blems are notorious for this feature,
and for 350 years the most prominent
example was
Fermat’s Claim (FLT) : For p 6= 2
the projective curve

Xp + Y p = 1

has only two Q-rational points.
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It is not clear why this specific claim
became so important for number theo-
ry.
For instance, it is reported that C.F.
Gauß (after having tried to get re-
sults) said that he could state a pro-
blem as interesting as Fermat’s claim
every week.
He was right in one sense, namely the
importance of FLT as mathematical
statement is not overwhelming.

But he was wrong in a deeper sen-
se: It turned out that FLT was a
wonderful testbed and triggered new
theories like Algebraic Number
Theory.
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1.1 Some Answers

This gives a hint for strategies to ans-
wer questions:
Look for structural reasons why
it can be true (or wrong), and
then use these structures. We
know:

1.

Y 2 = X3 + d, d ∈ Z \ {0}
has only finitely many points with
coordinates in Z.(Siegel-Mahler)

2.

Y 2 = X6 + d, d ∈ Z \ {0}
has only finitely many points with
coordinates in Q (Faltings)

3. Theorem 1.1 (Taylor-Wiles)
Fermat’s Claim is true.
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4. The projective curve

Y 2Z = X3 + A ·XZ2 + B · Z3

with

A = 7D5A0975FC2C3057EEF67530417AFFE

7FB8055C126DC5C6CE94A4B44F330B5D9

and

B = 26DC5C6CE94A4B44F330B5D9BBD77C

BF958416295CF7E1CE6BCCDC18FF8C07B6

has modulo

p = A9FB57DBA1EEA9BC3E660A909D838D7

26E3BF623D52620282013481D1F6E5377

exactly

q = A9FB57DBA1EEA9BC3E660A909D838D7

18C397AA3B561A6F7901E0E82974856A7

points.

p, q are numbers with 256 bits, i.e. ≈ 80

decimals, and are given in the hexadeci-

mal system.
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We come nearer to the structural
background by the

5. Conjecture of Serre(∼ 1986),
which is now the

Theorem 1.2 (Khare-Wintenberger-
Kisin (∼ 2006):
Odd two-dimensional irreducible
(continuous ) Fq-representations
ρ of the automorphism group GQ
of the algebraic numbers Q̄ are
given by its operation on points
of finite order of Jacobian va-
rieties of a well-known “classi-
cal” family of curves, the modu-
lar curves X0(N).
In addition, the minimal possi-
ble level N and the twist charac-
ter (“ neben type ”) are obtained
from the arithmetical data of ρ.

1

1FLT is just a footnote to this theorem.
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1.2 So What?

A further experience of mathemati-
cians:
Having answered a question after a
long and often painful struggle your
neighbor comments:
It is nice that you know now that
Fermat was right.
But what it is good for?
G.H.Hardy in his book :“A Ma-
thematician’s Apology” stresses the
the “uselessness” of number theory
and claims that its intrinsic beauty
is enough to justify it.
He was wrong:
Because of digitalization number theo-
ry plays a prominent role in commu-
nication theory and especially in da-
ta security.
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2 Applications

A by now classical application of num-
ber theory is Coding Theory.
In this lecture we shall concentrate
on another topic:
Cryptographical methods
that enable to send messages via open
channels secure against forging and
maintaining privacy.
The result 4.) from above was con-
structed in this context, for example
it is used for the German e-Passport.
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2.1 Public Key Cryptography

We want to

• exchange keys,

• sign messages

• authenticate entities, and

• encrypt and decrypt (not too lar-
ge) messages

with simple protocols, clear and easy
to follow implementation rules based
on cryptographic primitives, which
rely on (hopefully) hard mathemati-
cal tasks.
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2.2 Bits and Q-Bits

The possibility that quantum com-
puting could be realizable in foresee-
able time yields new aspects for the
discussions of crypto primitive.
We shall describe below crypto pri-
mitives, for which we have good rea-
sons to believe that the bit-complexity
is exponential.
But their q-bit complexity is
subexponential or even polynomial.
New relations between crypto primi-
tives arise. It seems that in this world
the hidden subgroup problem and in
particular the hidden shift problem
related to groups G are central.
Here the state of the art is that for
abelianG the problems can be solved
in subexponential time and space, for
dihedral groups there is “hope”.
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2.3 Diffie-Hellman Key Exchange

From now on we shall concentrate
to the problem to exchange keys in
open channels in the spirit of Diffie-
Hellman. In the lecture tomorrow we
shall describe a setting using push-
outs in categories. The motivation is
that such an abstract setting can open
the mind for finding systems resistant
against quantum computing, and we
shall present at the end of the talk
and, in more detail, in the lecture to-
morrow, a promising example.
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2.3.1 Pushouts by Morphisms

Assume A ⊂ N and let B1, B2 ⊂
Endset(A). Choose a0 ∈ A. We need
the Centralizing Condition:

The elements of B1 commute with
the elements of B2 on Bi{a0}. Then

{b1(b2(a0)) = b2(b1(a0))}
and this is all we need for key ex-
change:
The partner Pi chooses bi and pu-
blishes ai := bi(a0).

The common key of P1, P2 is b2(a1).

The effectiveness of this exchange
depends on how fast the value bi(bj(a0))
can be evaluated (i.e., calculated and
represented), for random bi ∈ Bi, bj ∈
Bj .
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The security depends on the
Computational Diffie-Hellman Problem

CDH: For randomly given a1, a2 ∈ A
compute (if existing)

a3 with a3 = ba1 · (ba2 · a0)

where bai ∈ Bi such that bai · a0 =
ai.
It is clear that CDH can be solved
if one can calculate for random a ∈
Bi · {a0} an endomorphism ba ∈ Bi
with ba(a0) = a.

Problem:

1. Find usable instances for the ab-
stract setting!

2. What can one say about quantum
computing security?
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Example
Let G be a (semi-)group, and A a
simple-transitive G-set.
For g ∈ G, define

tg ∈ Endset(A)

by
a 7→ tg(a) := g · a.

Let G1 be a semi-subgroup of G and
G2 ⊂ Z(G1) where Z(G1) is the
centralizer of G1 in G.
Since

tg1(tg2(a0)) = (tg2 ◦ tg1) · a0

we can use (A,G,G1, G2) for key ex-
change.

15



Hidden Shift
Computations of translations tg on
G-sets are typical examples for hid-
den shifts.
In the example take the

f0 : B1→ A with f0(g) = tg · a0

and

f1 : B1→ A with f1(g) = tg·(tg1·a0).

One can try to use quantum compu-
ter algorithms to determine g1 and
hence to break the key exchange pro-
tocol.
In fact, for B1 abelian and finite the-
re is an algorithm of Kuperberg,
which solves this task in subexponen-
tial time.
We shall see examples of systems for
which we can apply this result later
on.
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2.3.2 The “Classical” Case

(totally insecure under QC)
(C,+) is a cyclic group of prime or-
der ` with a numeration by which it
is embedded into N.
A ⊂ N is the set of generators of C.
a0 is a fixed generator.
Take

G1 = G2 = (Z/`)∗ = N∗` mod ∗`

where N∗` are the natural numbers
prime to ` and tb(a) = a+ a · · ·+ a
(b summands: Scalar multiplication
in C).
The Discrete Logarithm (DL ) of a ∈
A relative to the base point a0 is

log(a) = min(z ∈ N∗` ; tz(a0) = a).

(A, a0, N
∗
` ) is a DL-System. 2

2Maurer - Wolf : Up to subexponential (probabilistic) algorithms the crypto primitive deter-
mining security of a DL-system is the Discrete Logarithm.
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2.4 Tasks to be Done

In order that we can use (a family of)
groups G for crypto systems based
on discrete logarithms they have to
satisfy three crucial conditions:

1. The elements in G can be stored
in a computer in a compact way
(e.g. O(log(| G |) bits needed)).

2. The group composition is given by
an algorithm that is easily and effi-
ciently implemented and very fast.

3. The computation of the DL in G
(for random elements) is (to the
best of our knowledge) very hard
and so infeasible in practice (ide-
ally exponential in | G |), in par-
ticular the group order of G is a
large prime.
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3 Arithmetic Geometry

The structural background used to-
day for solving this task is

Arithmetic Geometry

a mathematical discipline that com-
bines

•Algebraic Number Theory

•Algebraic Geometry

• Theory of Functions over C
and culminates in
Modern Galois Theory, in particu-
lar in the theory of representations
of fundamental groups.
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3.1 Algorithmic Arithmetic Geome-
try

Besides the theoretical side there is
a very exciting and rapidly procee-
ding algorithmic aspect of Arithme-
tic Geometry
It generalizes considerably both ran-
ge and techniques of now classical
Computational Number Theory

Examples are: Algorithms for mo-
dular forms and modular curves and
related Galois representations
but of course also: explicit theory
of varieties over finite fields
as counterpart to explicit theory of
algebraic number fields.
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4 Curves and Galois Represen-
tations

The analogy between the arithmetic
of number fields and function fields
of one variable over finite fields has
been known at least since the begin-
ning of the twentieth century, and it
had a stimulating effect on both to-
pics.

The application of fundamental work
of

Alexander Grothendieck
has deepened and widened this ana-
logy enormously.
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from: Wikipedia
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4.1 Schemes

A scheme S consists of a collection of
affine schemes X , which are “glued
together”.
An affine scheme belongs to a com-
mutative ring R with 1, whose spec-
trum, i.e. the set of prime ideals be-
comes a topological space T by the
Zariski topology.

The structure sheaf OX associa-
tes to every open set U ⊂ T the
localization OX(U) of “holomorphic
functions” on U .
The stalk at a point P of T is a local
ring OP obtained as inductive limit
of holomorphic functions at P .
Morphisms between schemes are gi-
ven piecewise by affine morphisms,
which are (local) ring homomorphisms
between the structural sheaves.
Notation: X = Spec(R)
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Zero-dimensional schemes.
R: commutative noetherian ring with
1 whose prime ideals are maximal.
Examples
1) R = Z/n with n ∈ N (arithmeti-
cal prototype).
Points correspond to prime divisors
of n.

2)R = K0[X ]/(f (X)) where K0
is a field and f (X) ∈ K0[X ]\ {0}.
Points correspond to irreducible fac-
tors of f .

Caution: X is not determined by
its points: Spec(Fp[X ]/(Xp − 1)) is
different from Spec(Fp[X ]/(X−1)).
3) R = K where K is a field, X =
Spec(K).
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Curves

Definition 4.1 A curve C is a sche-
me, such that the stalk OP in a
closed point has Krull dimension
1.
A point P of C is regular (= non-
singular) iff OP is a discrete va-
luation ring.
C is regular iff all points of C are
regular.

Case 1: Arithmetical curves: Take
OK as ring of integers in a #-field
K.
Spec(OK) is a regular affine curve.
OP at P 6= (0) is a valuation ring
that is uniquely determined by P .
It defines a a prime divisor P of K
with deg(P) = log(|OK/P | and with
normalized valuation vP.
The restriction of “functions” to P is
the reduction modulo P.
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Case 2: Geometric projective cur-
ves.
Let K0 be a perfect field with alge-
braic closure K0 and (absolute) Ga-
lois group GK0

:= AutK0
(K0).

An irreducible projective curve C over
K0 is a scheme of dimension 1 over
Spec(K0) embedded in Pn/K0 as (pro-
jective) zero set (over K0) of a homo-
geneous prime ideal IC ⊂ K0[X0, . . . , XN ].
A typical open subscheme is an affi-
ne part

CS = C \ S
where S ⊂ C(K0) is finite and GK0

-
invariant.
O(U) := OS is the ring functions wi-
thout poles outside of S. It is an in-
tegral domain, and its quotient field
is independent of the choice of S:
It is the function field KC of C.
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We assume that C is projective ir-
reducible and regular.
Fact: Galois orbits of points in C(K0)
correspond one-to-one to equivalent
classes of valuations ofKC, which are
trivial on K0.

Definition 4.2 A prime divisor P
of C is a Galois orbit of a point
P ∈ C(K0).
The number of points in this orbit
is the degree deg(P).
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Arithmetical Surfaces
Let K be a number field and deno-
te by S the curve corresponding to
OK .
Let CK be a projective curve over K.
By “clearing denominators” we can
extend CK to a scheme C over S .
C is two-dimensional and hence a sur-
face with curves as fibers over Spec(OK).
The generic fiber is CK , for maximal
ideals P ⊂ OK we get the reducti-
on curve CP over a finite field which
may be neither regular nor irreduci-
ble but connected and projective.
Hence we can study curves over num-
ber fields together with their reduc-
tions with the powerful methods of
the theory of surfaces (e.g. minimal
models, metrics).
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4.2 Fundamental Groups

One of Grothendieck’s most seminal
ideas is the fundamental group
attached to a

Grothendieck topology.

Here neighborhoods in usual topolo-
gies are replaced by covers with spe-
cial algebraic properties.
We can consider here only and very
superficially the special case of the
Etale Topology: For a schema X the
neighborhoods are étale covers

Y → X .
Projective limites give “universal co-
vers” and fundamental groups Π1 as
projective limites of automorphisms.
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Examples:

1. For a field K étale covers are se-
parable algebraic extensions, the
universal cover is Ks and the fun-
damental group is GK .

2. For the curve attached toOK étale
covers are unramified ring exten-
sions, and the universal cover has
as quotient field the maximal un-
ramified extension of K.

3. Let C|K0
be a curve.

Since K0 is perfect constant field
extensions are étale, and so

1→ Π1(C|K0
)→ Π1(C)→ GK0

→ 1

is exact.
Hence we have a representation
ρC : GK0

→ Out(Π1(C|K0
)).
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The exact sequence above is the
starting point of the Anabelian Geo-
metry (also due to Grothendieck).
It is interesting that we can define
the genus gC of C “via topology”:
Let 0 ≤ p = char(K0) and let
Π1(C|K0

)′ be the maximal quoti-

ent of Π1(C|K0
) with order (as pro-

finite group) prime to p. Then clas-
sical theory of compact Riemann
surfaces and liftings theorem due
to Grothendieck/Serre yield that
Π1(C|K0

)′ is the quotient of a fini-

tely generated free profinite group
with gC generators modulo one com-
mutator relation.
Hence for primes ` different from p
the maximal abelian pro-` -quotient
Π1(C|K0

)` of Π1(C|K0
)′ is isomor-

phic to Z2gC
` .

So one gets
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4. `-adic Galois representations.
Let C be a projective regular curve
of genus gC. Then ρC induces an `-
adic representation

ρ̃`C : GK0
→ Aut(Q2gC

` ).

Remark 4.3 Generalizing the last
example leads to the Conjecture
of Fontaine-Mazur: Every irre-
ducible ` -adic Galois representati-
on of a number field with only fini-
tely many ramification points and
satisfying a semi-stability conditi-
on “comes from” an étale cohomo-
logy group of a smooth projective
variety.

In the next section we shall construct
groups attached to curves, which gi-
ve, amongst other things, represen-
tations spaces for ρ̃`C.
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4.2.1 Example: Elliptic Curves

Definition 4.4 An elliptic curve E
over K0 is a projective regular cur-
ve of genus 1 with at least one K0-
rational point.

It follows that Π1(E|K0
)′ is a profinite

free abelian group with two genera-
tors, and that

ρ̃`C : GK0
→ Aut(Q2

`)

is a two-dimensional Galois represen-
tation.
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Now assume that K0 is algebraical-
ly closed.
Going to finite quotients of Π1(E)′ it
follows that every finite unramified
cover

η : C ′→ E
is abelian, and by the Hurwitz genus
formula (well known for Riemann sur-
faces) it follows that C ′ has again ge-
nus 1, and since K0 is algebraically
closed, is an elliptic curve.
What happens if K0 is not algebrai-
cally closed?
We shall come to this question in the
frame of modular curves.
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4.3 The Picard Functor of Cur-
ves

Let C be a regular projective curve.

Definition 4.5 •The group of di-
visors DC is the free abelian group
generated by the set of prime di-
visors of C.

• For D =
∑
zP ·P define

deg(D) :=
∑

zP · deg(P).

• For f ∈ K∗C define

(f ) =
∑
P

vP(f ) ·P ∈ PC.

• PC is a subgroup of the group D0
C

of divisors of degree 0.

•
Pic0
C := D0

C/PC
is the group of divisors classes
of degree 0.
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4.4 Tate modules of Picard groups

GK0
operates on Pic0

C|K0

.

From classical geometry over C and
comparison theorems we get

Pic0
C|K0

[`n] ∼= (Z/`n)2gC.

Fact: Pic0
C|K0

[`n] is as GK0
-module

isomorphic to Π1(C|K0
)`/`

n.

Definition 4.6 The Tate module TC,`
is the GK0

- module

lim←−
n

Pic0
C|K0

[`n].

Theorem 4.7 ρ̃`C is the Galois re-
presentation with representation space
TC,`

⊗
Q`, and the representation

ρC,`n := ρ̃`C
⊗

Z/`n has as repre-

sentation module Pic0
C|K0

[`n].
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4.5 Addition in Picard Groups

Recall: If C = OK is an arithmetic
curve the addition in ideal classes is,
in theory and practice, governed by
the Theorem of Minkowski: In every
ideal class is an integral ideal with
small norm.
The analogous result equally funda-
mental for the arithmetic of projec-
tive curves C over K0 is the

Theorem of Riemann-Roch.

We formulate a consequence:

Theorem 4.8 Assume that C has
a K0-rational point P∞ with cor-
responding prime divisor P∞.
In every divisor class c ∈ Pic0

C
there is a divisor

Dc =
∑

nPP− gC ·P∞ with nP ≥ 0.

Corollary 4.9 If K0 is a finite field
then Pic0

C is a finite abelian group.

37



Hence we can represent two divisor
classes ci (i = 1, 2) by divisors

Di =
∑

n
(i)
PP− gC ·P∞

and so the sum c1 ⊕ c2 by∑
i=1,2

(
∑

n
(i)
PP)− 2gC ·P∞.

The explicit addition boils down to
the task:
Find a function f ∈ K0(C) such that∑
i=1,2

(
∑

n
(i)
PP)− 2gC ·P∞ =

(f ) +
∑

nPP− gCP∞.
(Reduction step)
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4.5.1 Example

Let C be a curve of genus 1 with ra-
tional point P∞, hence by definition
C is an elliptic curve.
By Riemann-Roch we find a regular
Weierstraß equation

E : Y 2Z + a1Y XZ + a3Y Z
2 =

X3 + a2X
2Z + a4XZ

2 + a6Z
3

and P∞ = (0 : 1 : 0).
In c ∈ Pic0

E there is exactly one pri-
me divisor P of degree 1 and hence
a point P ∈ E(K0) such that

c = P−P∞.

We identify (Pic0
E,+) with (E(K0),⊕)

and we remark that, after having fi-
xed P∞, for every L ⊃ K0 the set
E(L) is an abelian group with neu-
tral element P∞.
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Explicitly: Given P1, P2 ∈ E(K0)
the line lP1,P2

through P1, P2 inter-
sects E(K0) in a third point Q.
P1 + P2 + Q − 3P∞ = (lP1,P2 |E)
and so

P1 ⊕ P2 ⊕Q = 0.

Hence the addition is given by poly-
nomial functions, and E has the struc-
ture of an Abelian variety of dimen-
sion 1.
More general: Abelian varietiesA are
absolutely irreducible regular projec-
tive varieties with a group scheme
structure, i.e. they are equipped with
an addition morphism

m : A×A → A
such that the group axioms are sa-

tisfied.
Very important examples of Abelian
varieties are Jacobian varieties JC of
curves C representing Pic0.
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Homomorphisms

η : A1→ A2

between abelian varieties are morphisms
compatible with m
η is an isogeny and A1 is isogenous
to A2 if η is (geometrically) surjecti-
ve and has finite kernel

ker(η) := η−1({OA2
}).

It is a group scheme of dimension 0
of order deg(η).
η is separable or étale iff | ker(η)(K0| =
deg(η).
If so, then η is defined over K0 iff
ker(η) is invariant under GK0

.
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4.6 Modular Curves

Take K0 arbitrary.
For N ∈ N, prime to Char(K0) and
L ⊇ K0 define the functor

L→ {(E, ηN )/ ∼=}
with E an elliptic curve over K0

and ηN an isogeny of E with cyclic
kernel of order N defined over L.
This is a (coarse) moduli functorFN .
There is a classical explicit construc-
tion of the modular curve X0(N)
as quotient of the complex upper half
plane which represents FN over C.

By general principles,
X0(N) is defined over Spec(Z) and
represents FN over Z[1/N ].
X0(N) has a very rich algebraic and
analytic structure used to prove Theo-
rem 1.2.
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5 A Excursion to Global Fields

5.1 Faltings’ Proof of Mordell’
Conjecture

Recall: A representation ρ is semi-
simple iff it is, up to isomorphy, un-
iquely determined by the characteri-
stic polynomials of the images of ρ.
Let C be a projective irreducible cur-
ve over a number field K and ` a
prime number.

Theorem 5.1 (Faltings):
ρ̃`C is semi-simple and determines
the isogeny class of the Jacobian
variety of C.

Work of Tate and Parshin imply:

Corollary 5.2 (Faltings
If gC ≥ 2 then |C(K)| is finite.
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For the proof Faltings used and de-
veloped the theory of arithmetic sur-
faces (including metrics from archi-
medean places).
A key role is played by the study of
special elements of GK , namely Fro-
benius automorphisms σp, which are
attached to prime ideals p ⊂ OK
and, a bit vaguely spoken, liftings of
the Frobenius automorphism of the
finite field OK/p.

Theorem 5.3 (Chebotarev): Semi-
simple representations of GK are
determined by the characteristic po-
lynomials of Frobenius elements.

These polynomials are the local fac-
tors of the L-series of C. More about
their computation tomorrow.
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6 Curves over Finite Fields

Now: K0 = Fq with q = pd.
Then

Pic0
C is a finite abelian group

with short representation of elements.
Recall that the main part of the ad-
dition is a reduction step.

Theorem 6.1 (F.Heß, C. Diem)
Let C be a curve of genus gC over
Fq.
The reduction step and hence the
addition in Pic0

C can be executed
(probabilistically) with a number of
bit-operations, which is bounded (ex-
plicitly) polynomially in gC (for q
fixed) and log(q) (for gC fixed).

In special cases (e.g. if C is hyperel-
liptic) we get even better algorithms,
which come near to the algorithms
for elliptic curves.
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Idea: Use Picard groups of curves
as DL - systems!
Conditions 1) and 2) of Task 2.4 are
satisfied –if one finds curves C, so
that Pic0

C(Fq) contains a large set of
prime numbers. To check this one needs
a fast algorithm for computing |Pic0

C(Fq)|.
In general this is unsolved.
But by looking at security one sees
that for DL-systems, one should only
use Picard groups of carefully chosen
curves of genus 1 or 2 (and very re-
stricted) curves of genus 3 over pri-
me fields. Keywords for attacks:
Index-Calculus, Weil Descent.
For the surviving curves we have me-
thods to construct cryptographically
interesting Picard groups. (More de-
tails in the lecture tomorrow.)
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Max Deuring 1973

7 Isogenies of Elliptic Curves
over Finite fields

In the following E and similar letters
stand for elliptic curves over finite
fields Fq.
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Basic for the arithmetic of E are
isogenies

η : E → E ′.
Etale isogenies can be decomposed
into a chain of scalar multiplicati-
ons and isogenies with cyclic kernel
of prime order ` with ` a prime 6= p.
As remarked, these latter ones be-
long to points on the modular curve
X0(`).
Classical theory of elliptic functions
and work of Deuring lead to an ex-
plicit equation for an affine model of
X0(N) given by the classical modu-
lar polynomial φ(j, jN ).
Deurings work implies beautiful theo-
retical results, in particular one finds
a close connection between elliptic cur-
ves over finite fields and class field
theory of imaginary quadratic fields.
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Theorem 7.1 Assume that either
q = p or that E(Fq[p] 6= {0} (i.e. E
is not supersingular). Then EndFq(E)
is an order O in an imaginary qua-
dratic field, and the isomorphism
classes SE of elliptic curves E ′ with
endomorphism ring O form a prin-
cipal homogeneous space with group
PicO.
If E is supersingular and Fq ⊇ Fp2

then EndFq(E) is an explicitly gi-
ven maximal order in a Quaterni-
on algebra.

Next we state algorithmic results.
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• The complexity of the computati-
on of an isogeny of degree ` (as
function and with explicit equati-
on of the image curve) is

O(`2 + ` log(`) log(q)).

•Assume that E and E ′ have a com-
mutative endomorphism ring O.
To find an isogeny between E =and
E ′ can be done with (expected)

O(q1/4+o(1) log2(q) log log(q))

bit-operations(due to Kohel, Gal-
braith, Hess, Smart et al.).

Surprise: Quantum Computing chan-
ges the complexity for finding an iso-
geny from exponential (in log(q)) to
subexponential.
The reason is that one can apply the
hidden shift algorithms for the action
of PicO on SE .
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7.0.1 The Frobenius Endomorphism

The absolute Galois group GFq is to-
pologically generated by the Frobeni-
us automorphism Frobq with

Frobq(x) = xq.

F robq acts on the coordinates of point
of E(Fq) and so gives rise to a geo-
metric object, the isogeny

φq : E → E ∈ End(E),

which is purely inseparable of degree
q.
Its `-adic characteristic polynomial
(as endomorphism) is equal to the
characteristic polynomial χE ,`(T ) at-
tached to the `-adic Galois represen-
tation of Frobq.
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Theorem 7.2 (Hasse, Deuring,
Weil, Tate) There is a monic po-
lynomial χE(T ) ∈ Z[T ] of degree 2
such that for all n prime to p we
have

1. χE ,n(T ) ≡ χE(T ) mod n

2. For all ` different from p we ha-
ve

χE(T ) = χE ,`(T ).

3. The zeros of χE(T ) are algebraic

integers with absolute value q1/2.

4. Tate: χE(T ) determines E up to
isogeny.

Note: If Ẽ is an elliptic curve defi-
ned over a number field K such that
E is the reduction modulo p of Ẽ then
the local factors of the L− series of
Ẽ belong to χE ,`(T ).
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8 Application to Key Exchange

We close the gap for using elliptic
curves for DL-systems.

8.1 Point Counting by AES

φq − id is separable and has kernel
E(Fq), hence

|E(Fq)| = χE(1) = q+1−Trace(φq) ≤ 2
√
q.

Compute χE(T ) by the action of
Frobq on E [n] (cf. Theorem 7.2) for
small n and then use CRT (Schoof)
(polynomial complexity but but too
slow in practice.)
Idea of Atkin-Elkies: Use cyclic
isogenies instead of points.

Theorem 8.1 (SAE)
|E(Fq)| can be computed (probabi-
listically, with GRH) with comple-
xity O((log q)4).
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Conclusion We find (carefully cho-
sen) elliptic curves defined over pri-
me fields Fp, which are, till today, ex-
ponentially secure under algorithms
with classical computers. Example 3.)
from above is an instance with secu-
rity level of AES128.
So nowadays we are in a very com-
fortable situation.
But what about future with quan-
tum computers ?
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8.2 Post Quantum Crypto with
Elliptic curves

We go away from DL-systems and
use first G− sets.
1. The system of Couveignes-Stolbunov

uses the set SE of a non-singular
elliptic curve E with PicO as G-
set.
The security is at most subexpo-
nential (not so bad!), but in even
the most sophisticated versions the
key exchange is very slow.

2. The system of Castryck et.al uses
isogeny classes over Fp of a super-
singular curve E over Fp with ac-
tion of PicO with O ⊂ Q(

√
−p).

The security is again subexponen-
tial but the system needs only small
key sizes and is very fast.
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To come to exponential security
De Feo and Jao went one step fur-
ther and used supersingular elliptic
curves over Fp2. Their key-exchange
scheme needs only small key sizes and
is much faster than the method of
Couveignes-Stolbunov (but seemin-
gly slower than the Castryck sche-
me).
It is most conveniently described in
the categorical setting for Diffie-Hellman
key exchange, and we shall describe
it in more detail in tomorrows lec-
ture.
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For today:

THANK YOU VERY MUCH!

57



FLT The proof of FLT in five lines:
Take A,B,C with Ap −Bp = Cp.

E : Y 2 = X(X − Ap)(X −Bp).

GQ acts on E[p] and induces ρ.

By [KWK] ρ comes from Pic0X0(2)
[p].

Since X0(2) ∼= P1 we get a Contradiction!
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