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Muo-what??
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First known application of 
muography (1955)

● Muon flux used to measure ice thickness above a tunnel

● No directional information

Im
age so urce: h ttps://w

w
w

.hep.u cl.ac.uk/ cream
te a/
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First application of muography to 
archaeology
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Alvarez's result: no hidden chamber
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Fast-forward by ~50 years

Discovery of a big void in Khufu’s Pyramid by 
observation of cosmic-ray muons

Morishima et al., Nature 552 (2017) 386

Alvarez chose the wrong pyramid...

(But would have he been able to spot this void?)
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Outline

1. Some physics

2. Muography How-to

3. A few selected applications

Disclaimer:
● Choice of sub-topics is very personal, not representative 

at all of the variety of activities in this area
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1. Some physics
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Discovery of cosmic rays

● Early 1900s: hypothesised that there is a 
natural background of ionizing radiation 
that discharges all the electroscopes

● People believed it was mostly due to 
radioactive rocks

● 1909: Theodor Wulf uses Tour Eiffel to 
measure this background at different 
heights; surprisingly, he reported that it 
increases with the altitude, but 
measurements were not so precise and 
he was met with skepticism

● 1911-12: Victor Hess improved the 
instrument and used a balloon to study 
the phenomenon between 1000 and 
5000 m over sea level

When the device is charged, 
the sheets move apart.

Ionization of the gas leads to a 
discharge, and the sheets move 

towards each other.

S
ource: h ttp://cds.c ern.ch/jo urnal/C

E
R

N
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rticles /1471207
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Primary and secondary cosmic rays

Picture from here From wikipedia

The number of charged particles increases as the cascade 
progresses, but eventually most of them are absorbed

http://hyperphysics.phy-astr.gsu.edu/hbase/astro/astcon.html
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Secondary cosmic rays
in the atmosphere

● Primary CRs (mostly protons) entering the atmosphere collide 
mostly with Oxygen and Nitrogen, producing a shower of particles

● Mostly x-rays, muons, protons, alphas, pions, electrons, neutrons

● They tend to stay within 1° of the direction of the primary CR

● Muon rate: ~100 Hz/m2 (~1 muon/second through your thumb)
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An old mystery
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„Who ordered that?“ (I. Rabi)
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At ground level, the 
visible flux is 

dominated by muons

Source: Particle Data Group

All curves are for E>1 GeV;
points are experimental 
measurements for negative muons
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Angular distribution

From Peter Grieder's book 
Cosmic rays at Earth, Elsevier 2001

This is an approximation, and n~2 works pretty well; 
but it depends on energy, latitude, altitude, depth, …

From J.-W. Lin et al., Measurement of angular 
distribution of cosmic-ray muon fluence rate, NIM A 

619 (2010) 24

 Large difference in 
statistics between vertical 
and horizontal telescopes
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Atmospheric muon spectrum

Spectrum 
at 0o

Spectrum 
at 75o

At large angle, more low-E muons decay before reaching 
the ground, and more high-E pions decay before interacting.
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2. How-to
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Absorption method

● Basic idea: just like normal radiography, with m instead of X-rays

Picture from P. Strolin
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Stopping power

Picture from PDG
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1 m of rock ~ 3 m water equivalent

Picture from PDG

Plateau: background from up-going neutrinos; 
not relevant here (but what about planet 

tomography by neutrinos...)

1 km of rock means a drop of 2 
orders of magnitude in muon flux
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Scattering method

● Exploits multiple scattering in high-Z materials (e.g., spent 
nuclear reactor fuel, smuggled fissile material, etc.)

F
rom

 http://cm
s .cern/co

n tent/hom
eland-sec urity 

http://cms.cern/content/homeland-security
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● Deflection distribution follows Rutherford's law in the tails (single 
hard scattering) and is ~ Gaussian in the bulk (multiple scattering)
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● X
0
 is the radiation length, and it depends on the atomic number

(Formulas from the PDG)

http://www.physics.iitm.ac.in/~sercehep2013/track2_Gagan_Mohanty.pdf%20
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Absorption vs scattering

Picture credit: David Mahon, adapted by Sophie Wuyckens

● Opacity measurement
● Sensitive to r
● Observable: deficit with respect 

to free sky
● Intrinsically 2D, can get 3D by 

using multiple points of view
● Slow

● Deflection measurement
● Sensitive to Z and r
● Observable: deflection 
● (can be combined with absorption)
● Intrinsically 3D
● Fast
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Absorption vs scattering

● Scattering method is much faster, as it uses more information
● Better definition too
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What to use for what

Material Thickness  (°) Pabsorption

Air 100 m 0.094 0.78%

Lead 10 cm 1.01 2.9%

Water 1 m 0.35 4.2%

Ground 100 m 99%

Scattering Absorption
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Slide by David Mahon
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Detector geometry
● Typically, a "telescope"

● Trade-off between angular 
precision (better if long) and 
acceptance (better if short)

● Deep underground applications 
(e.g., for mining exploration) 
need a borehole

● More acceptance to the sides 
than to the top
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● Representative example from Project Deep Carbon 
(application to monitoring of Carbon Capture & Storage 
sites), slides by Lee Thompson 
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Scintillators

Y1

X1

Y2

X2

Illustration by S.Procureur

● Solid plastic scintillators, coupled to 
photomultipliers

● Strengths:
✔ Cheap
✔ Robust
✔ Quick signal → can use time-of-flight 

to reject backgrounds
● Weaknesses:

✗ Poor space resolution
✗ Photomultipliers response may 

depend on temperature (issue if 
operating outdoors for months)
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Nuclear emulsions

● Photographic plates
● Well known technique in 

neutrino experiments
● Strengths:

✔ Excellent resolution
✔ No need for power supply

● Weaknesses:
✗ Fragile
✗ No real-time information
✗ No background rejection
✗ Dedicated analysis 

infrastructure (scanners)

Popular among the muography teams 
that are spin-offs of OPERA or other n 
experiments that used this technique 
(e.g.: Bern, Salerno, Nagoya)



30

Gaseous detectors
● Huge variety of techniques are in 

use in muography (drift tubes, 
RPC, MWPC, MicroMegas, …), 
with very different complexity, cost, 
robustness

● General strengths:
✔ Very good space resolution
✔ Quick signal → can use time-of-flight 

to reject backgrounds
● General weaknesses:

✗ Logistics (gas bottles), leakages, 
security issues

✗ Stability

Example: RPC, illustration by Sophie 
Wuyckens

Gain variations of 
CEA/ScanPyramid 
MicroMegas detector, with 
increasingly complex gain 
corrections:
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More exotic choices
● Silicon detectors

● Lot of expertise in HEP with Si pixel and 
microstrip detectors; <100 mm resolution

● Problem: very expensive (CMS microstrips: 
~1000 euros per module)

● Being considered for space applications 
(compact payload, and rad-hard)

● Cherenkov detectors
● ASTRI, an INAF prototype for the CTA, located 

at Serra La Nave, on Mt. Etna's slopes
● Cosmic muons used for calibration; "parasitic" 

usage for muography; but location not optimal 
(5 km from target) and definitely not portable

● INAF-PA team is proposing the development of 
a cheaper and portable version of ASTRI

● Momentum threshold (20 GeV) limits statistics

● Bonus: Cherenkov ring radius gives E
m

Im
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O.Catalano, M.Del Santo, T.Mineo, G.Cusumano, 
M.C.Maccarrone, G.Pareschi, NIM A 807 (2016) 5

Simulation
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From raw data to density map

From Anne Barnoud, with TOMUVOL data on Puy de Dôme

CMS Collaboration (M.Komm, AG, et al.), JHEP 04 (2016) 073

Not so different from:
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3. applications
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Mountains and volcanoes
● Pioneered since the 90's by Nagamine's team in Japan, intense 

activity since early 00's in Japan, Italy, France
● Both "static" and "time-series" studies are potentially useful for 

volcanology, the latter also for civil protection
● Intrinsically "academic" activity, trend towards collaborations

Satsuma-Iwojima volcano, Japan, 2013 eruption
H.Tanaka, T.Kusagaya, H.Shinohara, Nature Comm.5 (2014) 3381
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Some activities in Italy

● Vesuvius: 

● MU-RAY / MURAVES collaboration 
(INFN Naples & Florence + INGV)

● Plastic scintillators + SiPM

● Stromboli: 

● Salerno's HEP&Geo + Naples HEP
● Nuclear emulsions (OPERA spin-off)

● Etna: 

● INAF + INGV
● Cherenkov telescope (CTA spin-off)
● (In the past, also DIAPHANE collaboration from 

France, with plastic scintillators)
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Flux normalization, Backgrounds

Image from http://www.scienceinschool.org/2013/issue27/muons, 
adapted from H.Tanaka et al., Earth Plan. Sci. Lett. 263 (2007) 104 

Ambrosino et al. (TOMUVOL+MU-RAY coll.), 
J.Geophys.Res.Solid Earth 120 (2015), 7290

Muons from outside the target (including 
backward) are a help and a nuisance:

● In-situ flux normalization from the free sky
● Background (true muons uncorrelated with 

the target) due to large-angle scattering
● Time-of-flight helps
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The most interesting region
is the most difficult

Two months of data with TOMUVOL detector 
on Puy de Dôme, dormant volcano in France

From Carloganu & Saracino, Physics Today dec.2012
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Combination with
"standard methods"

Gravimetry:

Observable: Bouguer anomalies

Figures from Niklas Linde and from http://landtechsa.com 

Seismic tomography:
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Most geoprospecting methods are non-linear 
inversion problems: solutions wildly degenerate, 
need strong constraints to converge, different 
assumptions lead to qualitatively different results

Muography: highly directional, breaks 
degeneracy of the other methods

Combination with
"standard methods"

Formula from Anne Barnoud
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Checkerboard test

Simulated density 
pattern:

Seen from gravimetric inversion Seen from muographic inversion

Red: high density
Blue: low density

Study from Anne Barnoud
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Khufu's (Cheops) Great Pyramid
(ScanPyramids mission)

Morishima et al., Nature 552 (2017) 386

Nagoya
(emulsions, 

indoors)

KEK
(scintillators, 

indoors)

CEA
(MicroMegas, 

outdoors)

Coherent conclusions from 3 detectors
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Galleria Borbonica, Naples

Detector: MURAVES 
(same as used on 
Vesuvius), arranged 
vertically and with 
small spacing to 
increase acceptance

From G.Saracino et al., Scientific Reports 7 (2017) 1181

Unexpected void
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From http://cms.cern/content/security-and-environmental-protection 

Homeland security

CMS Drift Tubes spin-off at INFN LNL / Padova (P.Checchia et al)
● Currently done with X rays
● Idea: secondary inspection with muon rays to clear/confirm alarms
● Activities also in USA (LANL spin-off)

http://cms.cern/content/security-and-environmental-protection
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Another CMS spin-off

● Same RPC as CMS experiment, but smaller (16x16 cm²)
● Also same gas mixture and same front-end electronics

● First prototype, just to gain experience
● Second one will have x4 or x10 strip density
● ...hence will require different electronics, or/and smart multiplexing

● Design principle: must be portable
● Particular care in making gas-tight layers (10-9 mbar l/s)
● Total weight including the electronics: ~50 kg
● Robust: went to the Utah Desert and back
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Nuclear waste monitoring

Durham J, Poulson D, Bacon J, Chichester D, Guardincerri E, Morris C, et al. Physical Review Applied. 2018;9(4):044013
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Muography and
the private sector

● Usually in HEP the role of the private sector is to provide equipment, 
facilities, material to the publicly funded institutes

● In muography, a few companies try to valorize the outcomes of 
academic research

● Some of them are actually university spin-offs

● Still in infancy; fragile/hypothetical market

● Examples:

● Geophysical applications: IRIS Instruments (France), TECNO IN 
(Italy), NEC (Japan), Lingacom (Israel)

● Nuclear waste monitoring: Lynkeos Technology (UK)

● Mining exploration: CRM GeoTomography Technologies (Canada)

● Pipeline x-section measurement: Muon Systems (Spain)

● Homeland security: Decision Systems (USA)
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Planetary exploration

● The usual requirements for muography instruments 
on Earth are even more important for space missions
● Compact size, low weight
● Very robust! Must survive landing!
● Low power consumption
● Temperature variations

● Test with a „rover“ on Mt.Omuro (Japan) in 2012
● Additional challenges from the thin atmosphere: 

● Smaller flux of muons 
● (on the other hand, horizontal muons are less 

suppressed and their flux is actually larger than vertical)
● Larger hadronic background (primary cosmics!)

S.Kedar et al., Geosci. Instrum. 
Method. Data Syst. 2 (2013) 157
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Small solar system bodies

From T.H. Prettyman

Image from AMS-1 of the MIR space 
station using secondary p and m
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Thanks for your attention!

Acknowledgements: Sophie Wuyckens, Sebastien Procureur, Lorenzo Bonechi, 
Chris Morris, David Mahon, Anne Barnoud, Lee Thompson, …..



50

Compare attenuation length of X-rays and muons

For X-rays of O(1-10 keV) it ranges between 10-6 and 10-1 meters 
depending on material (Z) and energy
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Detector requirements
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Slide from Valentin Niess
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Primary cosmic rays
● Stable (>106 years) charged particles and nuclei

● Protons: 87%; alphas: 12%; other nuclei: 1%; electrons: 2%; 
also photons, neutrinos, antimatter
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Image from wikipedia
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extra-galactic
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Sources of galactic cosmic rays
● We are not sure

● Because they are deflected several times by galactic 
magnetic field, they reach Earth from random directions

● Abundance of heavy elements suggests an origin from 
supernovae, for most but maybe not all of them

● Remember: ~ 1 SN every 50 years in the Milky Way 

● Cosmic rays are probably accelerated by the shock waves 
in the interstellar gas due to supernovae

● Energy of typical SN explosion: ~1051 ergs

● It would be sufficient that O(%) of this energy is converted in 
kinetic energy of the cosmic rays; the exact way is unknown

● Data from Fermi satellite recently proved that SN are 
sources of CR, with ~ 1049 – 1050 ergs of CR kinetic energy
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Slide by Lorenzo Bonechi
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From Peter Grieder's book „Cosmic rays at Earth“, Elsevier 2001

Grieder's book contains plenty of figures showing spectra at 
different locations, altitudes, times
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Stopping power
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UCL's mini-gRPCs

From Sophie Wuyckens' master thesis
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A few months of progress

From Sophie Wuyckens' master thesis
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Underground cavities:
Backprojection method

L. Bonechi, R. D'Alessandro, N. Mori, L. Viliani, A projective reconstruction method of 
underground or hidden structures using atmospheric muon absorption data, JINST

T
his and  the nex t cartoon s are 

courtesy  of L
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Assumptions: size of the target, and distance from the 
detector, are not much larger than the detector
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Simulation study with GEANT4
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